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Abstract

Knowledge graphs are often used to store com-
mon sense information that is useful for various
tasks. However, the extraction of contextually-
relevant knowledge is an unsolved problem,
and current approaches are relatively simple.
Here we introduce a triple selection method
based on a ranking model and find that it im-
proves question answering accuracy over ex-
isting methods. We additionally investigate
methods to ensure that extracted triples form
a connected graph. Graph connectivity is im-
portant for model interpretability, as paths are
frequently used as explanations for the reason-
ing that connects question and answer.

1 Introduction

For models to be able to reason about situations that
arise in everyday life, they must have access to con-
textually appropriate common sense information.
This information is commonly stored as a large
set of facts from which the model must identify a
relevant subset. One approach to structuring these
facts is as a knowledge graph. Here, nodes repre-
sent high-level concepts, and typed edges represent
different kinds of relationship between concepts.
In practice, a subset of facts that are thought to be
contextually relevant are extracted from the graph,
as using all facts in each instance is unnecessary,
noisy, and computationally expensive.

Prior work has focused on different ways to en-
code these facts, including by inputting them into a
graph neural network (GNN) or into a transformer
(Feng et al., 2020; Yasunaga et al., 2021). However,
the question of how to identify useful information
has been under-explored, particularly in work that
uses GNN encoders. If contextually important in-
formation is not retrieved then performance could
be dramatically reduced, a potential result of the
use of overly simplistic retrieval methods.

In this paper we explore methods to extract high-
quality subgraphs containing contextually relevant
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Figure 1: The triple scoring process for a question an-
swering task, and two methods that use the scores to
extract relevant subgraphs for a question and candidate
answer.

information.1 We approach this as a ranking task
across triples in a knowledge graph, and propose
two methods that use the scores to extract a sub-
graph. The first is a weighted pathfinding approach
which extends prior work (Lin et al., 2019), while
the second builds a minimum spanning tree that
includes the highest-ranked triples (figure 1). Both
approaches ensure that all or most nodes in the
subgraph are reachable from each other, which is
important for two reasons. First, it means that the
GNN can update node embeddings with informa-
tion from most other nodes, which would not be
possible if the graph were disconnected. Second, it
allows paths of reasoning to be extracted from the
subgraph, which are often used as explanations for
model behaviour (Feng et al., 2020; Wang et al.,
2020; Yasunaga et al., 2021).

There are also situations when specific concepts
need to be included in order for a subgraph to be
of high enough quality. For example, in question
answering, a full explanation must include one

1We call these “relevant subgraphs” or “extracted sub-
graphs”, noting that others use “schema graphs” (Lin et al.,
2019).
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or more concepts mentioned both in the question
and in a candidate answer. This requires robust-
ness towards how concepts identified because the
knowledge repository might express the concept
in a slightly different lexical form from the ques-
tion and/or answer. We therefore experiment with
a embedding-based method to identify these con-
cepts, and compare it with existing lexical methods.

Our contributions are as follows2:
• Apply a ranking model to identify common

sense triples that are relevant to some context.
• Identify and thoroughly investigate meth-

ods to ensure that the extracted contextually-
relevant subgraphs are (almost) connected.

• Compare existing lexical approaches to entity
linking to a simple embedding-based method.

2 Background

Many prior approaches to retrieving relevant com-
mon sense triples from a knowledge graph start by
identifying relevant nodes. Simple lexical overlap
between a concept and the context (e.g. question
text) is often used for this (Kundu et al., 2019;
Khot et al., 2019). However, this entity linking
approach is likely to only retrieve simple concepts,
as the idiosyncratic phrasing of some node names
in knowledge graphs like ConceptNet (Speer et al.,
2017) are unlikely to show up in text. Becker et al.
(2021) investigate this in detail and propose a series
of pre-processing steps that allow lexically-based
linking without exact phrase matches. For the same
reason, the heuristics used by Lin et al. (2019) for
lexical matching are employed by a series of later
works (Feng et al., 2020; Yasunaga et al., 2021;
Wang et al., 2020). Although lexical matching is
a frequent approach with common sense knowl-
edge graphs, in other domains embedding-based
approaches are more popular (Gillick et al., 2019).
These work by embedding the candidate text and
finding the nearest neighbour in the space of entity
embeddings.

In question answering, Lin et al. (2019) split
these concepts into those identified in the question
and in the answer, and find additional concepts for
the relevant subgraph by iteratively finding shortest
paths between the two sets. This process continues
until a maximum number is collected, or the path
lengths exceed a threshold. The final subgraph used

2We make our code and data available at
https://github.com/GuyAglionby/
kg-common-sense-extraction.

as input to models is constructed from this set with
all valid edges added.

Some approaches score nodes and triples that
have been identified. Kundu et al. (2019) score
multiple paths for each question and answer and
choose the answer with the highest mean path score.
Yasunaga et al. (2021) extract a subgraph follow-
ing Lin et al. (2019), and additionally score each
node for relevance to a question using RoBERTa
(Liu et al., 2019). Ranking is also common with
prose facts, particularly when they are input into
transformer-based models that have limits on input
size (Wang et al., 2021).

3 Methodology

In this section we introduce our methods for ex-
tracting a contextually-relevant subgraph G for a
question answering task. The graph should contain
triples that are useful in distinguishing the correct
answer from a set of distractors. For each instance,
we represent the question text as q and the ith candi-
date answer as ai, and the set of concepts extracted
from each as Cq and Cai respectively.

3.1 Triple scoring

We cast the task of identifying relevant triples in
the knowledge graph as a ranking problem, where
the highest-ranked triples are those most relevant
to q; ai. We use an existing model that is trained
to rank facts highly if they constitute part of an
explanation for why ai is the correct answer to
q (Pan et al., 2021). This was developed for the
TextGraphs 2021 shared task on explanation regen-
eration for science questions (Thayaparan et al.,
2021) and achieved the highest performance. Facts
that are used in an explanation are likely to be
useful when choosing between answers, making
the model a natural choice for identifying relevant
triples.

The model consists of two parts: a fact retriever
and a re-ranker. We follow the training proce-
dure in Pan et al. (2021) and use one model based
on RoBERTa-Large (Liu et al., 2019) for each
stage. At inference time we use only the re-ranker
to score each triple3 in relation to q; ai. To speed
this up we pre-compute embeddings for each q; ai
and each triple.

3We linearize triples using the templates from https:
//github.com/commonsense/conceptnet5/
wiki/Relations.
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3.2 Constructing G
The most straightforward way to construct G is to
use the most relevant triples identified in §3.1 and
the grounded nodes Cq ∪ Cai . To do this, we select
a subset of the top e ranked triples according to
limits on the total number of edges and nodes that
would be added to G. Iterating in rank order, we
add the triple (s, r, o) to G only if adding s and
o does not increase the total number of nodes to
above n. If n < 2e then some of the top edges
will be excluded; this limits the number of nodes in
the graph while allowing highly-ranked edges to be
present if they share nodes with other edges. We set
n = 50 and e = 40 following initial experiments.

A shortcoming of this method is that the selected
triples are not likely to connect with Cq or Cai . In-
deed, there is no guarantee that the triples are con-
nected to each other. This is problematic in cases
where paths in the extracted subgraph are to be
used in an explanation (Feng et al., 2020; Yasunaga
et al., 2021).

To rectify this we find the minimum spanning
tree (MST) that spans all nodes in G, taking into
account the edges added in the previous step. This
is the Steiner tree problem, which is NP-hard; we
apply an approximation algorithm (Wu et al., 1986)
to find solutions in a reasonable amount of time.
We experiment with two variants: one where edges
are uniformly weighted, and another where the
triple scores are used as weights.

We further use the triple scores with the pathfind-
ing method used in previous work (Lin et al., 2019),
transforming this into a weighted shortest path
search. We iteratively find the shortest path be-
tween any pair of concepts in Cq and Cai , adding
nodes on the paths to a set until a maximum size
is reached. G is then formed from these nodes, as
well as all valid edges between pairs from this set.
We set the maximum number of nodes to be 50.

3.3 Identifying relevant concepts

It is important that Cq and Cai accurately reflect
concepts mentioned in q and a, primarily to aid
with explanations. A full explanation for a ques-
tion must include at least one concept from Cq and
from Cai ; if these concepts are nonsensical then the
explanation is invalid. Additionally, the pathfind-
ing method for relevant subgraph extraction relies
on the quality of this grounding.

We use two methods for entity linking. The first
is from prior work, and is based on lexical match-

ing with heuristics (Lin et al., 2019). These include
lemmatising words if an exact match is not found,
and a method to avoid selecting nodes with lexi-
cal overlap. Despite this, lexical methods are not
able to identify relevant concepts that have a lexical
form that is not likely to be seen in any context;
this occurs often with more specific concepts.To
account for this, our second method is based on
embeddings from RoBERTa. We embed each con-
cept, and for each q and ai find the 10 most similar
concepts via Euclidean distance. Embeddings are
constructed in each case by mean-pooling across
all tokens.

3.4 Evaluation

We evaluate the quality of the extracted subgraphs
by comparing accuracy on a question answering
task when using them versus using a baseline.
These graphs are used as input to two models, MH-
GRN (Feng et al., 2020) and QA-GNN (Yasunaga
et al., 2021), which are both designed for ques-
tion answering with knowledge graphs. The base-
line subgraph is extracted using the unweighted
pathfinding method from prior work (Lin et al.,
2019); for the fairest comparison we run five base-
lines which extract subgraphs of different sizes and
report the best result from these (see appendix C
for full details). We also compare to baseline that
uses only RoBERTa-large with no additional
facts.

We report accuracy on two datasets, Open-
bookQA (Mihaylov et al., 2018) and Common-
senseQA (Talmor et al., 2019). OpenbookQA is a
collection of science questions, and so is in-domain
with respect to the data used to train the fact scorer.
CommonsenseQA targets more general common
sense; performance here is a reflection on how
transferable the fact scorer is to other domains.
This dataset has no public test set labels, so we
report results on the ‘in house’ test split defined by
Lin et al. (2019). Each model is run three times
with different random seeds and the mean accuracy
reported. Model hyperparameters are reported in
appendix A.

Our base knowledge graph is ConceptNet (Speer
et al., 2017). Following previous work (Lin et al.,
2019), we merge similar relations and add reverse
relations to the extracted graph.
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Grounding Subgraph type MHGRN QA-GNN

LM Only 62.07

Lexical Baseline 67.73 67.07
Only top rated 62.73 64.47

Lexical
MST 63.07 64.27
Weighted MST 64.87 60.73
Weighted path 64.20 65.27

Embedding
MST 65.47 66.33
Weighted MST 64.73 64.60
Weighted path 64.07 65.73

Table 1: Accuracy on OpenbookQA with different sub-
graph extraction methods.

4 Results

Our results on OpenbookQA are presented in ta-
ble 1 and CommonsenseQA in table 2. On Com-
monsenseQA, our best method significantly4 out-
performs the baseline method. This suggests that,
in this case, the ranker is able to identify facts
which are relevant to the question, and that the
models are subsequently able to successfully use
them.

The tuned baseline for OpenbookQA beats the
proposed methods in all cases, although there is
reasonable variation in accuracy between the base-
lines of different sizes (see table 6). However, in
all but two cases the methods for ensuring graph
connectivity outperform the method that only uses
the highest-ranked triples.

5 Analysis

We observe that, in the majority of cases, using
methods to increase connectivity within the ex-
tracted subgraph improves performance over sim-
ply including the top rated facts. The minimum
spanning tree (MST) approach has the advantage
of including these facts, unlike the weighted path
method which may not. However, to ensure that the
graph is connected the MST approach may have to
include nodes and edges that are less relevant to the
context. One might expect a weighted approach to
counterbalance this, however this also results in a
larger subgraph being constructed which may be
detrimental (see appendix B). Indeed, with lexical
grounding the weighted approach adds an average
of 37 nodes and 83 edges to the extracted subgraph,
compared with 26 nodes and 71 edges in the un-
weighted case.

4We use the Almost Stochastic Dominance test (Dror et al.,
2019) and only claim a significant difference if ϵ ≤ 0.05.

Grounding Subgraph type MHGRN QA-GNN

LM Only 69.53

Lexical Baseline 69.48 70.32
Only top rated 69.76 69.92

Lexical
MST 69.86* 69.35
Weighted MST 69.19 70.64*
Weighted path 69.86* 68.87

Embedding
MST 69.60 70.10
Weighted MST 69.97* 69.86
Weighted path 69.27 70.08

Table 2: Accuracy on CommonsenseQA with different
subgraph extraction methods.5

The weighted pathfinding approach has the ad-
vantage of avoiding edges which are not relevant to
the query. Additionally, the subgraph is extracted
in way that is closer to Cq and Cai than the MST
approach, which considers these nodes only af-
ter selecting the top-ranked triples. As a result,
the question and answer nodes are connected in a
larger variety of ways, which may help increase
performance.

For OpenbookQA, the increase in score between
lexical and embedding-based entity linking with an
unweighted MST suggests that the concepts iden-
tified by the latter method are particularly useful.
The same magnitude of increase is not seen in Com-
monsenseQA. One possible reason for this is that
CommonsenseQA was constructed directly using
ConceptNet, which may increase the relevance of
concepts obtained with lexical methods.

Similarly to with lexical grounding, the weighted
MST with embedding grounding adds more nodes
and edges on average (153 nodes, 217 edges) than
the unweighted one (112 nodes, 172 edges). In
both cases, the resulting subgraph is substantially
larger than the equivalent ones built from lexically-
linked entities. This is likely due to the kinds of
nodes identified by entity linking – we observe
that concepts identified by the embedding-based
method are more specific, and so are less connected
within the overall graph. Conversely, concepts that
are identified lexically are likely to be simpler and
more general, and so better connected within the
graph, meaning fewer additional nodes and edges
are required to build the MST.

5* denotes significantly better than baseline subgraph at
p < 0.001.
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6 Conclusion

We present a method for extracting relevant infor-
mation from a common sense knowledge graph,
casting it as a ranking problem. We show that
scores obtained from a ranking model can be used
to select triples containing useful information for a
question answering task, improving performance
over a commonly-used approach.

As it is undesirable for extracted subgraphs to
have low connectivity, particularly when using
paths within them for model interpretation, we use
an algorithm for calculating minimum spanning
trees over a supplied set of nodes and edges to en-
sure the graph is connected. We find that this helps
performance; in particular, the models with high-
est accuracy on CommonsenseQA use a weighted
version of this. We additionally find that using an
entity linking approach that uses embeddings rather
than lexical matching improves performance in
some cases. We distribute the contextually-relevant
subgraphs to facilitate future work; these drop in
to existing models with no further processing re-
quired.

Future work might investigate the influence
of the fact ranker, as our results suggest that it
can transfer from the science to general common
sense domain successfully. Further training of the
ranker using higher-quality negative samples from
e-QASC (Jhamtani and Clark, 2020) may yield
better performance, as noted by Pan et al. (2021).
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A Hyperparameters

We use the same hyperparameters for MHGRN and
QA-GNN as used in the papers which respectively
introduced them (Feng et al., 2020; Yasunaga et al.,
2021). We optimise both models using RAdam
(Liu et al., 2021) and a learning rate of 1e− 3 for

the text encoder and 1e− 5 for the graph encoder.
A maximum of 128 tokens are input to the text
encoder, which is initialised as RoBERTa-large.
A L2 weight decay of 0.01 is used.

For MHGRN, batch size is 32 and the text en-
coder is frozen for the first 3 epochs. A 1-layer
100-dimensional GNN is used with 3-hop message
passing at each layer.

For QA-GNN, batch size is 128 and the text
encoder is frozen for the first 4 epochs. A 5-layer
200-dimensional GNN is used.

In all cases, the GNN is initialised with node
embeddings derived from BERT, which are made
available by Feng et al. (2020).

B Extracted subgraph size

For each type of extracted subgraph, we report
the mean and standard deviation of the number of
edges in table 3 and number of nodes in table 4.
We report results for the baselines in table 5.

Grounding Subgraph type OBQA CSQA

Lexical

Only top rated 33±6 28±5
MST 104±28 110±29
Weighted MST 117±30 123±32
Weighted path 216±50 232±54

Embedding
MST 202±50 201±46
Weighted MST 245±64 250±56
Weighted path 168±43 177±47

Table 3: Average number of edges in extracted sub-
graphs for OpenbookQA and CommonsenseQA.

Grounding Subgraph type OBQA CSQA

Lexical

Only top rated 49±2 50
MST 78±22 77±21
Weighted MST 89±23 89±23
Weighted path 53±5 54±4

Embedding
MST 167±41 162±35
Weighted MST 207±53 206±45
Weighted path 59±3 58±2

Table 4: Average number of nodes in extracted sub-
graphs for OpenbookQA and CommonsenseQA.

Nodes/edges Model OBQA CSQA

Nodes MHGRN 50±10 36±7
QA-GNN 63±12 63±12

Edges MHGRN 128±23 64±13
QA-GNN 190±33 188±36

Table 5: Average number of nodes and edges in baseline
subgraphs for OpenbookQA and CommonsenseQA.
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Target edge count MHGRN QA-GNN

50 65.27 65.20
100 67.73 65.87
150 63.53 67.07
200 65.27 66.53
250 64.40 64.20

Table 6: Accuracy on OpenbookQA when using the
baseline subgraph extraction method with five different
target edge counts.

Target edge count MHGRN QA-GNN

50 69.48 70.08
100 68.60 69.83
150 69.11 70.32
200 68.95 69.54
250 69.46 69.33

Table 7: Accuracy on CommonsenseQA when using
the baseline subgraph extraction method with five dif-
ferent target edge counts.

C Baseline models

Subgraph size is a confounding factor when com-
paring performance between our extraction meth-
ods and the baseline (Lin et al., 2019). To control
for this, we extract baseline subgraphs of five dif-
ferent sizes by expanding them until they reach a
certain number of edges. In tables 1 and 2 we re-
port the only highest scoring baseline; full baseline
results are presented in tables 6 and 7.
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