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Abstract

Entity linking (EL) on short text is crucial for
a variety of industrial applications. Compared
with general long-text EL, short-text EL poses
particular challenges as the limited context re-
stricts the clues one can leverage to disam-
biguate textual mentions. On the other hand, ex-
isting studies mostly focus on black-box neural
methods and thus lack interpretability, which
is critical to industrial applications in certain
areas. In this study, we extend upon LNN-
EL, a monolingual short-text EL method based
on interpretable first-order logic (Jiang et al.,
2021), by incorporating three sets of multilin-
gual features to enable disambiguating men-
tions written in languages other than English.
More specifically, we use multilingual autoen-
coding language models (i.e., mBERT) to cap-
ture the similarities between the mention with
its context and the candidate entity; we use mul-
tilingual sequence-to-sequence language mod-
els (i.e., mBART and mT5) to represent the
likelihood of the text given the candidate en-
tity. We also propose a word-level context
feature to capture the semantic evidence of
the co-occurring mentions. We evaluate the
proposed xLNN-EL approach on the QALD-9-
multilingual dataset and demonstrate the cross-
linguality of the model and the effectiveness of
the features.

1 Introduction

Entity linking (EL), also known as entity disam-
biguation, is the task of linking textual mentions
appearing in a document to the corresponding en-
tities associated with a target knowledge base like
DBpedia (Auer et al., 2007). As a fundamental task
in natural language processing and information ex-
traction, entity linking is crucial for a variety of
applications such as semantic search, recommenda-
tion systems and chatbots (Tan et al., 2017).

Historically, relevant studies of entity linking
mostly focus on long text scenario (i.e., docu-
ments) (Han et al., 2011; Gupta et al., 2017; Lu

and Du, 2017; Cao et al., 2018; Kolitsas et al.,
2018). Typically, such approaches mainly de-
pend on specifically-designed features of candi-
dates (e.g., priors), local context compatibility, and
global coherence across the document (Shen et al.,
2021).

With the rapidly growing short text on the web,
e.g., search queries, social media posts, news head-
lines, etc., short-text entity linking has attracted
increasing attention from researchers due to its po-
tential for various industrial applications. How-
ever, long-text entity linking methods barely main-
tain the same level of performance on short text,
as they heavily rely on document-level global co-
herence, i.e., the idea of collective entity linking
(Cao et al., 2018), and short text (e.g., a single sen-
tence or search query) cannot provide rich context
and global signals for disambiguation (Chen et al.,
2018).

To tackle the task of short-text entity linking,
different methods are being proposed to exploit
the short and limited context (Chen et al., 2018;
Sakor et al., 2019; Gu et al., 2021). For exam-
ple, Chen et al. (Chen et al., 2018) try to map the
sparse short text to a topic space such that a topic
coherence can be achieved through a specifically
designed optimization objective, e.g., they aim to
infer the topic is literature against movie from the
word read in “read Harry Potter”. Gu et al. (Gu
et al., 2021) try to enhance the interactions between
the local context and the candidate entity in multi-
turn multiple-choice manner, so that global disam-
biguation can finally be achieved. More recently,
autoregressive entity linking models, e.g., GENRE
(De Cao et al., 2020) and mGENRE (De Cao et al.,
2021b) demonstrate superior performance and are
gaining a lot of attention. With the power of large
pre-trained sequence-to-sequence language models
(Lewis et al., 2020), GENRE and mGENRE are
able to directly generate unique entity names con-
ditioned on the context, yielding state-of-the-art
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results on multiple datasets.
Recently, Jiang et al. propose LNN-EL, the

first neuro-symbolic short-text entity linking
method that combines first-order logic (FOL)
rules with neural learning, and shows compet-
itive performance against deep-learning-based
black-box methods (Jiang et al., 2021). Essentially,
LNN-EL uses FOL rules as a glue to combine
different features into a final linking model, and
demonstrates interpretability due to the inter-
pretable nature of FOL. Nonetheless, LNN-EL is a
monolingual model that only supports English, and
does not meet the demands of modern industrial
applications where enterprises need to establish
effective cross-language interactions with users
from all over the world.

To enable this approach to facilitate rapidly
growing global business, in this study, we extend
upon LNN-EL by incorporating three sets multilin-
gual features to make it cross-lingual, i.e., xLNN-
EL. First, we propose a word-level cross-lingual
context feature that aims to capture the semantic
evidence of co-occurring mentions. Second, we
use multilingual autoencoding language models
(i.e., mBERT (Pires et al., 2019)) to capture the
similarities between the mention with its context
and the candidate entity with a four-way feature.
Third, we use multilingual sequence-to-sequence
language models (i.e., mBART (Liu et al., 2020)
and mT5 (Xue et al., 2021)) to represent the likeli-
hood of the text given the candidate entity. More
specifically, we try to reconstruct the text condi-
tioned on the candidate’s description, based on a
fine-tuned generative language model, and it re-
sults in another two-way feature indicating the like-
lihood of the text. We evaluate xLNN-EL on the
QALD-9-multilingual dataset with the state-of-the-
art black-box method mGENRE (De Cao et al.,
2021b), and the results demonstrate the effective-
ness of the proposed features. Our contribution can
thus be summarized as follows:

• We extend upon LNN-EL to facilitate disam-
biguating mentions appearing in non-English
languages. To the best of our knowledge,
xLNN-EL is the first neuro-symbolic method
for cross-language short-text entity linking
and performs competitively against state-of-
the-art black-box method.

• We propose three sets of multilingual features
that aim to capture the contextual semantic

evidence of co-occurring mentions, the simi-
larities between the mention with its context
and the candidate, and the likelihood score of
the context conditioned on the candidate. The
experimental results show the effectiveness of
the features.

2 xLNN-EL

We propose xLNN-EL, a cross-language extension
of LNN-EL, where we seek to facilitate the model
with better cross-linguality by incorporating a set
of new features allowing it to link non-English
mentions to the English knowledge base.

Following LNN-EL, we take the English DB-
pedia as the target knowledge base (Jiang et al.,
2021). As to candidate retrieval, we adopt a hy-
brid method of PivotsCR (Liu et al., 2021) and
mGENRE (De Cao et al., 2021b). Essentially, for
each mention mi, we take the union of their outputs
and generate a set of |Ci| = 250 candidate entities,
roughly reaching a 95% recall rate for each lan-
guage1.

Formally, given a single sentence or search
query T containing a set of mentions M =
{m1,m2, . . . ,mp}, a triple mi, Ci, Li is generated
for each mention mi. Li is a list of binary la-
bels for the mention-candidate pair (mi, eij) where
eij ∈ Ci. The entity name and textual descrip-
tion of eij is denoted by eij .name and eij .desc,
respectively. For each candidate eij , a set of pre-
defined features fw(mi, eij) is generated. In this
section, we introduce the three cross-language fea-
tures fw ∈ F that we incorporate into the model.

2.1 Word-level Context Score

Given a mention, we introduce a word-level context
score to capture the semantic evidence sustained
by the similarity between the co-occurring men-
tions and the descriptions of the candidate entities,
i.e., short abstracts2. The feature function fctx is
defined as follows:

fctx(mi, eij) =
∑

mk∈M\{mi}
prword(mk, eij)

prword(mk, eij) = max
sk∈eij .desc

cos(mk, sk)

(1)

1LNN-EL uses DBpedia lookup to retrieve top-100 candi-
dates.

2http://downloads.dbpedia.org/
wiki-archive/downloads-2016-10.html
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Method mono-lingual multi-lingual cross-lingual
F1-score(%) de fr en it de fr en it de fr en it

mGENRE 47.50 47.50 62.50 50.83 57.50 54.17 56.67 54.17 55.00 57.50 50.83 52.50

base 58.82 62.61 83.76 58.82 58.82 60.92 83.76 57.14 61.34 60.50 80.08 57.14
base + ctx 61.34 62.61 83.76 57.14 60.50 61.34 84.60 57.14 60.50 63.03 83.05 55.46
base + mbert 61.34 62.61 84.60 56.72 59.66 61.76 83.76 56.30 60.50 60.92 80.08 56.30
base + generative 60.50 63.45 84.60 62.04 61.34 61.76 83.76 58.40 60.50 61.76 82.20 58.40
base + ctx + mbert 63.03 60.92 83.76 57.14 59.66 62.61 84.60 57.14 59.66 61.34 80.08 56.30
base + ctx + generative 66.39 62.61 84.60 59.66 60.78 61.34 84.60 57.14 60.08 63.03 82.63 57.56
base + mbert + generative 63.45 69.75 84.60 63.03 62.18 63.87 83.76 57.98 64.99 63.87 83.47 57.98
base + ctx + mbert + generative 65.13 64.29 85.45 60.50 62.61 62.18 85.45 58.82 61.34 62.18 83.05 59.66

Table 1: Performance of xLNN-EL on QALD-9-multilingual.

where prword is a word-level Partial Ratio3 score.
The idea is to find the maximum similarity between
the mention mk and any group of words of the same
length sk, i.e., a sliding window, in the candidate’s
textual description. We use fastText’s pre-trained
aligned word vectors4 (Bojanowski et al., 2017;
Joulin et al., 2018) to encode the mention and the
entity description as they are in different languages
in the cross-language setting, i.e., the vector repre-
sentations mk, sk are in the same embedding space
though mk are non-English and sk are English. We
then take the aggregated similarities as the feature
indicating the semantic contextual relevance of the
candidate.

2.2 Autoencoding-LM-based Scores

We also introduce a set of autoencoding-language-
model-based features to encode the the overall sim-
ilarities between the mention with its context and
the candidate entity. In particular, autoencoding
language models (e.g., BERT (Devlin et al., 2019))
create a bidirectional representation of the whole
sentence which makes them a natural fit as text en-
coders, and the representations can be further facil-
itate discriminative downstream applications. Due
to the extensibility of the framework in LNN-EL
(Jiang et al., 2021), we are able to include various
features to describe the relationship between the
mention and the candidate from different levels and
aspects. For this feature, we use the multilingual
version of BERT, i.e., mBERT (Pires et al., 2019),
as the language model, and the feature function

3pypi.org/project/py-stringmatching
4https://fasttext.cc/docs/en/

aligned-vectors.html

fmbert is defined as follows:
fmbert =

[
fmbert1 , fmbert2 , fmbert3 , fmbert4

]

=
[
cos(mi, eij.name), cos(T, eij.name),

cos(mi, eij.desc), cos(T, eij.desc)
]

(2)
where the bold fonts indicate the vector representa-
tions for the mention (mi), the input short text (T),
the candidate’s name (eij.name), and the candi-
date’s description (eij.desc), respectively. Essen-
tially, the text is sent to mBERT and the vector
representation for the [CLS] token is used. This
four-way feature aims to explore the possibility of
capturing the similarities between the input text
and the candidate entity from different aspects, un-
der the xLNN-EL framework. The experimental
results in Section 3 show that they are useful and
complementary.

2.3 Seq2Seq-LM-based Scores
Sequence-to-sequence language models (e.g.,
BART (Lewis et al., 2020)) are mostly adopted
for tasks like translation, summarization and ques-
tion answering. For short-text cross-lingual entity
linking, however, this direction has been underex-
plored.

In this study, we propose to leverage seq2seq lan-
guage models to reveal another aspect of similarity
between the mention and the candidate entity, lever-
aging a set of features to reflect the likelihood of the
context, given the candidate entity for each mention.
Essentially, we first fine-tune multilingual genera-
tive models G (i.e., mBART (Liu et al., 2020) and
mT5 (Xue et al., 2021) in this paper) on the train-
ing set of <description, sentence> pairs,
where the description refers to the candidate
entity’s textual description and the sentence
refers to the input short text, i.e., < eij .desc, T >.
The idea is to enable the models to generate a short
sentence conditioned on a textual description of a
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candidate entity. With a fine-tuned model Gtuned,
we assign a likelihood score to each candidate. The
feature function fgenerative is defined as follows:

fgenerative =
[
fmbart, fmt5

]

=
[ |T |∑

k

log pθmbart
(xk|x<k, eij .desc),

|T |∑

k

log pθmt5(xk|x<k, eij .desc)
]

(3)
where T = (x0, x1, . . . , x|T |) is the short text
and log pθmbart

(xk|x<k), log pθmt5(xk|x<k) are
the log-likelihoods of the k-th token conditioned on
the preceding tokens based on the fine-tuned mod-
els Gmbart and Gmt5, respectively. This two-way
generative feature serves to reflect the feasibility
of the whole sentence given the candidate entity,
without a special focus on the mention.

3 Experiment

3.1 Setup

We evaluate xLNN-EL on the QALD-9-
multilingual dataset5. For a fair comparison,
we take the German (de), French (fr), English
(en), and Italian (it) versions of this dataset, as the
other languages are incomplete comparing to the
English version. The evaluation is conducted in
three settings: mono-lingual refers to in-language
training and testing; multi-lingual means training
on the union of all languages and testing on
individual languages; and cross-lingual means
testing on one language while training on the
other three. We compare the proposed model
xLNN-EL with the state-of-the-art black-box
method mGENRE (De Cao et al., 2021b) for entity
linking. In addition, we also evaluate the adapted
version of LNN-EL with basic features in the
cross-language scenario, denoted by base.

3.2 Results

The results are shown in Table 1. We present dif-
ferent combinations of the proposed features in
the table. xLNN-EL with the base feature set
shows better performance than mGENRE, most
likely due to the limitation that such methods
(GENRE/mGENRE) need large amounts of data
for adequate training (De Cao et al., 2021a). We

5https://github.com/ag-sc/QALD/tree/
master/9/data

Method mono-lingual
F1-score(%) de fr en it ∆

all 65.13 64.29 85.45 60.50 -
- mbert 1 65.55 62.61 84.60 57.56 -1.26
- mbert 2 63.03 62.61 82.91 58.82 -2.00
- mbert 3 60.50 61.34 84.60 57.98 -2.74
- mbert 4 60.50 60.92 84.60 57.98 -2.84
- mbart 64.29 61.76 86.30 58.82 -1.05
- mt5 63.87 62.18 84.60 57.14 -1.89

Table 2: Ablation study.

observe that with the three proposed sets of fea-
tures, the performance gets boosted across all set-
tings and languages and consistently outperforms
mGENRE and base, the state-of-the-art neuro-
symbolic short-text EL system, indicating the ef-
fectiveness of these features. We also notice that
different languages have their own feature patterns,
e.g., the context score seems more beneficial for
German than for French, according to their per-
formance in the mono-lingual and multi-lingual
settings, and the language-specific feature patterns
indicate a direction of future work. The impact
of the language-model-based features, i.e., mbert
and generative, is reflected in the last two rows
of the table, where the performance reaches its peak
when both features are included, thus demonstrat-
ing their importance as well as their complementary
nature. Furthermore, the cross-lingual performance
is on par with that in the multi-lingual setting, and
that shows the transferability of the proposed fea-
tures, reflecting a potential for real-world industrial
cross-language scenarios.

3.3 Ablation Study
To better understand the contribution of each com-
ponent in the mbert and generative feature,
we present in Table 2 the results of the ablation
results of the model base + ctx + mbert +
generative in the mono-lingual setting, with
their average performance change (∆). As shown
in the table, dropping each score of the LM-based
features will cause the performance to decrease
greatly, indicating the effectiveness and necessity
of them.

4 Conclusion

In this study, we extend upon LNN-EL by incor-
porating three sets of multilingual features to en-
able disambiguating mentions written in languages
other than English. This study also indicates di-
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rections of future work, as the results demon-
strate language-specific patterns for the features
and rules.
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(a) German (b) French

Figure 1: Feature weights for German and French.

A Preliminaries and Interpretabiltiy

A.1 LNN-EL

First-order logic (FOL) rules form a closed lan-
guage facilitating the expression of a variety of
human interpretable models. To learn these rules,
neuro-symbolic AI typically substitutes conjunc-
tions with t-norms (Esteva and Godo, 2001) which
actually limits their learning capacity as these
norms do not have learnable parameters.

Recently, Riegel et al. propose Logical Neural
Networks (LNN) (Riegel et al., 2020a), a modifica-
tion of neural networks that can precisely model op-
erations in real-valued logic, i.e., they construct log-
ical operators conjunction (∧) and disjunction (∨)
and facilitate neural network-style learning with
learnable parameters (Riegel et al., 2020b).

Subsequently, LNN-EL reformulates entity link-
ing by mapping the Boolean-valued logic rules into
the LNN formalism and the resulting model con-
sists of parameterized LNN operators, i.e., conjunc-
tion (∧) and disjunction (∨), along with learnable
rule weights and feature weights. LNN-EL takes
as input the pre-computed features of candidates
and the definition for the features is the main focus
of this study. We refer the readers to (Riegel et al.,
2020a; Jiang et al., 2021) for more detailed treat-
ment of the parameterized LNN opertors and the
reformulation.

A.2 Interpretability of xLNN-EL

A common theme among existing EL methods is
their lack of interpretability. Interpretability is
an important and desirable property not only for
machine learning research, but also for real-world
downstream applications, especially for sensitive
areas. In fact, there is a growing trend towards
developing interpretable machine learning models
(Danilevsky et al., 2020).

We show some learned feature weights of the
base + mbert + generative model for
German and French, in the mono-lingual setting, to

illustrate the interpretability of xLNN-EL. The tree
structure reflects the first-order logic (FOL) rule
combination of the model, e.g., the three features
base, mbert and generative are combined
with a disjunction at the topmost level, the mbert
feature is formed with a conjunction between a
set of disjunct similarities and the prominence
feature, the generative feature has the same
substructure with mbert (not shown), etc. The
rule combination part is beyond the scope of this
paper and the reader is referred to the literature for
further details (Jiang et al., 2021).

As shown in Figure 1, the feature mbert has a
much higher relative feature weight for French than
for German (1.5724 vs. 0.1921) in the disjunction,
which might indicate a relative preference as to
the mbert feature for French. This inspection
provides clues for human experts to understand
how these features impact performance, and further
adjust features and rule combinations accordingly.
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