
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 57–66
July 5–10, 2020. ©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_009

57

Two-Stage Movie Script Summarization: An Efficient Method For
Low-Resource Long Document Summarization

Dongqi Liu∗, Xudong Hong∗†, Pin-Jie Lin∗, Ernie Chang and Vera Demberg
†Max Planck Institute for Informatics

Saarland University, Saarland Informatics Campus, Germany
{dongqi,pinjie}@lst.uni-saarland.de

{xhong,cychang,vera}@coli.uni-saarland.de

Abstract

The Creative Summarization Shared Task at
COLING 2022 aspires to generate summaries
given long-form texts from creative writing.
This paper presents the system architecture and
the results of our participation in the Scriptbase
track that focuses on generating movie plots
given movie scripts. The core innovation in
our model employs a two-stage hierarchical ar-
chitecture for movie script summarization. In
the first stage, a heuristic extraction method
is applied to extract actions and essential dia-
logues, which reduces the average length of in-
put movie scripts by 66% from about 24K to 8K
tokens. In the second stage, a state-of-the-art
encoder-decoder model, Longformer-Encoder-
Decoder (LED), is trained with effective fine-
tuning methods, BitFit and NoisyTune. Evalu-
ations on the unseen test set indicate that our
system outperforms both zero-shot LED base-
lines as well as other participants on various
automatic metrics and ranks 1st in the Script-
base track1.

1 Introduction

The goal of the Creative Summarization Shared
Task 2022 (ASCW@COLING’22) is to automati-
cally generate summaries based on long-form cre-
ative texts like literature, movie scripts, or TV
screenplays. This task is encouraged by practi-
cal settings in part by the condition to reflect the
information that is realistically available in real-
world natural language generation task – realistic
texts like movie scripts and plot summaries can
be prohibitively long (See Movie Script and Plot
Summary in Figure 1).

Current dominant neural approaches to long doc-
ument summarization (Zhang et al., 2020; Xiao

∗ These authors contributed equally to this work.
1Source code and pre-trained models are avail-

able at: https://github.com/tony-hong/
script-2-story

et al., 2022; Guo et al., 2022) mainly embrace neu-
ral sequence-to-sequence architectures consisting
of an encoder-decoder setup where the entire input
sequence is first encoded before decoding the out-
put sequence autoregressively. While the encoder-
decoder architecture is triumphant in natural lan-
guage generation tasks (Peng et al., 2020a; Akermi
et al., 2020; Erdem et al., 2022; Qian et al., 2022),
it is not without its challenges, some of which are
exacerbated in this shared task.

In particular, the challenges in this shared task
stem from the inherent characteristics of the corpus,
which consists of not only texts (i.e. scripts of 24K
tokens) that are much longer than the context length
of current state-of-the-art long document summa-
rizers (e.g. 16K in LongT5 (Guo et al., 2022)),
but also requires that the decoder be exploited of
its long-term attention capabilities to an extreme
extent and generate up to summaries of 1K tokens.
The excessively long decoding time made it impos-
sible to experiment with different model architec-
tures and perform extensive hyperparameter tuning
for model selection. Therefore, the optimization
space during training time is severely limited; and
the inference step becomes highly time-consuming
for experimentation during the trial and error pro-
cess.

To this end, our system employs a two-stage
procedure for movie script to movie plot sum-
marization. In the first stage, we propose to
heuristically extract sentences that effectively re-
duce the average input length from 24K to 8K
tokens. Next, we propose to improve upon the
Longformer-based encoder-decoder model (LED)
(Beltagy et al., 2020) by coupling it with two ef-
fective fine-tuning methods, i.e., BitFit (Ben Zaken
et al., 2022) where only the bias-terms (0.09% of
the parameters) of the model are being updated
and NoisyTune (Wu et al., 2022) where employs
a matrix-level perturbation strategy to increase the
variation amplitude of the parameters.

https://github.com/tony-hong/script-2-story
https://github.com/tony-hong/script-2-story


58

INT. CHURCH - LATER
The Leader, smiling opens his eyes and looks around the group.
        LEADER : 
 Good. Now. Pair off for the one-on-one. 
 Pick someone special to you tonight.
Everyone stands and mills about , slowly pairing - off. Jack sees the ghastly spectre of Chloe 
coming towards him. He smiles at her. She smiles back; it takes her some time to amble to him.
        CHLOE : 
 Hello, Cornelius.

The unnamed narrator ( Norton ) is a travelling automobile company employee who suffers from insomnia . His 
doctor refuses to give him medication and advises him to visit a support group to witness more severe suffering . 
The narrator attends a support group for testicular cancer victims and , after fooling them into thinking that he is 
a fellow victim , finds an emotional release that relieves his insomnia .He becomes addicted to attending support 
groups and pretending to be a victim , but the presence of another impostor , Marla ( Bonham Carter ) , disturbs 
him , so he negotiates with her to avoid their meeting at the same groups ...

Efficient Transformer
Encoder

(ii) Bias Terms Tuning 

froze weights 

learnable biases 

(1) Heuristic Extraction  (2) Efficient Long-Document 
 Fine-Tuning 

Efficient Transformer
Decoder

predicted summary

teacher-forcing

(i) Global/Local Attention 

(iii) Noisy Tuning 

PLM weights 

Noise purtubation 

Movie Script (Long input text, ~24K tokens) 

Action Description + Essential Dialogue (Short extracted text, ~8K tokens) 

Plot Summary (~700) 

INT. CHURCH - LATER
The Leader, smiling opens his eyes and looks around the group.
Everyone stands and mills about , slowly pairing - off. Jack sees the ghastly spectre of Chloe 
coming towards him. He smiles at her. She smiles back; it takes her some time to amble to him

Figure 1: Diagram to depict the pipeline. Our system achieves efficient text summarization by (1) heuristics extraction method
to compress long input text into a relatively short input sequence, and (2) efficient long-document fine-tuning. In the first stage,
the heuristics extraction method takes (a) long movie scripts with an average length of 24K and compress them into 8K. (b)
Following that, the transformer encoder with (i) global sliding winding attention takes movie scripts up to 8K tokens and is jointly
fine-tuned with the decoder using (ii) bias-terms tuning or (iii) noisy tuning techniques to generate a long movie summarization
(1K) in a computationally efficient manner.

Further, we start to tease apart the intricate re-
lationship between decoding beam size, model
performance, and maximum encoder and decoder
lengths in our ablation studies (see Section 3.6).
We examine the trade-offs between performance
and decoding runtime, and empirically find that
beam search size = 4 is the most suitable.

To summarize, our contributions are as follows:

1. We describe the long-form challenge in this
shared task as a challenge that impacts not only the
model performance but also the model training and
evaluation.

2. We propose a two-stage solution to solving this
challenge by first reducing its average input length,
and then incorporating the Longformer architecture
with either a simple yet effective finetuning tech-
nique (BitFit) or a matrix-wise perturbing method
for finetuning (NoisyTune).

3. We are the first to apply the transformer-based
model for summarization on this dataset (Script-
base), and our model ranks 1st on metrics including
ROUGE, BERTScore, and N-gram diversities.

2 Our Approach

Our method is a two-stage summarization method
where the 1st stage is a heuristic extraction method
(Sec. 2.1) and the 2nd stage is neural seq2seq
summarization model (Sec. 2.2).

2.1 Heuristic Extraction Method

Because the average input length (24K) is way be-
yond the maximum context length of SOTA long-
text summarization models, e.g., 16K in LongT5
(Guo et al., 2022). We are required to first reduce
input text length by applying heuristics about what
parts of the input to drop.

Specifically, for each of the movie scripts, which
consist of two elements: (1) action (red and grey in
Figure 1(1)), descriptions of events or expressions
that can be heard by the audiences; (2) dialogue
(green and blue in Figure 1(1)), conversations be-
tween characters. We first identify all the titles
and texts of actions and dialogues. Then we ex-
tract the titles and texts of all actions with regular
expression because they deliver essential informa-
tion about the movies. However, some important
concepts are only in the dialogues (Gorinski and
Lapata, 2015). According to the narrative struc-
tures of movie scripts (Lee et al., 2021), when a
new character occurs, the first few dialogues con-
tain introductory concepts about this character. So
our heuristics also include these essential dialogues
in our input.

2.2 Long Document Encoder-Decoder

Bottleneck of Transformer Transformer-based
models, based on the multi-head self-attention
(MHSA) mechanism (Vaswani et al., 2017), are
allowed to simultaneously attend to the con-



59

Dataset R-1 R-2 R-L BS-P BS-R BS-F1 S 1-G 2-G
LED-1024 13.68 1.25 12.77 43.22 39.24 40.99 0.00 30.24 72.11
LED-4096 14.16 1.30 12.99 42.45 41.37 41.79 0.00 30.92 72.73
LED-16384 14.92 1.46 13.73 42.98 42.38 42.58 0.00 33.57 74.85

MovING 41.44 8.23 39.63 51.63 52.33 51.94 4.76 16.21 48.27

UdS 46.39 11.52 44.08 57.03 56.72 56.86 2.69 34.56 76.04
UdS NoisyTune 46.34 11.58 44.05 57.23 56.80 57.00 2.50 35.20 76.36
UdS BitFit 45.76 11.58 43.80 56.90 56.20 56.53 3.01 31.67 74.59

Table 1: Results of the proposed model on unseen test set compared to other systems using automatic metrics
including ROUGE-1 F1 (R-1), ROUGE-2 F1 (R-2), ROUGE-L F1 (R-L), BERTScore-Precision (BS-P), BERTScore-
Recall (BS-R), BERTScore-F1 (BS-F1), SummaCZS (S), Novel 1-grams (1-G) and Novel 2-grams (2-G).

text at different positions from different rep-
resentation subspaces: MHSA(Qi,Ki,Vi) =
[A1,A2, ...,Ah]WO + BO where Qi,Ki,Vi ∈
Rt×d are the input attention matrices, t is the se-
quence length, dm is the model embedding dimen-
sion, Ai is the i-th attention head, h is the number
of attention heads, and WO ∈ Rdm×dm is the pa-
rameter matrix and BO ∈ Rt×dm is the bias term.
Each attention head is defined as:

Ai = σ (
Qi(Ki)

T

√
d

)︸ ︷︷ ︸
Φ

Vi (1)

where
Qi = XWQ

i + BQ
i ,

Ki = XWK
i + BK

i ,

Vi = XWV
i + BV

i ,

X ∈ Rt×dm represents input embedding,
WQ

i ,WK
i ,WV

i ∈ Rdm×d, BQ
i ,BK

i ,BV
i ∈ Rt×d

are bias terms. d = dm/h. σ is the softmax func-
tion. The input to the softmax function can be rep-
resented by Φ ∈ Rt×t. Because the computational
complexity of Φ is O(t2), which is very expensive,
it becomes the main bottleneck of the Transformer
model for dealing with long sequences.

Sparse Attention Due to the problem of the orig-
inal Transformer’s attention described above, for
long documents, the common practice of previous
works (Qiu et al., 2020; Pilault et al., 2020) is to
slice the long sequence document into different
blocks (which is usually limited to 512 tokens).
The downside is that there is no interactive infor-
mation between the sliced blocks, which causes
valuable knowledge loss. Moreover, reducing the
input sequence length does not inherently change
the algorithm’s complexity. In our task, we ap-
ply Longformer (Beltagy et al., 2020) to alleviate

the computational problem by introducing a sparse
attention mechanism consisting of three parts: slid-
ing window attention, dilated sliding window atten-
tion, and global sliding window attention.

To be specific, for sliding windows, the query
at each location attends only to the keys of the
adjacent w locations, which is suitable for captur-
ing the shallow local information. For the dilated
sliding window, the query of each position also
attends to the keys on w positions, but the position
of interest is not adjacent but discontinuous. Di-
lated sliding attention can attend to non-proximity
tokens, which is more suitable for capturing long-
distance dependency.

Global attention is identical to the ordinary at-
tention mechanism but only for specific tokens. A
token with global attention is associated with every
input token. Local tokens attend to the tokens in
their own sliding window, and also to all global to-
kens. The essence of Sparse Attention is to reduce
the number of tokens used to compute attention
scores, thereby reducing the computational com-
plexity.

2.3 Efficient Fine-Tuning

Most PLMs are highly likely to overfit on the pre-
trained data because of the huge amount of param-
eters. When there is a large domain gap between
pre-training and fine-tuning data, the model’s pa-
rameters are difficult to adjust effectively during
fine-tuning (Gao et al., 2021), because: (1) the
parameters adjust only slightly during fine-tuning,
which is often not sufficient to bridge the domain
gap; (2) there is very limited training data for low-
resource tasks, making it even harder to adjust
many over-fitted parameters.

Parameter Variation To alleviate the first prob-
lem, we apply the NoisyTune (Wu et al., 2022)



60

Size EFT R-1 R-2 R-L
original

2048 30.10 4.50 11.80
full 4.60 1.80 2.70

heuristics
2048 30.40 4.80 12.10
full 13.60 3.30 6.30

LED
base 40.80 9.75 16.50
base BitFit 36.93 8.71 15.42
large 41.51 9.78 16.20
large BitFit 40.41 10.45 16.37

Table 2: Results of the proposed model on validation
set compared to other systems using automatic met-
rics including ROUGE-1 F1 (R-1), ROUGE-2 F2 (R-2),
ROUGE-L F1 (R-L). EFT means efficient fine-tuning.

which employs a matrix-level perturbation strategy
to increase the variation amplitude of the parame-
ters to adapt the PLMs faster to the target domain
on our low-resource data.

Parameter Efficiency Although previous work
applied efficient Transformers strategies to reduce
the theoretical complexity of the self-attention in
long document summarization, how to efficiently
utilize PLMs and adapt to new domain data is not
explored. Mainly, how to fine-tune large PLMs un-
der exceptionally low-resource settings (1K train-
ing samples in our case) using limited hardware
resources (Nvidia V100 with 32GB memory) is
not well explored. To experiment with parameter
efficient fine-tuning method, we also apply BitFit
(Ben Zaken et al., 2022), a method that only fine-
tunes the bias terms (i.e. BO,BQ

i ,BK
i ,BV

i ), on a
pre-trained LED model checkpoint2. By reducing
the number of trainable parameters, we aim to in-
crease the fine-tuning speed.

3 Experiments and Analysis

3.1 Experimental Setup

We build our system using HuggingFace transform-
ers (Wolf et al., 2019) and train LED on the train-
ing split of the Scriptbase dataset. We choose the
checkpoint before over-fitting for evaluation. We
limit the output length between 512 and 1024 to-
kens. For the rest, we follow the configuration from
Longformer (Beltagy et al., 2020).

All experiments is optimized using AdamW

2https://huggingface.co/allenai/led-base-16384

(Loshchilov and Hutter, 2017) (where β1 was 0.9,
β2 was 0.99, ϵ was 1e-8) and the initial learning
rate is set to 5e-5 with weight decay of 0.01. The
number of warm-up steps is 512. We enable mixed
precision during training and evaluation to save
memory for larger batch size. We use ROUGE in
evaluation on validation split. All ROUGE scores
are multiplied by 100.

3.2 Hidden Test Submission

For the test submission, we train our models on
the training and validation splits of the Scriptbase
dataset following the organizers’ instructions. We
train all the models either in pure fine-tuning or
coupling with NoisyTune or BitFit method. Hence,
we obtain 3 systems: UdS, UdS NoisyTune and
UdS BitFit respectively.

For the sake of fairness, the results on the un-
seen test set are released by the organizing com-
mittee as shown in Table 1. Compared with the
official baseline models, all candidate models have
improved in various metrics. Particularly, UdS
NoisyTune that introduces noise during fine-
tuning performs the best overall. Among them, 6
of the 9 evaluation metrics achieved the best perfor-
mance. The competitor’s model (MovING) outper-
forms ours only on the SummaCZS metric (Laban
et al., 2022), which is an evaluation metric that fo-
cuses on inconsistency in summaries. Furthermore,
UdS BitFit that applies the BitFit algorithm to
fine-tune only 0.09% of the parameters is very close
to the UdS performance, but its more significant
advantages lie in fewer computational parameters
and shorter training time.

3.3 Baseline Comparison

Unfortunately, no previous work reports standard
summarization metrics (like ROUGE) on the Script-
base dataset (Gorinski and Lapata, 2015; Papalam-
pidi et al., 2019, 2021; Lee et al., 2021). We there-
fore create a naive baseline by copying first M
tokens from source sequence. We apply this base-
line to both the original movie scripts (original)
and the extracted texts using our heuristics (heuris-
tics). As we increase M from 128 by a factor of 2
up until the length of the source text, we observe
that the recall of ROUGE-1/2/L increase and the
precision decrease as expected. We thus report the
naive baseline with the highest F1 (2048) and with
input full length in Table 2. Results show that the
naive baseline using our heuristics outperforms the



61

Input Avg. Len. Input Len. % R-2-P R-2-R R-2-F1
all 24106 8192 100% 10.46 11.34 10.26
all 24106 16384 100% 11.26 12.05 11.02
dialogue 15818 8192 66% 10.67 11.71 10.52
dialogue 15818 16384 66% 10.39 12.78 10.90
ours 8288 8192 34% 10.47 11.91 10.52

Table 3: Results of the model trained on data created with our heuristics extraction method compared to other
extraction methods.

Models Output

Gold

MI6 sends James Bond, agent 007, into the field to spy on a terrorist
arms bazaar on the Russian border. Via television, MI6 and the Royal Navy

identify several wanted men, including American "techno-terrorist" Henry Gupta,
who is buying a GPS encoder made by the U.S. military...

BART
The film is being shot by the British pilot, as he attempts to escape,

but is shot by a group of a helicopter. He is killed by a helicopter pilot, the helicopter.
The pilot from the pilot who has a helicopter which the helicopter pilot who is killed...

T5
James Bond is a former MI6 operative, now working for MI-6.

He was assigned to spy on Russian President Vladimir Vladimirovich Kirillov’s election
campaign. Bond is assigned to investigate the uranium scandal in Vladivostok....

Our
James Bond is a British Secret Service agent, nicknamed "Bond", who works for MI6.

He is recruited by M, the head of the agency’s counter-espionage unit,
to investigate the disappearance of highly enriched uranium from a UK nuclear reactor...

Table 4: Case study of model-generated output. More
examples can be found in our GitHub repo.

baseline using original text under the optimal set-
ting (2048) and under the full length setting (full)3.

3.4 Model Selection

Prior state-of-the-art Transformer models either fail
to handle such long-range movie scripts or perform
slowly during training time. For example, the max-
imum input length of BART (Lewis et al., 2020),
PEGASUS (Zhang et al., 2020), T5 (Raffel et al.,
2020) and BigBird (Zaheer et al., 2020) are all less
than 4096. Among BART, T5 and LED, our bench-
mark comparison shows that LED achieves strong
performance compared to BART by 2.4 points and
is 8× times faster than T5 at the training stage. We
thus develop our system based on LED. The de-
tailed comparison is in Appendix A. We extend the
original LED with two recent fine-tuning methods,
BitFit and NoisyTune. Both model variations with
these techniques achieve strong results on R-2 F1
scores. In addition, we set the encoding length as
8192 and the decoding length 1024 with beam size
4 (BS) for all our experiments. Figure 5 shows that
UdS BitFit stops the performance improvement
when BS > 4, but with a huge time complexity.
Hence, we choose BS = 4.

3Figure 5 in Appendix B further shows that our submitted
system outperforms all naive baselines by a large margin.

3.5 Case Study
Table 4 shows the first two sentences of the movie
summary of “Tomorrow Never Dies” in the dataset.
Where Gold is the human answer, we compared
the output of our model with the current SOAT
model BART and T5. We find that our model can
effectively capture proper nouns in movies, such
as characters, organizations, locations, etc., and
the generated sentences are more in line with a
reasonable story logic. However, the BART model
seems to only be able to focus on a certain part of
the plot in the movie and cannot summarize the
movie well. T5 model often generates sentences
that contradict the truth and has difficulty handling
transitions between sentences.

3.6 Ablation Study
Input Data To further show the effectiveness
of our heuristics extraction method, we conduct
an ablation study where we train our best summa-
rization model with three different inputs: the full
movie scripts (all), the actions and dialogues that
are selected by our heuristics (ours), and the dia-
logues that are omitted by our heuristics (dialogue).
We also experiment with two input lengths (8192
and 16384). Results in Table 3 demonstrate that
our heuristics extraction method reduces the input
length significantly down to 33% of the original
length with only 4.5% performance loss compared
to the model using full scripts (all).

Performance and Decoding Time Trade-off To
understand the dependency between model perfor-
mance and runtime, we conduct the ablation study
of testing the evaluation runtime when varying the
beam size (BS). Figure 2 illustrates that UdS Bit-
Fit stops showing significant improvement in per-
formance after BS = 4 but takes more decoding
time than the total training time (red dotted line).
Using large BS from 5 to 8 requires additional 1
to 6 hours yet only obtains 0 to 2% performance
gain. This indicates the decoding with large BS



62

2 4 6 8 10 12
Runtime (hours)

9.0

9.2

9.4

9.6

9.8

10.0

10.2

10.4

RO
UG

E-
2 

F1
 S

co
re

1

2
3

4 5
6

7 8

Total Training Time

Figure 2: Performance (blue points) and evaluation run-
time (hours) of UdS BitFit when varying in beam sizes
(BS) from 1 to 8. The points are labeled with their BS.
The total training time is marked by red dotted line. All
UdS BitFit models are evaluated on the validation set.

is extremely expensive but unnecessary. We also
provide further analysis to understand the impact
of encoding and decoding lengths on performance
and runtime in Appendix B.

4 Related Work

4.1 Efficient Transformers

Transformer-based models (Vaswani et al., 2017)
are widely applied for text generation problems, but
the O(n2) complexity of the attention calculation
makes long document text generation computation-
ally expensive and prohibitive. Various strategies
have been proposed to ameliorate this issue (Cor-
reia et al., 2019; Child et al., 2019; Beltagy et al.,
2020; Guo et al., 2022; Tay et al., 2020; Ainslie
et al., 2020; Zaheer et al., 2020; Wang et al., 2020;
Peng et al., 2020b; Dai et al., 2019). Most of these
proposals demonstrate efficiency of their model
on Long Range Arena (LRA), a benchmark of six
simple tasks to evaluate the efficiency of different
Transformers (Tay et al., 2021). However, only
one of these tasks (Path-X) has an input length of
16K which is much longer than the input lengths of
the other five tasks (mostly below 10K), and most
of these methods failed on Path-X. Thus it is un-
clear whether the good performance on LRA can
be transferred to more realistic downstream tasks
like long-document summarization.

4.2 Long Document Summarization

Long document summarization is a trending natu-
ral language generation task. Existing solutions are
principally divided into two directions: The first is

a multi-stage strategy that reduces long input se-
quences while minimizing the loss of important de-
tails (Moro and Ragazzi, 2022; Zhang et al., 2022).
The second improves the internal representation of
the summarization model to process longer inputs
efficiently (Zhang et al., 2020; Xiao et al., 2022;
Mao et al., 2022; Cao and Wang, 2022). However,
the above strategies are either domain-specific or
pre-training corrections. Few people have explored
effective fine-tuning strategies for long sequence
large models in text summarization tasks, and the
main content of our work is to fill this gap.

5 Conclusion

In this paper, we present the details of our system,
which ranks 1st in the Scriptbase track on vari-
ous metrics, including ROUGE, BERTScore, and
N-gram diversities. We show that the proposed
approach involving a two-stage solution results
in competitive and efficient performance for long-
form text encoding and generation. In addition, we
deliver analysis and ablation studies for the compo-
nents within our proposed techniques, which allows
us to draw further conclusions about decoding con-
figurations and vocabulary sampling. Lastly, we
argue that more work can be done to speed up the
model selection process, which impacts the model
performance and model training and evaluation.

Acknowledgements

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 948878). Xudong
Hong is supported by the International Max Planck
Research School for Computer Science (IMPRS-
CS) of Max-Planck Institute for Informatics (MPI-
INF).

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference

https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2020.emnlp-main.19


63

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 268–284, Online. Association
for Computational Linguistics.

Imen Akermi, Johannes Heinecke, and Frédéric
Herledan. 2020. Transformer based natural language
generation for question-answering. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 349–359, Dublin, Ireland.
Association for Computational Linguistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Shuyang Cao and Lu Wang. 2022. HIBRIDS: Atten-
tion with hierarchical biases for structure-aware long
document summarization. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 786–807,
Dublin, Ireland. Association for Computational Lin-
guistics.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174–
2184, Hong Kong, China. Association for Computa-
tional Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette
Frank, Letitia Parcalabescu, Barbara Plank, Andrii
Babii, Oleksii Turuta, Aykut Erdem, Iacer Calixto,
et al. 2022. Neural natural language generation: A
survey on multilinguality, multimodality, controlla-
bility and learning. Journal of Artificial Intelligence
Research, 73:1131–1207.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Philip John Gorinski and Mirella Lapata. 2015. Movie
script summarization as graph-based scene extraction.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1066–1076, Denver, Colorado. Association for
Computational Linguistics.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 724–
736, Seattle, United States. Association for Compu-
tational Linguistics.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Myungji Lee, Hongseok Kwon, Jaehun Shin, Won-
Kee Lee, Baikjin Jung, and Jong-Hyeok Lee. 2021.
Transformer-based screenplay summarization using
augmented learning representation with dialogue in-
formation. In Proceedings of the Third Workshop
on Narrative Understanding, pages 56–61, Virtual.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic latent extraction for abstractive
long-input summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687–1698, Dublin, Ireland. Association for Compu-
tational Linguistics.

Gianluca Moro and Luca Ragazzi. 2022. Semantic
self-segmentation for abstractive summarization of
long legal documents in low-resource regimes. In
Proceedings of the Thirty-Six AAAI Conference on
Artificial Intelligence, Virtual, volume 22.

https://aclanthology.org/2020.inlg-1.41
https://aclanthology.org/2020.inlg-1.41
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-long.58
https://doi.org/10.18653/v1/2022.acl-long.58
https://doi.org/10.18653/v1/2022.acl-long.58
https://doi.org/10.18653/v1/D19-1223
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.3115/v1/N15-1113
https://doi.org/10.3115/v1/N15-1113
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.18653/v1/2021.nuse-1.6
https://doi.org/10.18653/v1/2021.nuse-1.6
https://doi.org/10.18653/v1/2021.nuse-1.6
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.acl-long.118
https://doi.org/10.18653/v1/2022.acl-long.118


64

Pinelopi Papalampidi, Frank Keller, and Mirella Lapata.
2019. Movie plot analysis via turning point identi-
fication. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1707–1717, Hong Kong, China. Association for Com-
putational Linguistics.

Pinelopi Papalampidi, Frank Keller, and Mirella Lap-
ata. 2021. Movie summarization via sparse graph
construction. In AAAI.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020a. Few-shot natural language generation for
task-oriented dialog. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
172–182, Online. Association for Computational Lin-
guistics.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2020b.
Random feature attention. In International Confer-
ence on Learning Representations.

Jonathan Pilault, Raymond Li, Sandeep Subramanian,
and Chris Pal. 2020. On extractive and abstractive
neural document summarization with transformer lan-
guage models. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9308–9319, Online. As-
sociation for Computational Linguistics.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and Weizhu
Chen. 2022. Controllable natural language genera-
tion with contrastive prefixes. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2912–2924, Dublin, Ireland. Association for
Computational Linguistics.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2555–2565, Online. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020. Sparse sinkhorn attention.
In International Conference on Machine Learning,
pages 9438–9447. PMLR.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena: A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2022. NoisyTune: A little noise can help
you finetune pretrained language models better. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 680–685, Dublin, Ireland. As-
sociation for Computational Linguistics.

Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman
Cohan. 2022. PRIMERA: Pyramid-based masked
sentence pre-training for multi-document summariza-
tion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5245–5263, Dublin,
Ireland. Association for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283–17297.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu,
Chenguang Zhu, Budhaditya Deb, Ahmed Awadallah,
Dragomir Radev, and Rui Zhang. 2022. Summn: A
multi-stage summarization framework for long input
dialogues and documents. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1592–
1604, Dublin, Ireland. Association for Computational
Linguistics.

A Appendix: Benchmark Comparison

Table 5 compares current state-of-the-art
Transformer-based models to find the optimal
model architecture. For BART, we extend input
length up to 5120 until total memory footprints
can be loaded into one Nvidia Tesla V100 with

https://doi.org/10.18653/v1/D19-1180
https://doi.org/10.18653/v1/D19-1180
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.18653/v1/2022.acl-short.76
https://doi.org/10.18653/v1/2022.acl-short.76
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.112
https://doi.org/10.18653/v1/2022.acl-long.112
https://doi.org/10.18653/v1/2022.acl-long.112


65

Architecure # Tok. T R-2-F1
BART 5K 1 6.30
T5 8K 16 8.60
LED 8K 2 8.70

Table 5: Comparison of model architectures. BART, T5
and LED are trained for 10 epochs. #Tok.: the number
of tokens as the maximum input length to the encoder.
T : the training time in hours. All models are in base
size and evaluated on validation set and use decoding
length 1024.

32 GB. Because BART is not designed to handle
such long-form sequences, we extend the size
of position embeddings by initializing from the
pre-trained position embeddings in BART. For
T5 and LED, we use the input length (#Tok.)
8192 to encode whole movie scripts. Lastly, we
fine-tune all models for 10 epochs and report the
ROUGE-2 F1 score (R-2-F1) on the validation set.
Based on the finding of the ablation study on beam
size (Sec. 3.6), all experiments use BS = 4.

Among the current SOTA models: BART, T5
and LED, we obtain 6.3 and 8.6 and 8.7 on R-2 F1
scores respectively. For the performance, LED out-
performs BART and T5 by 2.4 and 0.1 points. The
demand of high complexity attention computation
in BART limits the maximum input length and thus
fails to generalise well on the long-form movie sum-
marization. On the other hand, employing to global
sliding window attention, LED does not need to
shrink its input context length and greatly benefits
from 16-bit mixed precision training by which take
only 2 hours. In contrast, fine-tuning T5 requires
32-bit training which results in 8× slower than
LED at training phase. Based on the performance
and training efficiency advantages, we leverage
LED for the development of our long-form summa-
rization system on CreativeSumm’22.

B Appendix: Runtime Performance

To further understand the effects of different encod-
ing and decoding lengths on model performance
to select models and its inference efficiency, we
design the controlled trails to test the impact of
encoding and decoding lengths. We use our per-
formant UdS NoisyTune and evaluate model on
validation set using BS = 4.

Impact of Encoding Lengths Figure 3 shows
the dependency between performance (blue) and
runtime (red) on various encoding length. It is

256512
1024

2048
3072

4096
5120

6144
7168

8192

Encoding Length

6

7

8

9

10

RO
UG

E-
2 

F1
 S

co
re

5.5

7.6

8.3

9.4
9.8

10.3 10.3 10.3 10.4 10.4

200

300

400

500

600

700

800

se
co

nd
s/

ba
tc

h

211225252

309

393
441

598

670

744

833

Figure 3: Performance (blue) and decoding runtime
(red) when varying in encoding lengths. We report the
ROUGE-2 F1 score and inference time on various input
lengths from 256 up to 8192.

worth noting that the model is to be performant
only when it encodes a long enough movie script,
such as 8K. More importantly, we reduced input
length to 4094 with only 0.1 performance drops.

However, the runtime varying in different encod-
ing lengths and scales linearly as encoding length
increases. These results suggest that the current
Transformer-based encoder-decoder model with
quadratic-form attention would be even worse at
inference.

Impact of Decoding Lengths Unlike the encod-
ing length, the decoding length plays a more critical
role in the inference time. The performance gradu-
ally drops caused by shorter decoding length which
is making sense as the length of gold summary is
around 1K.

Notably, runtime varying in decoding length fol-
lows a quadratic trend. By shrinking decoding
length to 768, we find that the summarizer obtains
1.6× speedups at inference time while keeping
96% performance. In addition, by reducing de-
coding length to 512, our model achieves 3.3×
speedups and keeps 89% performance on the R-2
F1 score. Our result indicates that reducing de-
coding length to 75% or 50% of the original de-
coding length significantly improves its inference
efficiency without much performance drops.

Impact of Beam Size To understand the depen-
dency between model performance and runtime
when varying beam sizes (BS), Figure 5 illustrates



66

64 128 256 512 768 1024
Decoding Length

3

4

5

6

7

8

9

10

RO
UG

E-
2 

F1
 S

co
re

2.5

4.4

6.8

9.3
10.0

10.4

0

100

200

300

400

500

600

700

se
co

nd
s/

ba
tc

h

12 27
74

218

437

730

Figure 4: Performance (blue) and decoding runtime
(red) when varying in decoding lengths. We report
the ROUGE-2 F1 score and inference time on various
output lengths from 64 up to 1024.

the performance between our system (blue) , naive
baselines (dotted lines) and inference speed (red).
As choosing BS = 2, UdS BitFit gains 3.4 points
improvement compared to the model using greedy
search (BS = 1) on ROUGE-2 F1 score. In addi-
tion, our UdS BitFit using large BS from 4 to 8
achieve the best performance 14.9 and significantly
outperforms the naive baseline 2048 by 10.1 points
on the ROUGE-2 F1 score. The result suggests
BS = 4 is sufficient to obtain the most performant
result.

However, the runtime scales linearly with the
BS increasing. For instance, UdS BitFit stops
showing the improvement in performance after
BS = 4 but takes more computational cost. Us-
ing large BS from 5 to 8 requires around 5 to 8
minutes for merely one mini-batch (size=1), which
shows the decoding with large BS is extremely
expensive.

C Appendix: Background

C.1 Efficient Transformers

Transformer-based models (Vaswani et al., 2017)
are widely applied for text generation problems but
the O(n2) complexity of the self-attention makes
long document text generation computationally ex-
pensive and prohibitive. Various strategies have
been proposed to address this issue: 1. Complexity
can be reduced by restricting the global attention to
local patterns. (Correia et al., 2019) learn shorter
attention patterns for different heads and different
layers, (Child et al., 2019; Beltagy et al., 2020;
Guo et al., 2022) use random, stride or fixed local

1 2 3 4 5 6 7 8
Beam Size

4

6

8

10

12

RO
UG

E-
2 

F1
 S

co
re

4.64.8
4.3
3.9

9.0

10.1 10.2 10.3 10.3 10.4 10.5 10.5

UdS BitFit
Naive Baseline 4096
Naive Baseline 2048

Naive Baseline 1024
Naive Baseline 768
seconds/batch

50

100

150

200

250

300

350

400

450

se
co

nd
s/

ba
tc

h

54

85

129

177

225

275

341

382

Figure 5: Performance (blue) and runtime (red) of UdS
BitFit when varying in beam sizes. We evaluate UdS
BitFit on various beam size (BS) from 1 to 8. All
models are evaluated on validation set.

attention patterns, (Tay et al., 2020) use learnable
attention patterns improve the memory efficiency
of the attention module. 2. (Ainslie et al., 2020;
Zaheer et al., 2020) use memory/downsampling
methods. 3. Complexity can also be reduced by ap-
proximating self-attention using low-rank decom-
position (Wang et al., 2020) or kernels (Peng et al.,
2020b). 4. The context of transformers can also be
encoded into a fixed sized hidden state (Dai et al.,
2019).


