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Abstract

Classifiers commonly make use of pre-
annotated datasets, wherein a model is evalu-
ated by pre-defined metrics on a held-out test
set typically made of human-annotated labels.
Metrics used in these evaluations are tied to
the availability of well-defined ground truth la-
bels, and these metrics typically do not allow
for inexact matches. These noisy ground truth
labels and strict evaluation metrics may com-
promise the validity and realism of evaluation
results. In the present work, we conduct a
systematic label verification experiment on the
entity linking (EL) task. Specifically, we ask
annotators to verify the correctness of annota-
tions after the fact (i.e., posthoc). Compared to
pre-annotation evaluation, state-of-the-art EL
models performed extremely well according to
the posthoc evaluation methodology. Surpris-
ingly, we find predictions from EL models had
a similar or higher verification rate than the
ground truth. We conclude with a discussion
on these findings and recommendations for fu-
ture evaluations. The source code, raw results,
and evaluation scripts are publicly available
via the MIT license at https://github.
com/yifding/e2e_EL_evaluate

The general machine learning pipeline starts with
a dataset (a collection of documents, images, med-
ical records, etc.). When labels are not inherent
to the data, they must be annotated – usually by
humans. A label error occurs when an annotator
provides a label that is “incorrect.” But this raises
an interesting question: who gets to decide that
some annotation is incorrect?

One solution is to ask k annotators and combine
their labels somehow (e.g., majority vote, probabil-
ity distribution). Subjectivity comes into play here.
Given identical instructions and identical items,
some annotators may focus on different attributes
of the item or have a different interpretation of the
labeling criteria. Understanding and modelling la-
bel uncertainty remains a compelling challenge in
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Figure 1: Example Entity Linking task where the pre-
annotated ground truth mention and link is different
from the predicted label. Standard evaluation regimes
count this as a completely incorrect prediction despite
being a reasonable label.

evaluating machine learning systems (Sommerauer,
Fokkens, and Vossen, 2020; Resnick et al., 2021).

Tasks that require free-form, soft, or multi-class
annotations present another dimension to this chal-
lenge. For example, natural language processing
tasks like named entity recognition (NER) and en-
tity linking (EL) rely heavily on datasets comprised
of free-form human annotations. These tasks are
typically evaluated against a held out portion of
the already-annotated dataset. A problem arises
when NER and EL tasks produce labels that are
not easily verified as “close enough” to the correct
groundtruth (Ribeiro et al., 2020). Instead, like
the example in Fig. 1, most NER and EL evalu-
ation metrics require exact matches against free-
form annotations (Sevgili et al., 2020; Goel et al.,
2021). This strict evaluation methodology may
unreasonably count labels that are “close enough”
as incorrect and is known to dramatically change
performance metrics (Gashteovski et al., 2020).

Producing a verifiable answer is not the same as
producing the correct answer. This distinction is
critical. Asking a machine learning system to inde-
pendently provide the same label as an annotator
is a wildly different task than asking an annotator
to verify the output of a predictor (posthoc ver-
ification). Unfortunately the prevailing test and
evaluation regime requires predictors to exactly
match noisy, free-form, and subjective human an-
notations. This paradigm represents a mismatch
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Table 1: Statistics of the entity linking datasets and annotations.

Datasets Docs Annotations Tasks Verified Annotations
GT E2E REL GT E2E REL GT E2E REL

A
ID

A AIDA-train 946 18541* 18301 21204 2801 2802 2913 18511 18274 21172
AIDA-A 216 4791 4758 5443 713 715 725 4787 4754 5439
AIDA-B 231 4485 4375 5086 636 646 654 4480 4370 5079

W
N

E
D

ACE2004 57* 257 1355 1675 114 318 334 256 1352 1672
AQUAINT 50 727 810 925 175 170 179 727 810 925
CLUEWEB 320 11154 12273 23114 3526 3678 4944 11139 12247 23056
MSNBC 20 656 629 756 164 163 171 656 629 756
WIKIPEDIA 345* 6793* 8141 11184 1348 1578 1638 6786 8136 11177

* indicate results different from related work because they remove out-of-dictionary annotations.

that, if left unaddressed, threatens to undermine
future progress in machine learning.

Main Contributions. We show that the distinc-
tion between pre-annotated and posthoc-annotated
labels is substantial and the distinction presents
consequences for how we determine the state-of-
the-art in machine learning systems.

We conducted systematic experiments using
posthoc analysis on a large case study of eight pop-
ular entity linking datasets with two state-of-the-art
entity linking models, and report some surprising
findings: First, state-of-the-art EL models gener-
ally predicted labels with higher verification rate
than the ground truth labels. Second, there was
substantial disagreement among annotators as to
what constitutes a label that is “good enough” to be
verified. Third, a large proportion (between 10%-
70% depending on the dataset) of verified entities
were missing from the ground truth dataset.

The Setting: Entity Linking

The goal of EL is to identify words or phrases that
represent real-world entities and match each iden-
tified phrase to a listing in some knowledge base.
Like most classification systems, EL models are
typically trained and tested on large pre-annotated
benchmark datasets. Table 1 describes eight such
benchmark datasets that are widely used through-
out the EL and broader NLP communities.

EL Models. In order to better understand the
effect of pre-annotated benchmarks on machine
learning systems, it is necessary to test a handful
of state-of-the-art EL systems. Specifically, we
chose: (1) The end-to-end (E2E) entity linking
model, which generates and selects span candi-
dates with associated entity labels. The E2E model
is a word-level model that utilizes word and en-
tity embeddings to compute span-level contextual

Figure 2: Web system used to collect posthoc annota-
tions from workers.

scores. Word and entity embeddings are trained
on Wikipedia, and the final model is trained and
validated using AIDA-train and AIDA-A respec-
tively (Kolitsas, Ganea, and Hofmann, 2018). (2)
The Radboud Entity Linker (REL), which com-
bines the Flair (Akbik, Blythe, and Vollgraf, 2018)
NER system with the mulrel-nel (Le and Titov,
2018) entity disambiguation system to create a
holistic EL pipeline (van Hulst et al., 2020). In
addition, our methodology permits the evaluation
of the GT as if it were a competing model. The
relative performance of E2E and REL can then
compared with the GT to better understand the per-
formance of the posthoc annotations.

Data collection. We have previously argued that
these evaluation metrics may not faithfully simulate
in vivo performance because (1) the ground truth
annotations are noisy and subjective, and (2) exact
matching is too strict. We test this argument by
collecting posthoc verifications of the three models,
including the pre-annotated GT, over the datasets.

We created a simple verification system, illus-
trated in Fig. 2, and used Amazon Mechanical Turk
to solicit workers. For each document and model,
we asked a single worker to verify all present entity
annotations (i.e., an entity mention and its linked
entity). Annotators can then choose to (1) Verify
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Figure 3: Precision and recall results from pre-annotation evaluation (Left) compared with the posthoc verification
evaluation (Right). Error bars represent 95% confidence intervals on bootstrapped samples of the data. Posthoc
verification returns substantially higher scores than the pre-annotation evaluation.

the annotation (2) Modify the annotation, or (3)
Remove the annotation.

• Verify: The annotator determines that the cur-
rent annotation (both mention and Wikipedia
link) is appropriate.

• Modify: The annotator determines that the
Wikipedia link is incorrect. In this case, they
are asked to search and select a more appro-
priate Wikipedia link, use it to replace the
existing link, and then accept the new annota-
tion.

• Remove: The annotator determines that the
current mention (highlighted text) is not a link-
able entity. In this case, they remove the link
from the mention.

We made a deliberate decision to not permit new
annotation of missing entity mentions. That is,
if the model did not label an entity, then there is
no opportunity for the worker to add a new label.
This design decision kept the worker focused on the
verification task, but possibly limits the coverage of
the verified dataset. We provide further comments
on this decision in the Results section.

Each annotator is assigned to 20 tasks including
one control task with three control annotations. We
only accept and collect annotations from workers
that passed the control task.

We paid each worker 3 USD for each HIT. We
estimate a average hourly rate of about 9 USD;
and paid a total of 6,520 USD. From these, we
received 167,432 annotations. The breakdown of
tasks, annotations shown to workers, and verified
annotations are listed in Table 1 for each dataset
and model.

Prior to launch, this experiment was re-
viewed and approved by an impaneled ethics re-

view board at the University of Notre Dame.
The source code, raw results, and evaluation
scripts are publicly available via the MIT li-
cense at https://github.com/yifding/
e2e_EL_evaluate

Posthoc Verification Methodology

The Pre-Annotation Evaluation Regime. First,
we re-tested the E2E and REL models and eval-
uated their micro precision and recall under the
typical pre-annotation evaluation regime. These re-
sults are illustrated in Fig 3 and are nearly identical
to those reported by related works (Kolitsas, Ganea,
and Hofmann, 2018; van Hulst et al., 2020).

Posthoc Verification Evaluation

Our next task is to define appropriate evaluation
metrics that can be used to compare the results
of the posthoc verification experiment with results
from the pre-annotation evaluation regime.

Verification Rate. For each combination of dataset
and model providing annotations, we compute the
verification rate as the percentage of annotations
that were verified. Formally, let d ∈ datasets;
m ∈ models; and Vm,d be the set of verified annota-
tions in a pairing of d and m Likewise, let Nd,m be
the pre-annotations of model m on dataset d. We
therefore define the verification rate of a dataset-
model pair as rm,d = |Vm,d|/|Nd,m|. Higher veri-
fication rates indicate that the dataset contains an-
notations and/or the model is more capable of pro-
viding labels that pass human inspection.

Verification Union. It is important to note that
each model and document was evaluated by only
a single worker. However, we were careful to as-
sign each worker annotations randomly drawn from
model/document combinations. This randomiza-
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tion largely eliminates biases in favor or against any
model or dataset. Furthermore, this methodology
provides for repetitions when annotations match
exactly across models – which is what models are
optimized for in the first place! In this scenario
the union of all non-exact, non-overlapping annota-
tions provides a superset of annotations similar to
how pooling is used in information retrieval evalua-
tion to create a robust result set (Zobel, 1998). For-
mally, we define the verification union of a dataset
d as Vd =

⋃
m Vm,d.

Posthoc Precision and Recall. The precision met-
ric is defined as the ratio of true predictions to all
predictions. If we recast the concept of true predic-
tions to be the set of verified annotations Vm,d, then
it is natural to further consider Nd,m to be the set
of all predictions for some dataset and model pair,
especially considering our data collection method-
ology restricts Vm,d ⊆ Nd,m. Thus the posthoc
precision of a model-data pairing is simply the ver-
ification rate rm,d.

The recall metric is defined as the ratio of true
predictions to all true labels. If we keep the recast-
ing of true positives as verified annotations Vm,d,
then all that remains a definition of true labels. Like
in most evaluation regimes the set of all true labels
is estimated by the available labels in the dataset.
Here, we do the same and estimate the set of true la-
bels as the union of a dataset’s verified annotations
Vd. Thus posthoc recall of a model-data pairing is
|Vm,d|/|Vd|.

Posthoc Verification Results

Using the evaluation tools introduced in the previ-
ous section, we begin to answer interesting research
questions. First, do the differences between evalu-
ation regimes, i.e., pre-annotation versus posthoc
verification, have any affect on our perception of
model performance.

To shed some light on this question, we com-
pared the precision and recall metrics calculated
using the pre-annotation evaluation regime against
the precision and recall metrics calculated using
the posthoc verification regime. The left quadplot
in Fig. 3 compares model performance under the
different evaluation regimes. Error bars represent
the empirical 95% confidence internals drawn from
1000 bootstrap samples of the data. We make two
major conclusions from this comparison:

Pre-annotation performance is lower than
Posthoc verification. The differences between the
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Figure 4: Detailed error analysis of verification rates in
Fig. 3(top right). The E2E model consistently outper-
forms the ground truth (GT).

scores of the pre-annotation compared to posthoc
verification are striking. Posthoc annotation shows
very good precision scores across all datasets. Al-
though the models may not exactly predict the pre-
annotated label, high posthoc precision indicates
that their results appear to be “close-enough” to
obtain human verification.
Conclusion: the widely-used exact matching eval-
uation regime is too strict. Despite its intention, the
pre-annotation evaluation regime does not appear
to faithfully simulate a human use case.

Machine Learning models outperform the
Ground Truth. The posthoc verification method-
ology permits the GT annotations to be treated
like any other model, and are therefore included in
Fig. 3 (right plot). These results were unexpected
and surprising. We found that labels produced by
the EL models oftentimes had a higher verification
rate than the pre-annotated ground truth. The recall
metric also showed that the EL models were also
able to identify more verified labels than GT.
Conclusion: Higher precision performance of the
EL models indicates that human annotators make
more unverifiable annotations than the EL models.
Higher recall performance of the EL models also
indicates that the EL models find a greater cover-
age of possible entities. The recall results are less
surprising because human annotators may be unmo-
tivated or inattentive during free-form annotation –
qualities that tend to not affect EL models.

Error Analysis of the Ground Truth

For each linked entity, the posthoc verification
methodology permitted one of three outcomes:
verification, modification, or removal. The plot
in Fig. 4 shows the percentage of each outcome
for each model and dataset pair; it is essentially
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a zoomed-in, more-detailed illustration of the
Posthoc Verification Precision result panel from
Fig. 3, but with colors representing outcomes and
patterns representing models. Edits indicate that
the named entity recognition (i.e., mention detec-
tion) portion of the EL model was able to identify
an entity, but the entity was not linked to a verifiable
entity. The available dataset has an enumeration
of corrected linkages, but we do not consider them
further in the present work. Removal indicates an
error with the mention detection. From these re-
sults we find that, when a entity mention is detected
it is usually a good detection; the majority of the
error comes from the linking subtask.

A similar error analysis of missing entities is not
permitted from the data collection methodology be-
cause we only ask workers to verify pre-annotated
or predicted entities, not add missing entities. Be-
cause all detected mentions are provided with some
entity link, we can safely assume that missing enti-
ties is mostly (perhaps wholly) due to errors in the
mention detection portion of EL models.

Discussion

The primary goal of the present work is to com-
pare pre-annotation labels contributed by human
workers against verified annotations of the same
data. Using entity linking as an example task, we
ultimately found that these two methodologies re-
turned vastly different performance results. From
this observation we can draw several important
conclusions. First, EL models have a much higher
precision than related work reports. This difference
is because the standard evaluation methodology
used in EL, and throughout ML generally, do not
account for soft matches or the semantics of what
constitutes a label that is “close enough”. Our sec-
ond conclusion is that EL models, and perhaps ML
models generally, sometimes perform better than
ground truth annotators – at least, that is, according
to other ground truth annotators.
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