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Abstract

Natural Language Processing (NLP) tasks
in non-dominant and low-resource languages
have not experienced significant progress. Al-
though pre-trained BERT models are available,
GPU-dependency, large memory requirement,
and data scarcity often limit their applicabil-
ity. As a solution, this paper proposes a fusion
chain architecture comprised of one or more
layers of CNN, LSTM, and BiLSTM and iden-
tifies precise configuration and chain length.
The study shows that a simpler, CPU-trainable
non-BERT fusion CNN + BiLSTM + CNN
is sufficient to surpass the textual classifica-
tion performance of the BERT-related mod-
els in resource-limited languages and environ-
ments. The fusion architecture competitively
approaches the state-of-the-art accuracy in sev-
eral Bengali NLP tasks and a six-class emo-
tion detection task for a newly developed Ben-
gali dataset. Interestingly, the performance of
the identified fusion model, for instance, CNN
+ BiLSTM + CNN, also holds for other low-
resource languages and environments. Effi-
cacy study shows that the CNN + BiLSTM
+ CNN model outperforms BERT implemen-
tation for Vietnamese languages and performs
almost equally in English NLP tasks experi-
encing artificial data scarcity. For the GLUE
benchmark and other datasets such as Emotion,
IMDB, and Intent classification, the CNN +
BiLSTM + CNN model often surpasses or com-
petes with BERT-base, TinyBERT, DistilBERT,
and mBERT. Besides, a position-sensitive self-
attention layer role further improves the fusion
models’ performance in the Bengali emotion
classification. The models are also compress-
ible to as low as≈ 5× smaller through pruning
and retraining, making them more viable for
resource-constrained environments. Together,
this study may help NLP practitioners and serve
as a blueprint for NLP model choices in textual
classification for low-resource languages and
environments.

1 Introduction

Many developed nations are now considering deep
learning approaches for tackling textual toxicity
in social media. But countries lacking substan-
tial socio-economic capacity and technological
infrastructures are lagging. The current trend
of NLP research evolves mainly around a few
dominant languages, leaving NLP research for
many low-resource languages unattended or less
explored (Joshi et al., 2020). The NLP tasks in low-
resource languages generally suffer from excep-
tionally scarce resources, ranging from lack of an-
notated data to insufficient computational facilities.
In contrast, most NLP breakthroughs that achieve
high accuracy are computationally intensive, mak-
ing it more challenging for societies suffering from
inadequate technological infrastructures. For in-
stance, while the bidirectional transformer BERT
has about 340 millions parameters (Devlin et al.,
2018), a more advanced model GPT-3 (Brown et al.,
2020), has about 170 billions parameters, requiring
extensive GPU/TPU support and memory storage
that may be unaffordable for low-resource societies.
As a result, low-resource languages and environ-
ments are frequently left out with little attention
from the NLP community (Joshi et al., 2020).

Further complicating matters, the serverless free
deployment of deep learning models, as com-
monly done using Amazon Web Services (AWS)
and Google Cloud Platform (GCP), is restric-
tive for larger model size (Han et al., 2015a,b).
Also, latency increases with increasing memory
requirement and model size, suggesting memory-
intensive device GPU/TPU for faster inference and
response. These additional financial costs limit ac-
cess to BERT models for NLP community works in
resource-constrained environments (Strubell et al.,
2019). One intriguing question thus arises: could
computationally less-expensive non-BERT mod-
els reduce GP/TPU dependency and associated fi-
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nancial cost without affecting the classification ac-
curacy for textual classification in a low-resource
context?

The multilingual-BERT (mBERT) (Devlin et al.,
2018; Pires et al., 2019) and its reduced versions
(Abdaoui et al., 2020), other compressed BERT
modifications, such as TinyBERT (Jiao et al., 2019),
MobileBERT (Sun et al., 2020), are a few viable
models proposed for many languages and contexts,
including the low-resource ones. Nevertheless,
these models require additional fine-tuning and
training for target-specific NLP tasks, requiring
GPU/TPU support even in a resource-constrained
context. Also, size of these models may not be
optimal for deployment in low-end devices. So,
textual classification in many non-dominant lan-
guages remains rudimentary, leaving the communi-
ties unequipped against the increasing toxicity and
abusive comments on social platforms. Besides,
many textual classification tasks do not require a
rigorous use of linguistic semantics. So, models
that are structured well against the semantics, for
instance, the BERT models, may not always be the
most optimal choice in NLP tasks less dependent
on language semantics. Thus, a viable trade-off be-
tween the deployability, scarce resources, and DNN
models’ accuracy in NLP tasks for low-resource
languages and environments needs unraveling.

As a solution, this study integrates local and
global dependencies in sentences by bringing alter-
native DNN models into a hybrid model structure,
namely the fusion chain models. Subsequently, a
rigorous architecture search identifies deployable
DNN models for low-resource languages, with an
improved understanding on a few intriguing ques-
tions such as:

• How effective are the homogeneous (of sim-
ilar layers) and heterogeneous (of different
layers) form of fusion of one or more DNN
layers in textual classification tasks?

• What chain length is optimal to maintain accu-
racy and reduce the difference between train-
ing and validation loss?

• How helpful the self-attention is for fusion
models, and what is its optimal position?

We identify that classification accuracy is sensi-
tive to fusion chain length, beyond which classifi-
cation accuracy deteriorates considerably. Subse-
quent exploration of the identified fusion models
reveals a position-sensitive performance of the self-

attention layer for the newly annotated six-class
Bengali emotion dataset.
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Figure 1: The word embedding layer acts as the input
for the fusion of DNN layers during the NAS process. In
the NAS, CNN, LSTM or BiLSTM layer are all consid-
ered as the initial layer, however the subsequent layers
depended on the type of initial layer chosen finally re-
sulting the three alternative chain-structures. The output
from the DNN fusion requires pruning and retraining to
generate the deployable models.

2 Related Works

Previous works attempted alternative deep learning
models in NLP tasks for low-resource languages
and environments. For instance, using a teacher-
student framework, the BERT distillation with sim-
pler models such as CBoW + FFN and BiLSTM
as the student models for the limited availability of
labeled data (Wasserblat et al., 2020). While such
models are more deployable in low-end devices,
the training still relies on a memory-hungry and
costly setup requiring GPU/TPU as well as large
unlabelled data for student model training. Alterna-
tive approaches consider freezing the BERT-layer
outcomes by assessing their roles in the classifi-
cation process (Grießhaber et al., 2020), requiring
GPU/TPU support to train. Also, the sequence of
frozen layers may vary across alternative datasets,
and hence, the accuracy for a particular set of
frozen layers becomes context-dependent. Instead,
we investigate if a simple, CPU-trainable CNN and
RNN fusion layer stack can achieve textual classi-
fication accuracy in NLP tasks where syntactical
knowledge is less influential than the keywords
or sentiment-based phrases. To find out such al-
ternative non-BERT models, we propose fusion-
chain architecture comprising one or more CNN
and RNN layers and perform a rigorous network
architecture search (NAS). Interestingly, the NAS
process identifies a few optimal candidate mod-
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els capable of achieving accuracy comparable to
the baseline models, as elaborated further in the
subsequent sections.

The emergence of more advanced deep neural
networks capable of learning the word orders and
information dependency in sentences replaces the
classical machine learning models (Mikolov et al.,
2013) in many NLP tasks. Precisely, the neu-
ral network models of the form of RNN (LSTM,
BiLSTM) or CNN independently, or in combina-
tion with a pre-trained word embedding facility
such as word2vec (Mikolov et al., 2013), fasttext
(Joulin et al., 2016), have become the standard
alternatives. For instance, Dynamic CNN archi-
tecture (DCNN) performs semantic modeling to
identify words’ short and long-range relations in
sentences (Kalchbrenner et al., 2014). Whereas the
CNN-based models are good at local and position-
invariant feature extraction, the LSTM/BiLSTM
models explicitly treat sentences as a sequence of
words and capture sentence-level (for instance, syn-
tactical (Zhu et al., 2015)) dependencies. Also, a
few alternative attempts integrate local and global
textual dependencies using CNN and RNN archi-
tectures (known as hybrid models) to improve accu-
racy of textual classification reviewed thoroughly
in (Minaee et al., 2021).

Intriguingly, the hybrid models also appear
promising for target-specific sequential analysis,
as evident from quantifying the function of specific
DNA sequences (Quang and Xie, 2016). Named
Entity Recognition (NER) tasks also employ a hy-
brid approach by merging BiLSTM and CNN mod-
els (Chiu and Nichols, 2016). One of the initial
works leveraging the advantages of both CNN and
RNN architectures for textual classification is the
Convolutional-LSTM (C-LSTM). Precisely, in C-
LSTM, n-gram features extracted by a CNN layer
are fed to the LSTM layer for learning the intra-
sentence sequential dependence of words (Zhou
et al., 2015). Authors in (Zhang et al., 2016) also
tried a hybrid model with LSTM outputs fed to
a CNN layer in document modeling. Alternative
models include an attention mechanism with ei-
ther CNN or RNN architecture to optimize textual
classification performance further. For instance,
Attention-Based Bidirectional Long Short-Term
Memory Networks (Att-BLSTM) capture the po-
sition variant semantic information from the sen-
tences (Basiri et al., 2021). Another study imple-
ments an attention-based Convolutional Neural Net-

work (ABCNN) to model a pair of sentences (Yin
et al., 2016). However, most of the studied hybrid
models are single and two-layer models and did
not explore the relevance of a larger stacking depth
in textual classification tasks. The optimal fusion
length and the order of the layers are still debat-
able and context-dependent. Besides, these CPU-
implementable models facilitate the exploration
and deployment of DNN models in low-resourced
environments devoid of adequate advanced com-
puting devices and facilities.

Algorithm 1 Fusion chain generation in NAS

Require: Input and Embedding Layer
Require: N = Max. fusion chain length
Require: RNN = LSTM | BiLSTM
Require: Initial Fusion Layer = CNN | RNN
Ensure: i = RandomNumber (1 to N − 1)

Fusion Model = Initial Fusion Layer
for

x← 0 to i do
if x is even then

Layer← RNN
else if x is odd then

Layer← CNN
end if
Append Layer to Fusion model
Append GlobalMaxPooling, Output Layer
Return: Fusion model
if Fusion chain length > N then

BREAK
end if

end for

3 Models and Methods

3.1 Proposed fusion chain models

Alternative DNN versions possess different
strengths in NLP tasks. For instance, CNN (LeCun
et al., 1998) models are good at position invariant
text classification tasks, whereas the RNN (Elman,
1990) models are more pertinent for sequential pro-
cessing of the input texts. However, the basic RNN
structure frequently suffers from vanishing gradient
problems, and the improved RNN variants are—
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Cho et al., 2014). Many NLP tasks such as
sentiment analysis, emotion detection, have strik-
ing similarity, as the attributes are largely keywords
dependent. Because of the sequential structures of
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Figure 2: a, b, c) Optimal chain length for the three alternative fusion chain models studied extensively as part of
the NAS.

LSTM and GRU, and their ability to remember
previous text sequences, they perform well where
context-dependencies are crucial (Yin et al., 2017).
Another variant of LSTM, the Bidirectional LSTM
(BiLSTM), comprises two LSTMs taking input se-
quence in forward and reverse directions, exhibits
improved performance over single-LSTM in many
applications (Huang et al., 2015). While each deep
learning variant has its strength, a legitimate ques-
tion thus arises—if a fusion model, formed with
the DNN variants in a fusion chain, enhance per-
formance of textual classification. An immediate
next interesting question thus becomes the optimal
chain length of the proposed fusion model.

3.2 Optimal length of the fusion chain
Textual classification accuracy depends on the con-
text length of a word in a sentence. Fusing mul-
tiple DNN layers can increase the context length,
but the optimal stacking depth for the DNN layers
remains elusive and requires unravelling. The pro-
posed fusion architecture follows a generic struc-
ture— it starts with an input layer, followed by
an embedding layer that generates an embedding
matrix for the given input sentence. A DNN layer
is introduced immediately next to the embedding
layer. Subsequently, additional DNN layers are
added to form a fusion chain model of DNN lay-
ers, as schematically shown in Fig. 1. We per-
formed random search for an the optimal fusion
chain length, using several performance objectives,
including the higher classification accuracy. The
network architecture search (NAS) for an optimal
chain length randomly generates even and odd num-
bers to decide if the next stacking to be done by
an LSTM/BiLSTM (for even) or CNN (for odd)
layer. The current fusion process does not consider
similar DNN layers to be stacked together. The
maximum length of fusion chain considered in the
NAS is eight, beyond which the classification accu-

racy becomes considerably low (data not shown).
The NAS process for optimal fusion chain length
is summarized in algorithm 1.

3.3 Generalized random search

We implemented a generalized random search for
a set of hyper-parameters in Keras (Chollet et al.,
2018) and used it in all the experiments conducted
for the analysis of fusion chain models. Interest-
ingly, the random search process needs manual tun-
ing of only one parameter, namely the maximum
word length of a sentence that affects the shape
of attention and LSTM layers. With this little tun-
ing, the search process as developed in this study
remains applicable for other similar textual classi-
fication tasks. Each layer in the random search is
accompanied by an activation layer, a batch normal-
ization layer, and a dropout layer to minimize the
overfitting error. The CNN and RNN layers here
also include kernel, bias, and activity regularizers
(see the supplemental data for details).

3.4 Metrics used for comparison

The initial architecture search uses classification
accuracy on the test dataset and the loss differ-
ence (LD = validation loss - training loss) as the
performance metrics. The classification accuracy
is defined as (TP + TN)/(TP + TN + FP + FN)
with TP, TN, FP, FN are true positive, true nega-
tive, false positive, and false negative, respectively.
The random search also considers early stopping
to control the overfitting error 1. For a compari-
son between the baseline models and the CNN +
BiLSTM + CNN fusion model, we also considered
other metrics, such as the number of parameters (#
params), number of floating point operations (#
FLOPs). Generally, experiments conducted in this
study consider a 80% (training) and 20% (testing)

1Data and codes are available here in this link
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Table 1: Performance of alternative fusion models for
the new 6-class emotion Bengali dataset.

Model structure Accuracy (T) LD
Classical Machine Learning Models

1. SVM 41.93 NA
2. KNN 72.79 NA
3. Random Forest 81.43 NA

Fusion models
4. CNN + CNN + CNN 85.62 0.491
5. LSTM + LSTM 85.43 0.541
6. CNN + LSTM + CNN 86.61 0.283
7. LSTM + CNN + LSTM 85.74 0.483
8. BiLSTM + BiLSTM 86.54 0.126
9. BiLSTM + CNN + CNN 85.25 0.143
10. CNN + BiLSTM + CNN 84.54 -0.058
11. BiLSTM + LSTM 85.14 0.206
12. BiLSTM + LSTM + BiLSTM 85.49 0.057
13. BiLSTM + CNN + BiLSTM 85.86 -0.005

Fusion models + attention
14. CNN + attn. + BiLSTM + CNN 86.83
15. CNN + attn. + LSTM + CNN 86.91

BERT models
16. mBERT 86.62 0.457
17. Bangla BERT 86.17 0.177

split, and use fasttext (Joulin et al., 2016) as word
embedding method.

3.5 Datasets
The study considers datasets across different lan-
guages and contexts for the efficacy demonstration
of CNN + BiLSTM + CNN fusion. We developed
a new Bengali corpus for 6-class emotion classifi-
cation, as well as used other previously developed
Bengali datasets for different NLP tasks– i) Six-
class emotion Bengali dataset (Das et al., 2021), ii)
Hate Speech Bengali dataset (Romim et al., 2021),
and iii) DeepHateExplainer Bengali dataset (Karim
et al., 2020). As examples of non-Bengali lan-
guages that relate the low-resource contexts, we
consider the Vietnamese (Ho et al., 2019) and In-
donesian (Saputri et al., 2018) datasets. The low-
resource contexts in English considers an artificial
data scarcity for the Stanford Sentiment Treebank
2 (SST-2), (Socher et al., 2013), emotion classi-
fication dataset (Emotion) (Saravia et al., 2018),
and the Internet Movie Database (IMDB) review
dataset (Maas et al., 2011). Finally, the efficacy
study of the CNN + BiLSTM + CNN fusion model
also considers evaluating the model on the on the
General Language Understanding Evaluation the
GLUE benchmark (Wang et al., 2018); however,
we used randomly chosen 250 samples only from
each classes to mimic artificial data scarcity.

3.6 Baseline models
We compare CNN + BiLSTM + CNN and other
fusion models as identified against the models pre-

viously introduced for resource-constrained envi-
ronments. A few such models are BERT-base (un-
cased) (Devlin et al., 2018), mBERT (Abdaoui
et al., 2020), DistilBERT (Sanh et al., 2019), and
TinyBERT (Jiao et al., 2019). The chosen mod-
els are all BERT related, and a few of which,
for instance, DistilBERT, and TinyBERT, come
with reduced size and additional fine-tuning for the
resource-constrained environments and low-end de-
vices. Besides the GLU benchmark, the mBERT is
also used for the textual classification in Bengali.

4 Results and Discussion

Optimal fusion chain length of fusion models:
The NAS process identifies (see Fig. 2a, b, c) that
stacking unlimited DNN layers do not improve per-
formance of the fusion models. Instead, the accu-
racy and LD of the textual classification deteriorate
after the chain length attains an optimal value. In-
terestingly, chain-structure of length three or fewer
layers yield the optimal performance (shown in
Fig. 2a, b, c) irrespective of the fact whether fusion
models start with any of the CNN, LSTM, BiLSTM
layers. The NAS considers three fusion chains:

• CNN + LSTM + CNN + LSTM + . . . + CNN
• LSTM + CNN + LSTM + CNN + . . . + LSTM
• BiLSTM + CNN + BiLSTM + . . . + BiLSTM

A comparison between the competing models
for our newly developed corpus of emotion
classification reveals that accuracy deteriorates as
the chain length goes beyond three. As it appeared,
the accuracy gradually reduces to lower values
as the length increases beyond three (shown in
Fig. 2a, b, c). Among the models with a chain
length of three or less, a model with a chain length
of three is the smallest in LD values among the
three allowed chains. A fusion chain that starts
with a CNN layer attains the lowest validation
loss and is explored further in subsequent analysis
by replacing the LSTM layer with a BiLSTM layer.

GLUE benchmark with artificial data scarcity:
The GLUE benchmark datasets have different
sentence classification tasks. The performance
evaluation of CNN + BiLSTM + CNN for all
the categories has been done by assuming an
artificial data scarcity. Precisely, the artificial
scarcity considers only 250 samples from each
class. As reported, the proposed CNN + BiLSTM
+ CNN model frequently outperforms baseline
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Table 2: Efficacy study of CNN + BiLSTM + CNN fusion model considers GLUE benchmark datasets. Here, M and
B stand for Millions and Billions, respectively. Only 250 samples were collected randomly to mimic a low-resource
setup artificially for each class, among which 80% and 20% were for training and testing purposes. Here, accuracy
colored in red is the highest, whereas the bold black is the next highest accuracy attained. The baseline models are
all pre-trained versions available in https://huggingface.co/models

Model # Params # FLOPs CoLA WNLI QQP QNLI RTE

BERT-base 109M 22.04B 63 46 61 70 75
mBERT 110M 22.04B 64 49 66 73 71
DistilBERT 52.2M 22.04B 65 47 65 74 76
TinyBERT 14.5M 0.119B 48 39 49 53 57
CNN + BiLSTM + CNN 0.4M 1.50M 64 65 71 73 81
CNN + LSTM + CNN 0.37M 1.43M 60 64 69 74 81

CNN + BiLSTM 0.38M 1.47M 62 62 70 71 79

Table 3: Comparison between CNN + BiLSTM + CNN
model and BERT with frozen layers as in (Grießhaber
et al., 2020) for 1000 randomly selected samples from
SST-2 dataset (Socher et al., 2013).

Methods Model structure SST-2

BERT
no frozen layer 0.78± 0.059
layer 1,2,3 frozen 0.80± 0.045
layer 9,10,11 frozen 0.84± 0.013

Fusion CNN + BiLSTM + CNN 0.80

models and approximates the rest for all different
classification tasks available in GLUE benchmark
(shown in Table 2). For instance, the comparison
considers both the SST-2 (Socher et al., 2013)
and CoLA (Warstadt et al., 2019) datasets for
the single sentence classification task, and the
CNN + BiLSTM + CNN model achieves the
second-highest accuracy (64% for CoLA) marked
as bold black with Distilled BERT accuracy at
the top with 65% accuracy. Interestingly, in 4
sentence inference task (dataset RTE (Bentivogli
et al., 2009)), the CNN + BiLSTM + CNN model
achieves 81% accuracy exceeding all the other
baseline models in the presence of artificial
scarcity. In another inference task dataset, QNLI
(Rajpurkar et al., 2016), the fusion model CNN
+ LSTM + CNN attains the maximum accuracy
(74%) with CNN + BiLSTM + CNN and mBERT
following it with an accuracy of 73%. The GLUE
benchmark also includes three-sentence similarity
tasks, and the CNN + BiLSTM+ CNN performed
equally well for datasets such as QQP (Chen et al.,
2018) with the highest and immediate next best
performances with 71% and 70%, respectively.
These experiments on different NLP tasks of the
GLUE benchmark demonstrate the ability of CNN
+ BiLSTM + CNN models to perform better in
data scarcity and low-end computational facilities.

Fusion and BERT models have comparable ac-

curacy for a newly developed Bengali corpus:
A few fusion chain models perform closely with
BERT models for Bengali 6-class emotion cor-
pus we developed (see supplemental information).
Precisely, the Bangla BERT and mBERT models
achieve 86.17% and 86.62%, whereas the CNN +
LSTM + CNN fusion model reports an accuracy
86.61% (Table 1, row 6). The accuracy further
improves for the same dataset with a self-attention
layer added immediately after the initial CNN layer
with an accuracy of 86.83% and 86.91% respec-
tively (Table 1, row 14, 15). We primarily empha-
sized on minimizing overfitting error by lowering
the difference between the validation loss and train-
ing. As observed, fusion models containig BiL-
STM layers demonstrate a tendency of lowering
the LD (Table 1, row: 8, 9, 10, 12, 13), and in fact,
obtains the lowest LD = 0.057 among alternative
fusion models. Interestingly, the fusion models per-
formed very closely with the mBERT model, and
in fact, outperformed mBERT in lowering the gen-
eralization error. For instance, reported mBERT
LD = 0.457 (Table 1, row 16), whereas the CNN
+ LSTM + CNN model has a low LD = 0.28. The
fusion models also perform well across other Ben-
gali text classification datasets. For instance, CNN
+ BiLSTM + CNN model outperforms mBERT
and BanglaBERT implementation for the reported
dataset in (Das et al., 2021). In another dataset of
Bengali hate speech detection (Romim et al., 2021),
the fusion model with self-attention CNN + attn. +
BiLSTM + CNN outperforms all the previous DNN
and ML implementations, as evident from Table 4.
However, for the dataset in (Karim et al., 2020), the
fusion models fail to match the BERT-variants’ per-
formance (see Table 4) and surpass only the other
DNN models. However, these datasets generally
contain few thousands of samples for each classes,
and do not necessarily represent data scarcity. Fur-
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Table 4: Performance comparison between fusion mod-
els and alternative DNN and BERT models for vari-
ous NLP-tasks in Bengali language. Here, A ≡ self-
attention layer.

Group Model structure Accuracy (%) Ref.
Six-class emotion Bengali dataset (Das et al., 2021)

DNN

CNN + A + LSTM + CNN 64.26
Ours

CNN + A + BiLSTM + CNN 65.24
CNN + A + GRU + CNN 64.73
CNN + BiLSTM 55.68 (2021)
BiLSTM 58.08 (2021)

BERT
mBERT 64.63

(2021)Bangla-BERT 62.24
XLM-R 69.61

Hate Speech Bengali dataset (Romim et al., 2021)
ML SVM 87.80 (2021)

DNN

fasttext + LSTM 84.30
(2021)fasttext + BiLSTM 86.55

word2vec + LSTM 83.85
CNN + A + BiLSTM + CNN 88.65 Ours

DeepHateExplainer (Karim et al., 2020)

DNN
LSTM 75

(2020)
BiLSTM 78
CNN + A + BiLSTM + CNN 83.56 Ours

BERT
Bangla-BERT 86

(2020)mBERT-cased 85
XML-Roberta 87

ther exploration of the fusion models for other
low-resources languages and contexts reveal the
resilience of the identified models. For instance,
the IMDB dataset (Maas et al., 2011) and the Emo-
tion dataset (Saravia et al., 2018) were randomly
reduced to mimick low-resource contexts. Sub-
sequently, mBERT performance for the reduced
datasets (5%, 10% for IMDB and 0.01%, 0.02%
for Emotion) was compared against the fusion mod-
els’ performance.

As appeared in Table 4, fusion models out-
performed in all instances; in fact, it performed
significantly better for the smaller dataset size
considered. Ability of fusion models also remain
equally competitive in other English NLP tasks,
as demonstrated from classification accuracy
comparison (see Table 6) between the fusion
models and other BERT, DNN based implementa-
tion as in (Larson et al., 2019). Specifically, the
fusion models attain a comparable accuracy of
93.62%, 93.28% as opposed to BERT-base’s 94.4%
reported in (Larson et al., 2019). Interestingly, the
proposed method also perform competitively with
the other low-resource fine-tuning, for instance, the
freezing of BERT-layer approach as in (Grießhaber
et al., 2020). Precisely, the CNN + BiLSTM +
CNN model achieves higher accuracy than the
BERT-base model reported, and almost equally
perform to other tuned BERT-models of frozen
layers, for a randomly selected 1000 samples from

Table 5: Training cost comparison between the baseline
and fusion models using the average time per epoch for
all the GLUE benchmark datasets studied.

Model
Average Time per Epoch (second)

CoLA WNLI QQP QNLI RTE

BERT-base 1286 1321 895 1421 783
mBERT 2540 1721 1296 2671 1026
DistilBERT 783 982 662 941 386
TinyBERT 19.6 24.4 19.8 24.4 18.8
CNN + BiLSTM

+ CNN
1.92 3.36 3.33 3.36 2.21

CNN + LSTM
+ CNN

1.25 3.26 2.25 3.18 1.11

CNN + BiLSTM 1.23 4.21 3 4.16 2.58

Table 6: Performance comparison between fusion mod-
els and alternative DNN and transformers models across
different languages and datasets. Here, A ≡ attn.

Method Model structure Accuracy (%) Ref.

Artificial scarcity: (5%, 10%) of IMDB dataset (Maas et al., 2011)
Fusion CNN + A + BiLSTM + CNN (84.79,85.10) Ours
BERT mBERT (81.40, 84.79) -

Scarcity: (0.01%, 0.02%) Emotion dataset (Saravia et al., 2018)
Fusion CNN + A + LSTM + CNN (84.65,89.87) Ours
BERT mBERT (79.5, 89.57) -

100% of Intent Classification dataset (Larson et al., 2019)
BERT BERT-base 94.3

(2019)
Others

CNN 89.8
MLP 90.1

Fusion
CNN + BiLSTM + CNN 93.62

Ours
CNN + LSTM + CNN 93.28

100% of the Vietnamese dataset (Ho et al., 2019)

Fusion
CNN + LSTM + CNN 54.76

OursCNN + BiLSTM + CNN 54.54
BERT BERT-base 53.18

100% of the Indonesian dataset (Saputri et al., 2018)

Fusion
CNN + LSTM + CNN 54.76

OursCNN + BiLSTM + CNN 54.54
BERT BERT-base 53.18

the SST-2 dataset (see Table 3).

Position-sensitive self-attention role of fusion
models in new Bengali corpus: An attention layer
may aid in capturing the necessary information
for a sequence to sequence model. We also in-
vestigated how adding a self-attention layer to the
fusion model affects the accuracy of the the newly
developed 6-class Bengali emotion corpus. How-
ever, an immediate question arises—what the op-
timal position of the attention layer be within a
fusion chain. To answer this, we execute four dif-
ferent experiments, utilizing a self-attention layer
in four alternative places: between the embedding
and the first CNN layer, between the first CNN
layer and the first LSTM layer, between the first
LSTM layer and the second CNN layer, and be-
tween the second CNN layer and the final output
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Figure 3: Performance comparison between the fusion (CNN + attn. + LSTM/BiLSTM + CNN) and mBERT model
on 25%, 50%, 75% and 100% of a new 6-class Bengali emotion dataset. The dataset was split randomly to produce
an artificial scarcity. In Fig. 3a-b, the green (square), red (circle), blue (asterisks), and yellow (diamond) lines
represent CNN + attn. + LSTM + CNN (Fusion: LSTM), CNN + attn. + BiLSTM + CNN (Fusion: BiLSTM),
mBERT and BanglaBERT models’ performance, respectively. a) Accuracy comparison of all the four models for
varying data size. b) The loss difference (LD) progression for different data sizes– the smaller the loss, the better the
performance is. c) An inclusion of a self-attention layer improves fusion models’ performance (blue lines).

Table 7: Deployable form for a few DNN-based fusion models before and after the pruning and retraining for the
six-class Bengali emotion dataset developed in this study.

Serial Fusion architecture Retrained Accuracy Accuracy Size (zip, MB)
Before pruning After Pruning Before Pruning After Pruning

1 LSTM + LSTM 86.19 85.43 85.18 33.45 6.32
2 CNN + LSTM + CNN 86.36 86.61 85.54 34.81 6.60
3 LSTM + CNN + LSTM 85.28 85.74 84.24 34.27 6.45

layer. As observed, the model provides an accuracy
of 85.79% and a loss difference of 0.205 if the at-
tention layer is placed between the embedding and
the first DNN layer. Interestingly, the accuracy in-
creased to 86.68%, and the loss difference reduced
to 0.164 if the attention layer posits between the
first CNN and first LSTM layer. It was the highest
accuracy produced and the lowest loss difference of
0.164 among the alternative self-attention position
tried. An attention layer between the LSTM and the
second CNN layers generates shape mismatch and
stops the model from training. Final experiment
that places attention between the second CNN and
output layer produces an accuracy of 85.79% with
a 0.285 loss difference. These experiments show
that for the 6-class Bengali emotion classification,
a position-sensitive attention layer makes a differ-
ence in classification accuracy and reduces over-
fitting error. The accuracy improvement because
of the self-attention layer still holds if an artificial
scarcity for the new corpus is produced by consid-
ering 25%, 50%, 75% of the complete dataset, as
shown in Fig. 3c. However, further analysis with
other datasets and languages would clarify whether
self-attention layer roles, as observed here in Fig. 3,
are context-dependent or generic, and are beyond
the scope of this study.

Fusion models robustly perform in data scarcity:
One intriguing query on the fusion model would be

to assess its ability to perform in data scarcity. An
experiment designed to compare how the proposed
fusion models and mBERT perform in data scarcity
randomly segregates the Bengali 6-class emotion
dataset into 25%, 50%, 75%, and 100% categories.
The artificial data scarcity is analogous to the low-
resource contexts, mimicking the lack of sufficient
annotated data common for many low-resource lan-
guages. The comparison considers CNN + attn.
+ LSTM + CNN and CNN + attn. + BiLSTM +
CNN and compare with mBERT. The fusion mod-
els perform better for the 25% case and match or
surpass the mBERT performance in other scarce
data cases (shown in Fig. 3a). Besides, the fusion
models decrease LD in all the artificially produced
scarce cases studied. A close comparison (Fig. 3b)
shows that the LD of mBERT (blue line) remains
way above the LDs reported by the fusion mod-
els. For the 25% case, the LD value is doubled for
mBERT, indicating an advantage of fusion models
in low-resource contexts.

Fusion models are computationally less expen-
sive: Along with other factors, the computational
cost of an NLP model also depends on its size and
the FLOPs count. A comparison of these metrics
between the baseline models and the fusion models
exhibits that fusion models are more advantageous
for a small number of annotated samples (shown
in Table 2). For instance, the fusion model CNN
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+ BiLSTM/LSTM + CNN roughly does 100 times
fewer FLOPs. Also, for most GLUE datasets, the
fusion model outperforms the TinyBERT in the
presence of data scarcity. Some of the BERT mod-
els demonstrate equal accuracy for some GLUE
benchmark datasets. However, these models are
computationally extensive because of their high
#Params and #FLOPs. Although costs related to
FLOPs are decreasing, it requires hardware up-
gradation from GPU to TPU. Whereas the GPU
itself is a computationally extensive device in low-
resource environments, let alone the use of TPU.
So, the low #FLOPs requirement in CNN + BiL-
STM + CNN provides an edge over the memory-
hungry BERT models in low-resource contexts. Be-
sides, the possibility of a low computational cost
of the CNN + BiLSTM + CNN model can also be
predicted by comparing the average time per epoch
calculation, an ensemble representation of all the
individual times per epoch for alternative GLUE
benchmark data considered. The average time per
epoch over GLUE benchmark data is about 3 sec-
onds for the CNN + BiLSTM + CNN model. In
contrast, the same becomes as high as 1000 sec-
onds or more for the different baseline models im-
plemented in the experiment.

Besides, pruning and retraining reduce the fusion
models further and increase their deployability in
low-end devices and web platforms. Precisely, the
CNN + LSTM + CNN model achieves almost a 5×
reduction in size from 34.81MB to a model size of
6.60MB, as in Table 7. The TinyBERT model may
be as small as about 16MB, but it is pre-trained
in the English language requiring further tuning in
other languages for better accuracy. For instance, in
experiments on a Bengali 6-class emotion dataset,
the TinyBERT, pre-trained in English, achieves an
accuracy of 33.42%. This accuracy drops to 24%
if annotated data is reduced to 25%. So, Tiny-
BERT requires training of the pre-trained model
and suffers because of data scarcity. Whereas, for
the proposed fusion model CNN + BiLST/LSTM
+ CNN, the initial accuracy (86.61) is almost re-
trievable (86.36) upon pruning and retraining (data
shown in Table 7). Also, the model size reduces to
around 5MB after pruning compared to the 16MB
of the pre-trained TinyBERT.

5 Conclusion

Generally, the RNN and CNN models are compu-
tationally less intensive but compromise accuracy

in textual classification. In contrast, BERT-variants
and other advanced transformer-based implemen-
tations demonstrate improved performance but are
computationally intensive. This study analyzed a
few low-resource textual classification contexts to
identify CPU-trainable and comparatively smaller
deployable DNN models sufficiently accurate in
textual classification tasks. These identified less-
intensive DNN fusion models attained accuracy
that frequently surpasses BERT performance in
low-resource contexts. Interestingly, the efficacy of
CNN + BiLSTM + CNN remains equally applica-
ble in other alternative languages, tasks. This study
also demonstrates that the fusion models are all
CPU-trainable, making them easily accessible for
communities suffering from an infrastructural defi-
ciency. Moreover, low-resource languages always
suffer from smaller corpus, infrequent research ini-
tiatives, and a lack of intensive computational fa-
cilities. These hinder the potential deployment of
DNN models to monitor toxic and abusive elements
in the ever-increasing social media platforms. Be-
cause of its relatively small size and acceptable
classification accuracy, the fusion models are a suit-
able alternative to computationally intensive BERT
variants for deployment in low-end devices.

Further improvement of the fusion models may
consider a multichannel word-embedding tech-
nique, equipping the models better for out of vo-
cabulary words now common in the era of social
media platforms, POS-tagging to exploit the key
phrases of the sentiment better. Such extensions,
alone or in a cohort, can improve the fusion models
to tackle the long-term dependencies analysis by
forming phrases from the dependent and related
words in longer sentences. Overall, this work pro-
vides sufficiently accurate, computationally less in-
tensive CPU-trainable DNN models for NLP tasks
for low-resource languages and may serve as the
blueprint to identify the deployable NLP models
for low-resource languages and environments.
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