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Abstract
Identifying and integrating missing facts is a
crucial task for knowledge graph completion to
ensure robustness towards downstream applica-
tions such as question answering. Adding new
facts to a knowledge graph in real world system
often involves human verification effort, where
candidate facts are verified for accuracy by hu-
man annotators. This process is labor-intensive,
time-consuming, and inefficient since only a
small number of missing facts can be identi-
fied. This paper proposes a simple but effective
human-in-the-loop framework for fact collec-
tion that searches for a diverse set of highly
relevant candidate facts for human annotation.
Empirical results presented in this work demon-
strate that the proposed solution leads to both
improvements in i) the quality of the candidate
facts as well as ii) the ability of discovering
more facts to grow the knowledge graph with-
out requiring additional human effort.

1 Introduction

A knowledge graph (KG) is an efficient way of
storing information and relations between different
types of entities, and is an integral part of many
real-world applications such as question answer-
ing (Chen et al., 2020). However, incompleteness
is a well-known issue that inherently exists in a
KG caused by missing facts and entities, and it sig-
nificantly limits the capability of the downstream
applications (Socher et al., 2013). Since richness
of the facts in a KG can directly impact its quality,
identifying and collecting missing facts is a crucial
task. Additionally, it is essential to ensure that the
facts being added to KG are verified to be highly
accurate.

There is research work published on how to au-
tomatically identify missing facts using machine
learning models (Ji et al., 2021). Many of them
use embedding models over the entities and rela-
tions in a KG to train link prediction models to
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predict missing facts within the KG (Nguyen et al.,
2017; Wang et al., 2015), while some use a search-
based question-answering approach to get candi-
date answers from the web and then identify the
correct missing fact by aggregating the found an-
swers (West et al., 2014). These approaches can
automatically identify a large number of missing
facts, but there was usually no human verification
(which is also infeasible given the volume of the
identified facts) to make sure that the newly discov-
ered facts meet real-world-system-level accuracy.

Collecting high-quality new facts for a live KG
is a very complicated process that often requires hu-
man effort. For example, the success of finding the
birth date of a person from the web heavily depends
on the popularity of the person and the uniqueness
of their name. On the other hand, open access to the
web makes it hard to protect the accuracy of its in-
formation; even Wikipedia suffers from vandalism
(Šarūnė Bar). This influenced our initial design
of a fact collection framework with a human-in-
the-loop component. The system starts with an
unanswerable query, leverages state-of-the-art tech-
nologies to identify the intent and entity of the input
query, retrieves a few candidate answers via web
search using a natural language based question-
answering (QA) system, then instead of using a
machine learning model to aggregate the results,
e.g., (West et al., 2014), we direct the candidate
facts to human annotators for review.

While this pipeline is successfully deployed in
a real world system, there is an opportunity for
improvements to be made. We observed that the
natural language-based QA system sometimes re-
turns no candidate answer for a query, leading to a
low coverage problem. On the other hand, even if
the QA system returns some candidate answers for
certain queries, many of them do not contain the
correct answers. In such cases, the human annota-
tions ended up with negative responses, indicating
a waste of human labor. To address this problem,
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one option is to train a better QA system either
by using more data or adopting more complicated
models, which needs expensive engineering efforts.
Another option is to increase the number of candi-
dates returned by the QA system and involve more
human annotators for fact verification, but because
of the low-correct-ratio nature of the candidate an-
swers, this approach would mean an even more
severe waste of human effort.

In this paper a new human-in-the-loop fact col-
lection framework is proposed that addresses the
aforementioned problems without training new QA
systems nor adding additional human annotators.
To solve the low coverage problem of the QA sys-
tem, the input query is perturbed by generating
semantically equivalent variations of it. These vari-
ations are then input to the QA system to get di-
verse answer sets (similar to what has been done
in (West et al., 2014)). Then, to address the low-
correct-answer-ratio problem, a candidate answer
selector is introduced, inspired by the well-known
uncertainty-based active sampling strategy Query-
by-Committee (QbC) (Seung et al., 1992; Freund
et al., 1997; Gurajada et al., 2019), to choose the
most relevant answers for human annotation. To
summarize, the main contributions of this work are:

• A simple but effective human-in-the-loop fact col-
lection framework that uses a natural language-
based QA system as a black-box model to collect
diverse candidate answers from the open web.

• By employing a QbC-based selector, the pro-
posed framework can identify more relevant can-
didate answers and filter out less relevant ones
to effectively identify more missing facts with
limited human annotation budget.

• Empirically it is observed that this approach can
significantly improve both recall and relevancy of
the fact collection process in real world settings.
Moreover, although only two intent use cases
were reported in the experiments, the framework
is generic enough to be immediately extended to
many more scenarios.

The rest of this paper is organized as follows: Sec-
tions 2 describes our human-in-the-loop fact col-
lection framework. Section 3 demonstrates exper-
imental results. Section 4 reviews related work.
Finally, concluding remarks and future works are
included in Section 5.

2 Methodology

Architecture of the proposed system is illustrated
in Figure 1. User query answering is generally car-
ried out by a two-stage model that first extracts the
relevant information relating to the intent of the
query from a web page, then ranks and selects the
most relevant articles that match the entity and the
intent of the query. This process can be improved
by fine tuning the model used, though it requires
quality data and is time-consuming. The proposed
framework does not rely on fine tuning but makes
changes to the input of the model. The system lever-
ages the sensitivity of language based models to
the input and combines it with a selector that works
on the principle of Query-by-Committee. The rest
of the section shall illustrate each component of the
proposed pipeline via a concrete example.

2.1 Query Annotator

The input to Query Annotator is a user query that is
unanswerable by the current KG. Assuming the KG
does not currently contain the height of Michael
Jordan, the following query is an example of an
unanswerable query

q1: how tall is Michael Jordan?

Given such a query, the main task for Query An-
notator is to identify the intent of the query (e.g.,
‘height’) as well as the key named entities (e.g.,
‘Michael Jordan’) in the query. All these rich
annotations will be added to the original query and
sent to the next component Query Synthesizer to
generate query variations. As a concrete example,
for the unanswerable query mentioned earlier, the
output of Query Annotator would be:

q′1: how tall is Michael Jordan?

- entity: ⟨ ‘Michael Jordan’, kgid ⟩
- intent: ‘height’,

where kgid is an identifier of the entity in the KG.

2.2 Query Synthesizer

Given a query q′ enriched with key named entities
and intent, the Query Synthesizer tries to gener-
ate semantically equivalent variations and perturba-
tions of q′. A template-based approach is used to
create new synthetic queries by replacing the enti-
ties in the sentence (e.g., ‘how tall is [PERSON
ENTITY]’). Additional information about the de-
tected entities from the KG, such as occupation
or aliases are also used to generate new variations
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Figure 1: Proposed System Architecture using query by committee. Note that the QA System is kept fixed.

(e.g., ‘Michael Jordan’ can be replaced with one
of the aliases ‘Michael Jeffrey Jordan’).

There are two main requirements for the Query
Synthesizer: (1) only semantically equivalent
queries should be created; (2) the generated queries
should be natural and realistic. It is evident that
semantically nonequivalent queries lead to unde-
sirable results, which would hurt precision. More-
over, it is also crucial that the newly generated
queries remain natural to humans, so the QA sys-
tem which was trained to understand natural lan-
guage questions can return meaningful answers.
To meet these requirements, a randomly sampled
anonymous query log is analyzed in order to under-
stand user behaviour and how users interact with
web search. Based on that, multiple templates to
ask single question are determined. The question
templates depend heavily on the intent of the query,
and therefore different templates for each intent
and entity pair were generated. For example, the
query ‘how tall is Michael Jordan?’ might
be translated to

q11: what’s the height of Michael Jordan?
q21: tell me Michael Jordan’s height.
q31: how tall is Michael Jeffrey Jordan?
...

The main benefit of creating such variations of
the input query is to provide the QA system with
more diverse signals, leading to more potential an-
swers that might not be found by asking the original
query alone.

2.3 QA System
The QA system is responsible for searching and
retrieving answers from the internet that are
relevant to the input question. In the proposed
system, a state-of-the-art QA system is used as
a black-box to get candidate answers for a given
query. The input to the QA system is a natural

question, and the output is a ranked list of answer
tuples, where each tuple is of the format (passage,
fact, score). Passage is the passage from
a web page that may contain the fact that can
answer the question, fact is an extracted and
normalized answer to the question, and score is
a confidence score that the QA system calculated
that indicates the quality of the answer found. As a
running example, one answer tuple could be (...a
height he himself claimed in 1994 “I’m
6-foot-6"... , ‘6-foot-6’, 0.49). Although
the QA system may return a lot of answers for
a given query, only the top-k tuples by score are
kept, where k is a hyperparameter of the system
usually set to a small number such as 3 or 5.

One thing to emphasize is that the QA system
is very sensitive to the input. Changing the lan-
guage or ordering of the input query may lead to
obtaining different types of answers as the output.
This also motivated us to use semantically equiva-
lent variations of the original query to get diverse
answer sets to improve the recall. While, one po-
tential pitfall is that the answer sets returned from
the QA system can be noisy. For example, for the
query How tall is Michael Jordan?, some of
the passages the QA system returns are extracted
from the following webpages:

• anonymous-url-1 - a webpage that contains
multiple different answers

• anonymous-url-2 - a webpage that contains
the word height and Michael Jordan, but not
the answer

These issues can come up with any entity and in-
tent. It is very difficult to identify. This is a major
motivation for us to adopt multiple variations of
the query. Additionally, the noisy results indicate
that blindly trusting the results returned by the QA
system may hurt precision of the system, therefore,
the next component Query-by-Committee selector
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is adopted to prune the answer sets.

2.4 Query-by-Committee Selector

While the previous Query Synthesizer and QA sys-
tem components focus on improving the recall
by creating semantically equivalent variations, the
Query-by-Committee Selector aims to improve pre-
cision by selecting the most relevant candidate an-
swers. After receiving the likely noisy answer sets
from the QA system in previous step, an imme-
diate question is how to distinguish relevant and
irrelevant answer sets. Towards this, a selection
approach motivated by the well-known sampling
strategy Query-by-Committee is introduced.

QbC is an uncertainty-based modal agnostic ac-
tive learning algorithm. The core idea of QbC is
to form a voting committee consisting of multi-
ple classifiers that were trained in slightly different
ways. The degree of agreement among the com-
mittee is used as a proxy for uncertainty. If the
committee highly disagrees on the label of a data
point, then it is an uncertain example, which should
have higher priority to be manually verified than
those examples where the committee highly agree.
Active learning uses this approach to choose the
most uncertain and informative examples for hu-
man annotation.

Motivated by the idea of using degree of agree-
ment to measure uncertainty, the proposed solu-
tion uses QbC in an opposite way, that is, instead
of identifying uncertain examples, the goal is to
identify highly certain examples. To simulate the
QbC-based sampling, a voting committee has to be
formed. One option is to perturb the models, i.e.,
train multiple variations of the QA systems, and
another option is to perturb the input query. The
proposed solution chooses the second one because
it requires much less computational resources, and
it is easier to maintain. Therefore, semantically
equivalent variations of the input query are gener-
ated, which will be sent to the same QA system to
get multiple, but likely different answer sets. Next,
to identify the most relevant answer among these
answer sets, all the answer tuples are ordered based
on the number of occurrences in the returned an-
swer sets, finally the top-p answer tuples are chosen
as candidates for human annotation.

Note that, the voting mechanism provides a good
way to overrule the confidence score returned by
the QA system, because an answer tuple with lower
confidence score might rank higher than a higher-

scoring answer tuple if it gets more votes, which is
a way to mitigate the potential bias existed in the
QA system. The confidence scores calculated by
the QA system is only used as a secondary metric
to rank answer tuples.

In this example illustrated here, assuming that
it is required of the Selector to select only the top
2 candidate answers that are relevant to {height,
Michael Jordan}. The first answer set contains
anonymous-url-1 and anonymous-url-2. The
second answer set contains anonymous-url-1,
Wikipedia, and anonymous-url-3. Assum-
ing that the order of score for these answer
sets is: Wikipedia > anonymous-url-1 >
anonymous-url-3 > anonymous-url-2. Since
anonymous-url-1 appeared in both runs of the
model, it is ranked the highest. The other three can-
didates all appear only once. Then, based on the
tie-breaker condition, i.e., ordered by confidence
scores returned by the QA system, Wikipedia,
which has the highest score, is selected as the
second candidate answer. These selected answers
move on to the next step human annotation.

2.5 Human Annotation

The candidate answers received from the QbC Se-
lector will be verified by human annotators before
integrated with the KG. Considering the given ex-
ample, the human annotator would open the url
of the website (e.g., anonymous-url-1) in a can-
didate answer tuple, check if the passage indeed
comes from the webpage, then make a judgment
call on whether or not the extracted fact (e.g.,
6-foot-6) is the correct answer.

3 Experiments

Implementation and Dataset. We implemented
the system in python and used PySpark1 for dis-
tributed computation tasks. A randomly sampled
anonymous set from query logs is used to evalu-
ate the proposed framework. It contains queries
(entity-intent pairs) that did not have answers avail-
able in the knowledge graph. The dataset consists
of 3648 unique entities for 2 intents.
Experiment setting. The proposed solution is com-
pared against a baseline system, i.e., the system
without the Query Synthesizer and QbC Selector.
Concretely, the baseline model simply takes an
unanswerable query, sends it to the QA system to

1https://spark.apache.org/docs/latest/api/python/
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Baseline Proposed framework (ours)
Failed Answer Ratio 6.69% 0.10%

Recall 1102/1441 = 76.5% 1418/1441 = 98%
Avg. Answer Confidence Score 0.5734 0.5944

Table 1: Results for intent 1.

Baseline Proposed framework(ours)
Failed Answer Ratio 5.69% 0.07%

Recall 1719/2207 = 77.9% 2183/2207 = 98.9%
Avg. Answer Confidence Score 0.4297 0.4492

Table 2: Results for intent 2.

get the top-p answer candidates, then request hu-
man annotation. For both the baseline system and
the proposed solution, the top-5 (i.e., p = 5) an-
swers from the QA system are requested. In this
comparison study, the following evaluation metrics
are considered:
• Recall - fraction of input queries that can be an-

swered.
• Failed Answer Ratio - fraction of input queries

that result in an empty candidate answer set from
the QA system.

• Answer Confidence - the average confidence
scores of candidate answers provided by the QA
system.

• Inter-annotator agreement (IAA) - given a query
q and a candidate answer set A, the IAA of q and
A is, the fraction of annotators found the correct
answer to the query q from the answer set A, i.e.,

IAAq
A =

# annotators found the answer for q inA
# of annotators reviewed q

,

These metrics evaluate the system in different as-
pects. Recall evaluates that the proposed method
can indeed find more missing facts and increase the
number of answerable queries. The failed answer
ratio is different from recall in the sense that the
former acts as a coverage metric to measure how
well the system can find potential answers (not nec-
essarily correct answers) for an input query. An-
swer confidence serves as a guardrail metric for the
QbC Selector. Candidate answers with more votes
should have higher confidence scores calculated by
the QA system. Finally, IAA is a proxy for evalu-
ating the relevancy of the answer set. Higher IAA
values indicate that the candidate answers have
higher relevancy and quality, hence easier to reach
a consensus among annotators, though not directly
related to recall.

Results. Tables 1 and 2 show that our proposed
framework performs better across all measure-
ments when compared to the baseline.

For both intents, we observed significant recall
boosts indicating that our method is much more
effective than the baseline model at finding the cor-
rect answers for broader input queries. To make
the baseline system reach the parity, an intuitive
approach would be to retrieve more candidate an-
swers, so instead of the top-5, top-10 answers from
the QA systems could be sent to annotators for re-
view. This would substantially increase the amount
of human annotation effort, though a good portion
of it will be used to verify incorrect answers, which
is actually saved by our system. Another observa-
tion is that our approach significantly decreased
the Failed Answer Ratio, which can be explained
by the fact that introducing Query Synthesizer to
generate variations of the input query triggered the
QA system to retrieve candidate answers that might
have been overlooked by the baseline which runs
the QA system only once per query. The average
Answer Confidence score returned by the QA sys-
tem is higher for our framework, which indicates
that when using QbC method more relevant can-
didate answers can be identified. Meanwhile, less
relevant answers with lower confidence scores are
filtered out by the committee vote. Hence, higher
scores indicate higher precision in finding quality
answers to questions.

Table 3 shows the IAA comparison between both
frameworks for the two intents respectively. As
seen in the table, the IAA for our framework is
higher than the baseline, which suggests that the
candidate answers from our framework are more
relevant to the queries, so different annotators come
to an agreement more often. Although the IAA
number increased only by a small margin, keep
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Baseline Ours
IAA(intent 1) 64.81% 65%
IAA(intent 2) 68.89% 70.83%

Table 3: Inter-annotator agreement on an average for
two intents between baseline and our framework.

in mind that our framework has significantly in-
creased the recall than the baseline. This indicates
that our method can find many more answers than
the baseline without degrading the quality of the
answers.

4 Related Work

In (West et al., 2014), the authors adopted a very
similar idea of perturbing the input query, then
they used a search-engine with open web access to
identify diverse answers, and finally aggregated the
answers using scoring model to identify the most
likely answers. Although this work is in same spirit,
the proposed approach is different from theirs in
two ways: first, a much simpler aggregation mech-
anism without the need to train a scoring model
is used, thus the proposed approach is easier to
implement and can work with any QA system; sec-
ond, human-in-the-loop verification is included to
ensure the high quality of identified facts.

In addition to improving the human annotation
effectiveness, reducing human annotation efforts is
another related research topic. A lot of the work try
to solve this problem by introducing a deep learn-
ing or machine learning model(Varga and Lőrincz,
2020). Certain papers also aim to reduce the an-
notation work by selecting only samples that are
optimal to training the model(Zesch et al., 2015).
The proposed solution is different from these works
as this solution does not train new machine learn-
ing models to reduce annotation efforts rather uses
selective sampling.

The use of QbC to identify relevant answers is
also related to the ensemble learning paradigm,
where the goal is to improve the predictive per-
formance of a single model by training multiple
variations and combining their predictions (Sagi
and Rokach, 2018; Dietterich et al., 2002). In fact,
QbC can be viewed as a way to create the ensem-
ble with the specific purpose of using it to identify
uncertain examples for active learning (Melville
and Mooney, 2004; Krogh and Vedelsby, 1994).
Both QbC and ensemble learning require creating a
group of slightly different models so that a diverse

predictions or decisions can be later combined or in-
tegrated to produce more accurate prediction. The
proposed approach was inspired by this idea, and
unlike QbC whose primary focus is to identify un-
certain examples for human annotation to decrease
the uncertainty of the model (Gilad-bachrach et al.,
2005), the goal here is to identify certain examples.

Ranking web search results is an important topic
in elevating user experience. There are various ap-
proaches that try to solve this problem. Aggregated
search results and re-ranking based on similarity
is one of the solutions(Kumar and Nath, 2013).
While this work takes inspiration from the aggre-
gated search results, the proposed solution differs
in the re-ranking aspect. Similarity of web pages is
not checked for, instead the voting mechanism in
the QbC selector to find the best potential answers.

5 Conclusion & Future Work

This paper proposes a new framework that aims
to reduce the efforts of human annotators in the
fact collection process for enriching a knowledge
graph. Empirical observations of the proposed solu-
tion when compared against a baseline framework
demonstrate that the proposed framework has bet-
ter recall, and can identify much more relevant
facts. This framework is easy to implement, pro-
vides an additional automated and scalable layer
of enrichment to web answer retrieval, and gives
a significant boost to the fact collection process in
terms of quality and coverage. Future work shall in-
clude testing the proposed framework within other
domains such as open domain question answering.
Moreover, this framework can significantly boost
the recall, which can help in collecting more la-
beled data to train a model to predict the reliability
of a website given a query’s intent. In this way,
the QA system can be enhanced to provide more
relevant candidate answers.
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