
Proceedings of Deep Learning Inside Out (DeeLIO 2022):
The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 1 - 10

May 27, 2022 c©2022 Association for Computational Linguistics

Cross-lingual Semantic Role Labelling with the Valpal database
knowledge

Chinmay Choudhary
National University of Ireland

Galway
c.choudhary1@nuigalway.ie

Colm O’Riordan
National University of Ireland

Galway
colm.oriordan@nuigalway.ie

Abstract

Cross-lingual Transfer Learning typically in-
volves training a model on a high-resource
source language and applying it to a low-
resource target language. In this work we
introduce a lexical database called Valency
Patterns Leipzig (ValPal) which provides
the argument pattern information about vari-
ous verb-forms in multiple languages includ-
ing low-resource languages. We also pro-
vide a framework to integrate the ValPal
database knowledge into the state-of-the-art
LSTM based model for cross-lingual semantic
role labelling. Experimental results show that
integrating such knowledge resulted in am im-
provement in performance of the model on all
the target languages on which it is evaluated.

1 Introduction

Semantic role labeling (SRL) is the task of identi-
fying various semantic arguments such as Agent,
Patient, Instrument, etc. for each of the target verb
(predicate) within an input sentence. SRL is use-
ful as an intermediate step in numerous high level
NLP tasks, such as information extraction (Chris-
tensen et al., 2011; Bastianelli et al., 2013), au-
tomatic document categorization (Persson et al.,
2009), text-summarization (Khan et al., 2015)
question-answering (Shen and Lapata, 2007) etc.
State of the art approaches to SRL such as (Zhou
and Xu, 2015; He et al., 2017a,b; Wang et al.,
2021) are supervised approaches which require a
large annotated dataset to be trained on, thus lim-
iting their utility to only high-resorce languages.
This issue of data-sparsity (in low-resource lan-
guages) has been effectively addressed with nu-
merous cross-lingual approaches to SRL includ-
ing Annotation Projection approaches (Padó and
Lapata, 2009; Kozhevnikov and Titov, 2013; Ak-
bik et al., 2015; Aminian et al., 2019a), Model
Transfer approaches (McDonald and Nivre, 2013;
Swayamdipta et al., 2016; Daza and Frank, 2019;

Cai and Lapata, 2020a) and Machine Translation
approaches (Fei et al., 2020).

In this work, we use the Valency Patterns
Leipzig (ValPal) online database1 (Hartmann
et al., 2013) which is a multilingual lexical
database, originally created by the linguistic re-
search community to study the similarities and dif-
ferences in verb-patterns for various world lan-
guages. Furthermore, we provide a framework to
utilise the knowledge available in Valpal database
to improve the performance of the state-of-the-art
cross-lingual approach to SRL task.

2 ValPal Database

Valency Patterns Leipzig (ValPal) is a comprehen-
sive multilingual lexical database which provides
semantic and syntactic information about different
verb-forms in various languages including many
low-resource languages. The ValPal database pro-
vides values for the following features for each
verb-form:

1. Valency: the total number of arguments that
a base verb-form can take.

2. Argument-pattern: the type and order of ar-
guments taken by a base verb-form in its most
common usage.

3. Alterations: the alternate argument-patterns
that can be taken by either the base verb-form
or any of its morphological variant.

Table 1 depicts the information about three lex-
ical units namely cook, kochen and cuocere as
provided in the ValPal database. Please note that
Table 1 lists only a few of all the alterations pro-
vided for these verb-forms in ValPal database due
to space constraints. Lexical units cook, kochen
and cuocere are English, German and Italian
words representing base verb-form for verb activ-
ity COOKING.

1http://ValPal.info/
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2.1 Coding of Argument-patterns

In ValPal database each argument-pattern (includ-
ing alteration) is coded with a unique coding-
frame. For example, in Table 1, the argument-
pattern of English base verb-form cook, is coded
as follows

1− nom > V.subj[1] > 2− acc

The code indicates that the base verb-form cook
takes 2 arguments in its most common usage (va-
lency of 2). The first argument is cooker (indi-
cated as 1-nom) and the second one is Cooked-
food (indicated as 2-acc). V.subj[1] indicates the
verb with the first argument as its agent. The or-
der of arguments are cooker–V–cooked food (eg:
She is cooking the fish.).
Verb-form cook also has an alteration called
Causative-Inchoative with the derived argument-
pattern as follows.

2− acc > V.subj[1]

This argument pattern indicates that verb-form can
also have order of arguments as cooked food–V
with Agent argument missing from the sentence
(eg: The fish is cooking).

2.2 Coding-sets

ValPal provides a unique coding-set for each lan-
guage. The codes in these coding sets indicate var-
ious argument-types including modifier argument-
types. For example, codes NP-Nom, NP-acc and
LOC-NP indicate the AGENT (Arg0), PATIENT
(Arg1) and modifier LOCATION (ArgM-LOC) ar-
guments respectively in the coding-sets of all lan-
guages. The codes with+NP and mit+NP-dat indi-
cate INSTRUMENT argument in English and Ger-
man coding-sets. Similarly, codes UTT-NP indi-
cate the argument TEMPORAL in most coding-
sets. In these codes, the NP indicates the index of
valency occupied the respective argument within
the argument pattern (eg: code 2−acc in argument
pattern 2 − acc > V.subj[1] indicates argument-
type PATIENT with the valency-index of 2).

2.3 Alteration Types

As already explained, the ValPal database also
provides a list of alternate argument-patterns
(called alterations) for each verb-form. Some of
these alterations are morpho-independent as they
can be taken by the respective base-verb in any

morphological form, whereas others are morpho-
dependent as they can be taken by the respective
verb only in a specific morphological form.
For example, both the Reflexive-Passive and Im-
personal Passive alterations of the italian base
verb-form cuocere, outlined in Table 1 are
morpho-dependent alterations as these alterations
are observed only when the verb-form possesses
morpheme si.
The ValPal database is originally created by the
linguistic research community, typically to study
the similarities and differences in verb-patterns for
various world languages. However this knowledge
can also be used by NLP research community for
building the models for data-sparse languages.

2.4 FrameNet to aid ValPal

One shortcoming of the Valpal database is that its
vocabulary is limited for many languages. If we
encounter a verb in the training-set that is missing
in ValPal, we utilised the FrameNet database to ex-
tract the desired argument-pattern and alterations
of it from ValPal itself.

To extract this knowledge about the missing
verb, firstly we extracted the frame of the missing
verb from the respective FrameNet database. Sub-
sequently we extracted a replacement-verb that be-
longs to the same frame (as that of the missing
verb) and is available in ValPal database. Finally,
we assigned the argument-pattern and alterations
of this replacement-verb to the missing verb. For
example, the verb barbecue is missing from Val-
Pal database. Yet, the verb barbecue belongs
to frame COOKING-45.1 in English FrameNet
(Barkley). Another verb-form called cook belong
to the same frame (COOKING-45.1) and is avail-
able in ValPal database. Thus we use argument-
patters provided in ValPal for verb-form cook as
the argument-patterns for barbecue.

3 FOL rules from ValPal

To inject the entire ValPal database knowledge
about any low-resource target-language l in a
Cross-lingual Neural Network model, we repre-
sented this knowledge as a set of First-order-logic
(FOL) rules Fl. The process of generating this set
of FOL rules involves two steps namely Translat-
ing ValPal Argument-patterns to Propbank label
orders and Writing Propbank-label order as FOL
rule described in Sections 3.1 and 3.2.
In ValPal database, the argument-pattern for verb-
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Verb-
form

Lang Argument-
pattern

Alterations (Alteration-name:Arg-pattern (ex-
ample) )

cook English 1 − nom >
V.subj[1] > 2−
acc

Understood Omitted Object:1 − nom >
V.subj[1] > 2 − acc (She walked in while I
was cooking.)

Causative-Inchoative : 2 − acc > V.subj[1]
(The soup is still cooking.)

kochen German 1 − nom >
V.subj[1] > 2−
acc

Benefactive Alternation:1 − nom > V ′ >
subj[1] > 3−dat > 2−acc (Ich koche meiner
Mutter eine Suppe.)

be-Alternation:1−nom > beV ′.subj[1] > 4−
acc > mit+2− dat (Die Großmutter bekocht
die Kranke mit Suppe.)

Ambitransitive Alternation:2 − nom >
V ′.subj[2] (Das Wasser kocht.)

cuocere Italian 1 >
V.subj[1] > 2

Reflexive-Passive:2 > siV ′.subj[2] >
daParteDi + 1 (La carne si cuoce con atten-
zione.)

Impersonal Passive:siPassV ′ > da + 1
(Quando si è (stati) cotti dal sole si diventa di
color rosso intenso.)

Table 1: Sample verb-form knowledge in Valpal database

form tie is outlined as equation 1 (as Q). We use
this as an example to demonstrate the process of
converting an argument-pattern to a FOL rule.

Q = 1− nom > V.subj[1] > 2− acc

> LOC − 3(> with+ 4) (1)

3.1 Translate argument-patters to Propbank
Order

In this step, we translate all the Valpal’s argument-
patterns (including alterations) for all lexical verb-
forms in the target-language l, to the Propbank
Orders. The entire process of translating a Val-
Pal argument-pattern P of any language l into a
Propbank Label-order involves two simple text-
processing sub-steps described as sections 3.1.1
and 3.2.

3.1.1 Replace modifier argument-types
As already explained in section 2.2, the Valpal
database provides a unique coding-set for each
language. In this subset, we examined the entire
coding-set for language l to identify the codes that
refer to a modifier argument-type (eg: LOC-NP

and UTT-NP etc. in English coding-set for LOCA-
TION and TEMPORAL modifier-arguments), and
created a mapping table that maps these modifier-
argument codes to the corresponding Propbank
annotations (eg: LOC-NP mapped to ARGM-
LOC; UTT-NP mapped to ARGM-TMP etc.). The
coding-set of any language in the ValPal database
is small thus making it feasible to manually create
such mapping table.
Subsequently, we used this mapping table to re-
place all modifier argument-patterns (if any) in the
argument-pattern P being translated, with corre-
sponding Propbank label.
After replacing the modifier argument-types we
reduce the valency-index of all the arguments fol-
lowing the replaced modifier argument, in the
argument-pattern being translated, by one.

Q = 1− nom > V.subj[1] > 2− acc

> ARGM − LOC(> with+ 3) (2)

For example, the argument-pattern outlined in
equation 1 comprises only one modifier argument-
type namely LOC3. We replaced this with the cor-
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responding Propbank label namely ARGM-LOC
and reduced the valency-index of all argument-
types following this replaced argument-pattern by
1 (thus (with + 4) is re-written as (with + 3)).
Hence the argument-pattern in Equation 1 would
be re-written as equation 2.

3.1.2 Rewrite all non-modifier argument
types

After replacing all modifier argument-types in the
argument-patterns by the process described in sec-
tion 3.1.1, we simply replace all left over argu-
ments in the ValPal argument-pattern P by string
as ‘ARGx’ where x is valencyIndex − 1. Hence
argument 1 − nom, 2 − acc and with + 3 (with
valency Indexes as 1, 2, 3 respectively) in equa-
tion 2 would be replaced by Arg0, Arg1 and Arg2
respectively.
Finally, we replaced V subj[NP ] with V and re-
moved all bracket symbols. Hence argument-
pattern outlined as equation 2 would be translated
as equation 3.

Q = ARG0 > V > ARG1

> ARG− LOC > ARG2 (3)

3.2 Write Propbank Label order as FOL rule
Once having represented all argument-patterns
(including alterations) for all lexical verb-forms of
language l as allowed Propbank Label-orders, we
rewrite each verb-form and Propbank Label-order
pair as a FOL rule. For example the pair of verb-
form tie and its corresponding allowed Propbank
Label-order outlined as equation 4, is represented
by the FOL rule indicated as equation 5.

f = baseForm(V, tie) ∨ pattern(Y,Q) (4)

Here Q is the Propbank label-order outlined in
equation 3, and Y is the sequence of Propbank tag-
sequence predicted by a neural-network model for
any input token-seq. The logic-constraint in equa-
tion 5 would be true if the verb for which the ar-
guments are being predicted is a variant of base
verb-form tie and the predicted SRL tag sequence
Y satisfies the label order Q.
While checking whether a predicted SRL tag se-
quence follows a specific order, we ignore the
‘O’ annotations (‘O’ indicates semantic role label
’NULL’ in the Propbank Annotation scheme). For
example the SRL tag sequences ARG0, ARG0, O,
O, V, ARG1, ARG-LOC, O, ARG2 follows the

argument-pattern.
To check if the verb for which the arguments are
being predicted is a morphological variant of the
specific base verb-form, we perform stemming of
both base verb-form and the token from the sen-
tence which is tagged ‘V’ by the model. If the
stem strings are equal we consider the verb token
to be a variant of base verb-form.
If an argument-pattern (represented as Propbank
label-order) is for a morpho-dependent alteration,
then the morphological constraint is also added to
the FOL rule representing the argument-pattern.
For example, in table 1 the argument-pattern
Reflexive-Passive is a morpho-dependent alter-
ation. This argument-pattern is represented as
FOL defined by equation 6.

f = baseForm(V, cuocere)∨
morphoForm(V, si) ∨ pattern(Y, Q̂) (5)

Here Q̂ represents the corresponding label-
sequence for Argument-pattern. The rule
morphoForm(V, si) constraints the verb V to
have morphene si for the rule to be true.
Hence we obtain a set of FOL rules Fl represent-
ing the entire Valpal database knowledge about
language l (with each verb-form and argument-
patterns pair provided in the Valpal database for
the language l as a single FOL-rule f ∈ Fl).
These FOL rules are used during the fine-tuning
of a cross-lingual neural-network model for SRL
in target-language l. During fine-tuning, the model
is always rewarded if it predicts an SRL tag-seq Y
which satisfies atleast one of the FOL rule f ∈ Fl,
and penalised otherwise. Section 4.3 will explain
the fine-tuning process in more detail.

4 Model

4.1 Base Approach
We utilized the state-of-the-art approach to Cross-
lingual SRL in low-resource languages, proposed
by (Cai and Lapata, 2020b) as our Base Ap-
proach. The approach comprises two key com-
ponents namely Semantic Role Labeler and Se-
mantic Role Compressor. The Semantic Role La-
beler is a simple Bi-LSTM model with Biaffine
Role Scorer (Dozat and Manning, 2016). Given
input sentence X = x1...xT of length T, the
model accepts pre-trained multilingual contextual-
ized word-embedding exi and predicate indicator
embedding pxi for all xi ∈ X as input. For each
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word xi ∈ X , the topmost biaffine layer computes
the scores of all semantic roles to be assigned to
xi as si ∈ R|nr| where nr is the size of semantic
role set. Hence the probability values of all SRL
labels to be assigned to word xi can be computed
by applying the softmax function over si.
Subsequently, the Semantic Role Compressor is
another Bi-LSTM model which compresses the
useful information about arguments, predicates
and their roles from the outputs of the Seman-
tic Role Labeller (e.g., by automatically filtering
unrelated or conflicting information) in a matrix
R ∈ Rnr∗dr where dr denotes the length of hid-
den representation for each semantic role.
The approach assumes the availability of a fully
annotated source language corpus and parallel
corpus of source-target sentences for training.
Each model-training step involves two indepen-
dent sequential sub-steps namely the the super-
vised training and the cross-lingual training.
In the source-language training sub-step, a batch
is randomly selected from the annotated source-
language corpus, to train both Semantic Role La-
beler and Semantic Role Compressor simultane-
ously by minimizing the total loss computed by
equation 3.

Ltotal = LCE + LKL (6)

Here LCE is the Cross-entropy loss between true
labels and labels predicted by the Labeler whereas
LKL is the KL Divergence loss (Kullback and
Leibler, 1951) between distributions predicted by
the Compressor and the Labeler. After the super-
vised training sub-step, a batch from the paral-
lel source-target data to perform the cross-lingual
training sub-step. We refer to the original work
(Cai and Lapata, 2020b) for the details of the
cross-lingual training sub-step and the inference.

4.2 Training with Valpal knowledge

In this work we modified the training process de-
scribed in section 4.1 to include the Valpal knowl-
edge into the model parameters. Each training step
in our proposed training step involves four inde-
pendent sequential sub-steps.

Firstly, in the Labeler pre-training sub-step,
we randomly sample a batch from the annotated
source-language corpus and the Semantic Role
Labeler is trained on it by minimizing the cross-
entropy loss (LCE) between true and predicted
roles. Secondly, in the Labeler fine-tuning, the

Valpal knowledge is injected in the parameters
of the Semantic Role Labeler by the process de-
scribed in section 4.3. Thirdly, in the Compressor
training sub-step the Semantic Role Compressor
is trained on the sampled source-language batch
by minimizing the KL Divergence loss (LKL) be-
tween distributions predicted by the Compressor
and the fine-tuned Labeler (Labeler parameters are
fixed in this sub-step). Finally we perform the
cross-lingual training sub-step which is identical
to as performed by the original authors (section
4.1)

4.3 Labeler fine-tuning with ValPal
This section describes the framework adopted by
us to induce the target-language specific ValPal
database knowledge expressed as a set of FOL
rules Fl, into the pre-trained Semantic Role La-
beler. Our framework is inspired by the Deep
Probabilistic Logic (DPL) framework proposed
by (Wang and Poon, 2018). The framework as-
sumes the availability of only an unlabelled target-
language corpus. Hence, for the Labeler fine-
tuning sub-step, we randomly sample a batch from
the already available parallel source-target data
and utilised only the target language part of it.
Let X = x1.....xT be an input sentence and
Y = y1.....yT be any SRL-tag sequence. Further
let Ψ be the pre-trained Bi-LSTM based Semantic
Role Labeler, such that Ψ(X,Y ) denotes the con-
ditional probability P (Y |X) as outputted by the
final softmax layer of Ψ.
The fine-tuning of this pre-trained Ψ to specific
target-language l requires an unlabelled target-
language training corpus. Given such unlabelled
target-language-corpus Xtarg, for each X ∈
Xtarg we input sentence X into the pre-trained Ψ
to compute the most probable SRL-tag sequence
Y as Y = argmaxŶ (Ψ(x, Ŷ )). Subsequently we
input both the sentence X and it’s predicted most-
probable SRL tag-seq Y in all the FOL rules in Fl

to compute their value (as 0.0 or 1.0). DPL frame-
work defines the conditional probability distribu-
tion P (Fl, Y |X) as equation 2.

P (Fl, Y |X) =
∏

f∈Fl

exp(w.f(X,Y )).Ψ(X,Y )

exp(w)
(7)

The framework assumes the Knowledge-
constraints to be log-linear thus defines each
knowledge-constraint as exp(w.f(X,Y )) where
f ∈ Fl is the FOL rule representing the respective
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knowledge-constraint. Here w is the pre-decided
reward-weight assigned to all constraints. Hence
the predicted output-sequence Y would be re-
warded (as its likelihood would increase by a
factor of exp(w)) if it follows one of the defined
argument-patterns in ValPal database for the
respective verb for which the arguments are
being predicted (f(X,Y ) = 1.0). However no
penalty is awarded for not following the correct
Argument-pattern.

4.3.1 Learning
The ideal way to optimize the weights (fine-
tune) of the model Ψ is by minimizing P (Fl|X)
and updating the parameters through back-
propagation. We can compute P (Fl|X) by sum-
ming over all possible SRL-tag sequences as
P (Fl|X) = ΣY P (Fl, Y |X). However com-
puting P (Fl, Y |X) by equation 4 with all pos-
sible output-sequences, and subsequently back-
propagating through it, for each training example
is computationally very inexpensive. Thus DPL
framework also provides a more efficient EM-
based approach (Moon, 1996) to the parameter
fine-tuning which is adopted by us.
The full process of learning the parameters of Ψ
(initialized with parameters pre-trained on source
language) is outlined as Algorithm 1. For each

Algorithm 1 Fine-tuning of Semantic Role La-
beller
Require: Target Language corpus Xtarg; set of

FOL rules Fl representing the entire Valpal
database knowledge; Pre-trained LSTM based
Semantic Role Labeller Ψ; Number of Epochs
N ;
repeat

for each X ∈ Xtarg do
▷ E-Step

Y ← argmaxŶ (Ψ(X, Ŷ ))
q(Y )← P (Fl, Y |X) ▷ by equation 7

▷ M-Step
Ψ← argminΨ̂(DKL(q(Y )||Ψ̂(X,Y )))

end for
until convergence

training-example X ∈ Xtarg, the Algorithm
1 implements three steps. In the first-step, it
predicts the most probable SRL-tag sequence
Y for the given training-example X as Y =
argmaxŶ (Ψ(x, Ŷ )) with current parameter val-
ues for Ψ.

In the E-step, q(Y ) = P (Fl, Y |X) is computed
by applying equation 4 with current parameters
of Ψ. Finally in the M-step it keeps q(Y ) as
fixed and updates parameters of Ψ by minimizing
the KL-divergence (Kullback and Leibler, 1951)
loss between q(Y ) and the probability of Y from
Ψ(X,Y ) (i.e. P (Y |X)).
In other words, in each epoch step, the model
first computes the joint likelihood of Fl and Y i.e
P (Fl, Y |X) with current model parameters, and
subsequently it updates the parameters to predict
likelihood of Y i.e., to be as close to P (Fl, Y |X)
as possible.

5 Experiments

This section described the experiments performed
by us to evaluate the proposed model.

5.1 Dataset

We experimented with four languages namely En-
glish (en), German (de), Chinese (zh) and Ital-
ian (it) as these languages are covered in both
the ValPal database as well as in the CoNLL
2009 Shared task (Hajic et al., 2009) dataset.
The Semantic Role Labeller requires a fully-
annotated training dataset in the high-resource
source-language. We utilized the Universal Propo-
sition Banks provided at https://github.com/

System-T/UniversalPropositions provided for
CoNLL 2009 Shared task, for training of the Se-
mantic Role Labeller and the evaluation of various
systems. On the other hand, the Semantic Role
Compressor component requires sentence-paired
parallel corpora in source and target languages.
We used the Europarl parallel text-corpus (Koehn
et al., 2005), and the large-scale EN-ZH parallel
corpus (Xu, 2019) to train the Semantic Role Com-
pressor, as used by (Cai and Lapata, 2020b). We
used the target-language part of the same parallel-
corpora independently for the Valpal knowledge
induction, as the Valpal database knowledge in-
duction simply requires unlabelled text-corpus in
the target-language.

5.2 Model-configurations

We computed the language-independent BERT-
Embeddings to be fed into the networks using
pre-trained Multilingual BERT (mBERT) (Wu and
Dredze, 2019) model. Given a sentence S, we to-
kenised the whole sentence using the WordPiece
tokeniser (Wu et al., 2016). Subsequently we fed

6
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Dropout prob. 0.01
Bach-size 32
Epochs 150
embeddings size 768
predicate indicator embed size 16
Bi-LSTM hidden states size 400
BiLSTM depth 3
hidden biaffine scorer size 300
Bi-LSTM hidden states size 256
BiLSTM depth 2
compressed role rep size 30
hidden biaffine scorer size 30

Table 2: Hyper-parameter settings for input and train-
ing (first block), semantic role labeler (second block)
and semantic role compressor (third block). Semantic
role labeler and Semantic role compressor are same as
(Cai and Lapata, 2020b)

this token-sequence into pre-trained mBERT pro-
vided by (Turc et al., 2019). Embedding of any
word w ∈ S i.e. ew is computed by taking average
of mBERT outputs of all Wordpiece tokens corre-
sponding to word w. Subsequently these word-
embeddings are frozen during the training of the
networks. Table 2 outlines the hyper-parameters
used during training.

5.3 Baselines

We compared the performance of our proposed
model against the base-model (4.1) as well as
numerous other state-of-the-art baselines. These
baselines include two annotation projection based
models namely Bootstrap (Aminian et al., 2017)
and CModel (Aminian et al., 2019b), as well
as two strong mixture-of-experts models namely
MOE (Guo et al., 2018) which focus on combining
language specific features automatically as well
as MAN-MOE (Chen et al., 2018) which learns
language-invariant features with the multinomial
adversarial network as a shared feature extrac-
tor. We also compared with PGN (Fei et al.,
2020) which is the state-of-the-art translation-
based model which translates the source annotated
corpus into the target language, performs annota-
tion projection, and subsequently trains the model
on both source and the translated corpus. We
utilised the source-code provided by the authors
of each of these baselines to train and test them.

Algorithm 2 Full Training process. Here, the
function FineTune represents the process outlined
as algorithm 1 and function CrossTrain represents
the cross-lingual training procedure adopted by
(Cai and Lapata, 2020b). LCE is cross-entropy
loss and LKL is KL divergence loss

Require: Annotated Source language corpus
{XTagged, YTagged}; Parallel Source-target
Corpus {XS

Parallel, X
T
Parallel}; set of FOL

rules representing entire Valpal db knowledge
of target language Fl; batch-size b; Number of
Epochs E
Initialize:

Semantic Role Labeler Ψ; Semantic
Role Compressor Φ

steps← |XTg|/b
for epoch← 1 to E do

for step← 1 to steps do
X,Y ← Sample({XTg, YTg},b)
XS , XT ← Sample({XS

Pr, X
T
Pr},b)

▷ Labeler pre-training
Ψ← argminΨ̂(DCE(Y ||Ψ̂(X)))

▷ Labeler Fine-tuning
Ψ← FineTune(XT , FL,Ψ, b)

▷ Compressor training
Φ← argminΦ̂(DKL(Ψ(X)||Φ̂(X)))

▷ Cross-lingual training
Φ,Ψ← CrossTrain(XS , XT ,Ψ,Ψ)

end for
end for

6 Results

6.1 Monolingual training

In the first set of experiments we trained the mod-
els on a single source language English and tested
these on the target languages zh, it and de. In these
settings, we trained the models on English UPB
train-dataset and tested them on the UPB test-sets
of the target-languages. Table 3 shows the la-
beled F-scores achieved on each of these target-
languages. In table 4, the Base-wo-Compressor
refers to the base model without the SRL com-
pressor, whereas Base-full refers to the full base
model.

Results in Table 3, show that for both Base-
wo-Compressor and Base-full model, adding Val-
pal database knowledge improved its performance
on all three target languages. Furthermore, for
all three target-languages, the improvement in per-
formance of both Base-wo-Compressor and Base-
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Model it de zh avg
Bootstrap 51.7 55.2 58.4 55.1
CModel 55.5 57.0 61.1 57.9
MAN-MOE 57.1 64.0 64.7 61.9
MoE 56.7 63.2 65.2 61.7
PGN 57.9 65.3 65.9 63.0
Base-wo-
Compressor

37.1 49.7 45.3 44.0

Base-wo-
Compressor+
Valpal

37.8 54.2 49.9 47.3

Increase 0.7 4.5 4.6 3.3
Base-full 57.2 65.1 68.8 63.7
Base-full+
Valpal

57.9 69.5 73.4 66.9

Increase 0.7 4.4 4.6 3.2

Table 3: Results for Monoloingual settings (with ex-
tended vocab for de and zh)

full models due to Valpal knowledge injection are
same i.e 0.7 for it, 4.5 for de and 4.6 for zh (aver-
age 3.3). This provides the evidence that the im-
provement is indeed due to the Valpal Knowledge
injection.

Model it de zh en avg
MAN-
MOE

57.7 66.2 65.9 66.0 63.9

MoE 57.1 63.5 66.1 64.1 62.7
PGN 58.0 65.7 66.9 67.8 64.6
Base-wo-
Compressor

37.6 50.2 48.9 49.9 46.6

Base-wo-
Compressor
+ Valpal

38.5 54.7 53.6 54.8 50.4

Increase 0.9 4.5 4.7 4.9 3.8

Table 4: Results in Polygot settings

6.2 Polyglot training

Table 4, outlines the results obtained under the
polyglot training settings. For each experiment
within these settings, the models are trained on a
joint polyglot corpus of the three out of four lan-
guages namely en, it, de and zh, excluding the tar-
get language for which the results are outlined.
For each experiment within these settings, the
training corpus size is always fixed to 600,000 to-
kens to ensure controlled experiment-settings. We
created such polyglot corpus by randomly sam-

pling sentences from UPB train-set for each of
the three source-languages until the token-size be-
comes approximately equal to 100,000, concate-
nated all these sampled datasets and randomly
shuffled the order. Alignment-projection based
approaches and the Base-full are not evaluated
in the polyglot settings as these approaches re-
quire parallel-aligned source and target language
sentence-pairs.

Results show that adding Valpal knowledge im-
proves the performance of Base-wo-Compressor
model, even within the polyglot settings, Fur-
thermore, it is observed that although Base-
wo-Compressor model performs better in poly-
glot training settings as compared to monolin-
gual settings for most of the target languages,
the improvement in performance of Base-wo-
Compressor due to Valpal knowledge injection
is same is both settings. This is because the
fine-tuning of model with Valpal database knowl-
edge is performed only with the unlabelled target-
language corpus.

it de zh
Vocab 125 128 122
Ext-vocab – 975 415
Base-full 57.2 65.1 68.8
Base-full+
ValPal

57.9 65.9 68.7

Increase 0.7 0.8 0.9
Base-full+
ValPal-ext

– 69.5 73.4

Increase 0.7 4.4 4.6

Table 5: Results with and without ext-vocab

6.3 Performance with extended vocabularies

It can be observed in Tables 3 and 4 that the im-
provement on target-language is much lower than
the improvements observed on zh, de and en. The
reason being that we extended the Valpal vocab-
ulary of en, zh and de using English Framenet
(Barkley), Chinese Framenet (Yang et al., 2018)
and German Framenet (of Texas) by the pro-
cess described in section 2.4. However Italian
Framenet is not publicly available.

We indeed performed experiments to analyze
the impact of vocabulary extension on the perfor-
mances. Table 5 outlines the results of these exper-
iments. It can be observed in the table that extend-
ing the vocabulary of Valpal with the Framenet
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does lead to significant improvement in perfor-
mance.

7 Conclusion

Valency Patterns Leipzig (ValPal) is a multilin-
gual lexical database which provides the knowl-
edge about the argument-patterns of various verb-
forms in multiple languages including numerous
low-resource languages. The database is origi-
nally created by the linguistic community to study
the similarities and differences in the verb-patterns
for various world’s languages. In this work we
utilised this database to improve the performance
of the state-of-the-art cross-lingual model for SRL
task.

We evaluated a framework to integrate the entire
Valpal knowledge about any low-resource target-
language into an LSTM based model. Our pro-
posed framework only requires an unannotated
target language corpus for the knowledge integra-
tion.
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