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Abstract

This paper describes our AMRTVSumm sys-
tem for the SummScreen datasets in the Au-
tomatic Summarization for Creative Writing
shared task (Creative-Summ 2022). In order
to capture the complicated entity interactions
and dialogue structures in transcripts of TV
series, we introduce a new Abstract Mean-
ing Representation (AMR) (Banarescu et al.,
2013), particularly designed to represent indi-
vidual scenes in an episode. We also propose
a new cross-level cross-attention mechanism
to incorporate these scene AMRs into a hier-
archical encoder-decoder baseline. On both
the ForeverDreaming and TVMegaSite datasets
of SummScreen, our system consistently out-
performs the hierarchical transformer baseline.
Compared with the state-of-the-art DialogLM
(Zhong et al., 2021), our system still has a lower
performance primarily because it is pretrained
only on out-of-domain news data, unlike Di-
alogLM, which uses extensive in-domain pre-
training on dialogue and TV show data. Over-
all, our work suggests a promising direction to
capture complicated long dialogue structures
through graph representations and the need to
combine graph representations with powerful
pretrained language models.

1 Introduction

Abstractive summarization of TV show episodes
aims to produce a summary from their transcripts
or screenplays, capturing important plot develop-
ment and character relations. For this shared task,
we participated in the two SummScreen categories,
which involve abstractively summarizing prime-
time TV series (ForeverDreaming) and daytime
soap operas (TVMegaSite) (Chen et al., 2022).
This task presents several new challenges com-
pared with other abstractive summarization tasks.
First, transformer-based language models that per-
form well on shorter texts become computationally

*equal contribution

expensive when their self-attention is applied to
long inputs (Vaswani et al., 2017). Also, consecu-
tive scenes often describe parallel or different sub-
plots, making it difficult to integrate information
and present a correct narrative (Chen et al., 2022).
Finally, like other dialogue texts such as meetings
and media interviews, TV transcripts contain com-
plicated character and entity interactions as well as
more varied structures.

Works on long-document summarization have
explored transformers with sparse or window-
based attention (Beltagy et al., 2020; Wang et al.,
2020), hierarchical models (Zhu et al., 2020),
and the "retrieve-then-summarize" approach (Chen
et al., 2022; Zhang et al., 2021). Large pretrained
language models such as BART-large also give
strong results by taking longer inputs at the cost
of larger embeddings and increased computational
complexity (Lewis et al., 2019; Zhong et al., 2021).
However, despite the many works addressing the
long transcript problem, few have studied novel
approaches to model the complicated interactions
and structures in TV transcripts. Even the state-
of-the-art on SummScreen, DialogLM, relies on
dialogue-specific denoising pretraining on TV data.
The model architecture itself does not address TV
transcripts’ conversational structures and takes the
input transcripts as plain texts (Zhong et al., 2021).

Therefore, we propose a novel Abstract Mean-
ing Representation (AMR) to capture the diverse
entity interactions and complex structures of TV
transcripts. AMR, as a graph representation, cap-
tures the most salient semantic knowledge using
its concept nodes and preserves inter-concept re-
lations with its labeled edges. It is thus believed
to convey information orthogonal to the text in-
put (Song et al., 2019). Our work generalizes the
sentence-level AMR introduced by Banarescu et al.
(2013), adding new features to make them suit-
able for individual scenes of TV shows. We use
these scene-level AMRs to augment a hierarchical
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encoder-decoder baseline. To this end, we also pro-
pose a cross-level cross-attention to scene AMRs,
such that the encoder of local tokens and utterance
embeddings can benefit from the structural infor-
mation and higher-level semantics from the entire
corresponding scene, without being interfered by
an adjacent scene, which may focus on a parallel
or different subplot.

To sum up, the major contributions of our work
are presented as follows:

• We propose the steps to construct scene
AMRs and introduce 1) Speaker/Utterance
nodes and 2) Coreference/Pronoun edges,
both of which connect the standard sentence
AMRs to capture and extract core semantic
and structural information of a scene.

• We design a cross-level cross-attention mech-
anism so that the encoding of local tokens and
utterance embeddings can benefit from the
structural and higher-level information from
the scene.

• We demonstrate the effectiveness of our AMR
augmentation on SummScreen and discuss
the need to combine it with dialogue-specific
pretraining.

2 Datasets

We participated in the two SummScreen cate-
gories of the CreativeSumm 2022 shared task:
summarization of primetime television transcripts
(ForeverDreaming) and summarization of daytime
“soap opera” transcripts (TVMegaSite) (Chen et al.,
2022).

We primarily experimented with our system on
ForeverDreaming, since it includes more genres
and covers 66 TV shows in the train set. We used its
entire train set of 3673 episodes to train our model.
For TVMegaSite, we only used 6000 of its 18915
training episodes due to the time constraint. The
6000-episode subset was sampled from the original
train set to include approximately the same number
of episodes from each TV show. We still use the
original dev and test sets for both ForeverDreaming
and TVMegaSite.

3 Constructing AMR Representation For
TV Series

3.1 Scene AMRs
A scene in a TV show episode is a consecutive se-
quence of closely related lines and actions. For TV

transcripts, in particular, we define a scene as a se-
quence of character utterances and stage directions
contributing to a subplot. Here, an utterance is an
uninterrupted line by a character, which can contain
one or more sentences. Within a scene, speakers
may respond to each other, request and perform
actions, and refer to entities mentioned by others.
All of these interactions give rise to complex dia-
logue structures. Therefore, we use the AMR graph
representation to explicitly capture these important
relations and core semantics, which can be difficult
to discern for conventional transformers operating
on text input.

To construct scene AMRs, we adapt the steps
in Bai et al. (2021), which build dialogue AMRs,
and additionally introduce speaker nodes, utterance
nodes, and a new procedure to represent corefer-
ences. As illustrated by Figure 1, given a scene
consisting of multiple utterances, we use the AMR
parser by Cai and Lam (2020) to obtain an AMR
graph for each utterance and then construct the
scene AMR by connecting utterance AMRs. We
then add utterance nodes, speaker nodes, and a
dummy scene node (the root node), as well as the
edges that capture node relations.

Utterance Node/ Utterance Edge. Given an
utterance containing one or more sentences, we
parse each sentence into its AMR graphs, and con-
nect them with an utterance node tagged utter
through sentence edges (tagged as snt1, snt2,
etc.). We then connect the utterance node to the
corresponding speaker node with an utterance edge
(tagged as utter1, utter2, etc.).

Speaker Node/ Participant Edge. For each
speaker in the scene, we add a speaker node tagged
with the corresponding speaker name and connect
it with the scene node using a participant edge
(tagged as participant1, participant2,
etc.). The scene node therefore acts as a root of the
entire scene AMR.

Compared with Bai et al. (2021), we want our
proposed speaker nodes and utterance nodes to en-
code the fine-grained hierarchical information from
different levels of the scene AMR (synthesizing
multiple utterances by one speaker, multiple sen-
tences within one utterance, and etc.). This is made
possible by our graph encoder, which exploits their
abundant and unique interactions with other AMR
concepts (see Section 4.1).

Coreference Edge. Like Bai et al. (2021), we
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(b) Scene AMR Graph

Parsing
and

Merging

[SCENE BREAK]

DARLA (to MACY)

Oh, my god. Macy,
there’s a helicopter out there.

THORNE (to LORENZO)

You hear that, Lorenzo?
That’s Macy’s future out there.

LORENZO (to THORNE)

You ’re wrong.
She doesn’t want this.

MACY (to LORENZO)

Lorenzo, who is that?

LORENZO (to MACY)

It’s Thorne.

[SCENE BREAK]

(a) Scene Transcript

Figure 1: Generating Scene AMR

use NeuralCoref1 to obtain coreference relations
between words, and JAMR2 to obtain alignment
between concepts and words. Yet unlike Bai et al.
(2021), if an utterance mentions a speaker (often a
third character), we also connect their concept in
utterance AMR to the corresponding speaker node.

Pronoun Edge. Because the off-the-shelf Neu-
ralCoref does not guarantee finding all corefer-
ence relationships, we also add rule-based pronoun
edges. We connect first-person pronoun concepts
(e.g., ‘I’, ‘We’) to the current speaker node with
pronoun edges. For some TV series, there is infor-
mation that indicates which character the current
speaker is talking to (e.g., Alice (to Bob): ). When
this information is available, we also connect the
second-person pronouns (e.g., ‘You’) to the corre-
sponding speaker node (e.g., Bob).

3.2 Scene Segmentation

Transcripts in the SummScreen dataset often
have accurate [SCENE_BREAK] tokens sug-
gesting the beginning of a new scene. These
[SCENE_BREAK]s segment the transcripts into
texts of reasonable length, for which we can con-
cisely construct scene AMRs and encode them with
a graph transformer. However, SummScreen is
based on community-contributed transcripts and
some of the transcribers may have a different un-
derstanding of scene breaks. We found that some
episodes contain much fewer [SCENE_BREAK]s
than others or no [SCENE_BREAK]s at all.

1https://github.com/huggingface/neuralcoref
2https://github.com/jflanigan/jamr

Thus, we adopt an existing strategy (Chen
and Yang, 2020) that combines the classic topic
segment algorithm C99 (Choi, 2000) with Sen-
tenceBERT (Reimers and Gurevych, 2019), to re-
segment scenes into reasonable lengths. We still
primarily use the [SCENE_BREAK]s from the
transcripts and only apply this algorithm on long
scenes that exceed our threshold of 600 tokens.

4 System Overview

Our AMR-augmented hierarchical summarization
network consists of a hierarchical text encoder and
a scene-level AMR encoder. The system is illus-
trated in Figure 2.

4.1 Scene AMR Encoder
The scene-level AMR graphs contain rich struc-
tural information and entity interactions in their
AMR concepts (nodes) and edges. To exploit this
graph information, we apply Zhu et al. (2019)’s
structure-aware graph transformer to encode the
scene AMRs. Depth-first traversal is used to lin-
earize the AMR into a sequence of concepts. The
relationship rij between a concept pair xi, xj is
encoded using convolutional network, which con-
volves the shortest sequence of edges between the
pair. As in Zhu et al. (2019), every concept node
attends to every other concept node with a modified
attention mechanism informed by the relationships
between them. In the end, the output of the AMR
encoder is

scene-encoder (scene_AMR) = {xc0, .., xcm},
for a scene with m AMR concepts. Note that the
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Utter encoder

w1 w2 w3

Utter encoder

w1 w2 w3

Global Encoder

Scene 1, Utterance 1 Scene 1, Utterance 2

Text Encoding

Scene Encoder
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Scene 1 AMR

AMR Encoding

Decoder

Figure 2: AMR-augmented hierarchical summarization network. The orange arrows indicate the cross-level cross-
attention from the utter-encoder’s [BOU] outputs to the scene encoder’s concept outputs.

graph encoder processes each scene AMR inde-
pendently, so the encoding of local concepts is not
interfered by concepts in neighboring scenes that
develop their distinct subplots.

4.2 Hierarchical Text Encoder
We adopt a hierarchical model for the text input
because the conventional transformers face huge
limitations when encoding long transcripts from
TV series. They apply full self-attention to the
entire input sequence, despite the computational
complexity being quadratic in the input length. Our
model adapts the more efficient hierarchical archi-
tecture from HMNet (Zhu et al., 2020), which has
shown promising results on meetings and other
long-dialogue summarization tasks.

Utterance-level Encoder. Following Zhu et al.
(2020), our hierarchical structure starts with an
utterance-level transformer (utter-encoder), which
encodes a sequence of tokens from an utterance ui
using self-attention. We initialize a trainable token
embedding matrix D using the pre-trained weights
from Zhu et al. (2020). Following their approach,
we enrich the token representations by training two
other embedding matrices for part-of-speech (POS)
and entity tags. The token embedding, POS em-
bedding, and entity embedding are concatenated
into the overall token input xi,j (for the j-th token
in the i-th utterance). A special token wi,0=[BOU]
(beginning-of-utterance) is added before every ut-
terance, which is essential for the later utterance
representation and cross-attention. We denote the
utterance-level encoding operation in every trans-
former layer as follows:

layer-k({x̂i,0,k, .., x̂i,Li,k})
= {x̂i,0,k+1, .., x̂i,Li,k+1}, for the i-th utterance

that has length Li.

Cross-level Cross-attention to AMR outputs.
The [BOU] token we added above is analogous
to the [BOS] (beginning-of-sentence) token in
document encoders. Conventionally, the hidden
state output for the [BOS] token can be trained
to directly model sentence-level information. For
dialogues, however, an utterance has many di-
verse and complicated structures, making it more
difficult to derive reliable patterns through self-
attention. Therefore, we enrich the [BOU] embed-
ding x̂i,0,k+1 with the scene AMR. In an utterance-
level encoder layer, the [BOU] embedding will first
have full attention to the tokens in the same utter-
ance. It then cross-attends to the hidden states of
all AMR concepts from the entire scene where this
utterance locates. Specifically, we derive the Key
and Value matrices for the cross-attention from the
AMR hidden states and the Query matrix from the
[BOU] embeddings.

We call this mechanism "cross-level" cross-
attention because it allows the upper-level, more
global information (scene-level) to guide the en-
coding of lower-level information (utterance-level).
First, it improves the utterance representation by
providing access to the entire scene. Each [BOU]
embedding can attend to all the concepts in the
scene. Also, the root node, utterance nodes, and
important entity nodes, would likely have aggre-
gated information to different extents in graph hid-
den states so the cross-attention can easily utilize.
This scene-level information improves the [BOU]
embedding and can guide the extraction of local
token features after the improved [BOU] embed-
ding is sent to the next utter-encoder layer. Second,
this cross-attention captures the relational informa-
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tion from AMRs, allowing for a better grasp of
dialogues’ structural features.

This cross-level cross-attention is more efficient
than directly attending to all the tokens in the scene.
AMR extracts salient features and complex interac-
tions while compressing the input sequence for the
attention mechanism. For a typical scene in Summ-
Screen, the number of AMR nodes ranges from
half to two-thirds of the token number, leading to
significantly lower cross-attention complexity than
attending to all the tokens in the scene.

Finally, the overall utter-encoder with cross-level
cross-attention has the following operations:

layer-1({xi,0, ..., xi,Li})={x̂i,0,1, ..., x̂i,Li,1},
layer-k ({x̂i,0,k, .., x̂i,Li,k})
={x̂i,0,k+1, .., x̂i,Li,k+1}.

The cross-attention is applied to x̂i,0,k after ev-
ery layer’s self-attention, where {xc0, ..., xcm} is the
graph hidden states of the scene:
x̂i,0,k = cross_attn (x̂i,0,k, {xc0, ..., xcm})

Overall, the output is:
utter-encoder (utteri, {xc0, ..., xcm})
= {xui,0, .., xui,Li

}.
Global Encoder. Like in Zhu et al. (2020), a

global transformer aggregates the last utter-encoder
hidden states of the [BOU] tokens. The output is
denoted as

global-encoder ({xu1,0, .., xun,0}) = {xG1 , ..., xGn }
for an episode of n utterances.

4.3 Decoder

We use a transformer decoder to generate the sum-
mary sequence. At each decoding stage t, self-
attention is applied to hidden states of the previous
t−1 generated tokens. Then, the model synthesizes
information across different levels by three cross-
attention blocks, to the token embeddings from the
utter-encoder, to the concept embeddings from the
scene-encoder, and to the utterance embeddings
from the global-encoder, respectively. In this way,
AMR information not only benefits the token and
utterance encoding but also directly contributes to
the generation of summaries at the decoding stage.

5 Implementation Details

5.1 Initialization

We use the pre-trained weights from Zhu et al.
(2020)’s HMNet to initialize our utter-encoder and
global-encoder, including the token embedding ma-
trix D. Their pre-training was done on news arti-
cles reformatted into conversation-like texts. We

consider this an out-of-domain pretraining, which
should be distinguished from the dialogue-specific
pretraining of the current SOTA system DialogLM
(Zhong et al., 2021).

We then copy and resize the matrix D to Dc as
the embedding matrix for AMR concepts, expand-
ing the matrix vocabulary with additional AMR
concepts not present during pretraining. Since
many AMR concepts are also common words and
names, initializing with HMNet’s pretrained em-
bedding will help better extract relations between
text tokens and AMR concepts. However, we do
not tie the weights of AMR and text embedding
matrices, as we expect them to emphasize different
meanings when a token is treated as a word versus
as an AMR concept.

5.2 Training

We use an effective batch size of 40 episodes and
train our system for 2400 updates. The initial learn-
ing rate is set to 5e-6. Within 150 updates, it lin-
early increases to and remains at 5e-4. In addition,
we use RAdam optimizer with β1 = 0.9, β2 = 0.999.

6 Results

At the time of our blind test submission to the
shared task, we only trained our system on smaller
subsets of the SummScreen datasets. The resulting
checkpoints therefore did not achieve a high per-
formance on the original test sets of SummScreen
nor on the blind test sets provided by the shared
task. We will analyze these results in Section 6.3.
Here, we first present our more recent results from
training on the expanded train sets after our blind
test submission. Specifically, we eventually used
the complete train set for ForeverDreaming and a
re-sampled 6000-episode subset for TVMegaSite.
All results were reported on the original test sets
without re-sampling.

6.1 Results on Original SummScreen Datasets

We primarily compare our results with the hier-
archical baseline HMNet from Zhu et al. (2020).
After grid searching over key hyper-parameters, we
trained HMNet using the same setup as our system,
which produced a better result than the setup in
the original paper. We also include results of other
strong baselines reported by Zhong et al. (2021),
including Longformer (Beltagy et al., 2020), BART-
Large (Lewis et al., 2019), UNI-LM (Dong et al.,
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Models
ForeverDreaming TVMegaSite

R-1 R-2 R-L R-1 R-2 R-L

Longformer* 25.90 4.20 23.80 42.90 11.90 41.60
BART-Large* 33.82 7.48 29.07 43.54 10.31 41.35
UNILM-base* 32.16 5.93 27.27 43.42 9.62 41.19
DialogLM-sparse* 35.75 8.27 30.76 45.58 10.75 43.31

HMNet 27.08 5.41 23.95 41.04 9.28 39.05
AMR_cross (our system) 31.45 7.39 27.14 43.08 10.77 41.53

- cross attention 31.07 6.15 27.30 - - -
- speaker/utter 31.10 6.09 27.26 - - -

Table 1: Comparison with baselines and ablation results. * indicates results reported by Zhong et al. (2021). "-"
indicates we removed that feature for ablation study.

2019), and DialogLM (Zhong et al., 2021).
As shown in Table 1, our system consistently out-

performs its hierarchical baseline HMNet on both
ForeverDreaming and TVMegaSite. It also fully
outperforms Longformer on ForeverDreaming and
achieved comparable results on TVMegaSite, de-
spite using a smaller TVMegaSite train set. In ad-
dition, our system sometimes outperformed BART-
Large and UNILM-base in Rouge-2 or Rouge-L or
both.

Here, HMNet, Longformer, UNILM, and BART-
Large are all pretrained on out-of-domain data
like our system. This suggests that scene AMR
can effectively contribute to a summarization sys-
tem through cross-attention. However, our sys-
tem’s performance is still lower than that of di-
alogLM_sparse, one of the best performing di-
alogLM variants, which uses extensive pretraining
on TV data. Therefore, our future work will extend
our proposed AMR and cross-attention approaches
to combine with more powerful pretrained models.

6.2 Ablation Studies

We used ForeverDreaming to perform ablation
studies because it has more TV show genres than
TVMegaSite but fewer episodes overall. This al-
lows us to conduct experiments efficiently and ob-
tain more generalizable results. Our ablation in-
cludes removing the speaker and utterance nodes
and omitting the cross-level cross attention to AMR
concepts. Due to the time constraint, we did
not perform a separate ablation for the corefer-
ence/pronoun edges. For each experiment, we re-
port the ROUGE scores on the original test split of
ForeverDreaming.

As shown in the last three lines of Table 1, re-

moving cross attention and speaker/utter nodes
both resulted in a lower overall performance than
AMR_cross, though they are still better than the
HMNet baseline that uses no AMR at all. Part
of the performance decrease when speaker nodes
are omitted may also come from the loss of
coref/pronoun edges associated with these nodes.
Therefore, we will conduct more thorough abla-
tion experiments in the future, considering the case
when only speaker-associated coref/pronoun edges
are removed versus the case when all these edges
are removed. Overall, these results suggest the
effectiveness of our proposed approaches.

6.3 Blind Test Submission

At the time of blind test submission, we used
a model checkpoint trained on a subset of 2000
episodes for ForeverDreaming. For TVMegaSite,
we used a subset of 2500 episodes. Table 2 shows
that blind test sets seem to be harder than the origi-
nal test sets: the same model checkpoint achieved
28.84 Rouge-1 for ForeverDreaming’s original test
set while the Rouge-1 on the blind test was 23.07.
The performance drop for TVMegaSite was even
greater, from 41.16 Rouge-1 to 34.26 Rouge-1.
Other Rouge scores were also lower for the blind
test sets. This performance decline was much
greater than what we observed between the original
train, dev, and test sets in our experiments. This is
likely a result of different TV show distributions or
different transcript styles between the blind tests
and the originally released train/dev/test sets. Us-
ing a smaller train set might have undermined our
model’s generalization, but it is likely not the main
reason behind this discrepancy.

Instead, the effects of using smaller train sets are
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Data Split
ForeverDreaming TVMegaSite

R-1 R-2 R-L R-1 R-2 R-L

Blind Test 23.07 3.03 21.06 34.26 7.17 32.80
Original Test 28.84 5.83 25.58 41.16 10.67 39.74

Table 2: Blind test scores vs. original test scores of
the checkpoints we used for blind test submission. The
original test scores here are lower than those in Table
1 since they come from checkpoints trained on smaller
datasets.

most salient when comparing the results in Table 1
and those in Table 2. Our system achieved higher
test Rouge scores for both ForeverDreaming and
TVMegaSite in Table 1, using checkpoints trained
on more data. It suggests that our system responds
well to increased dataset sizes, and our future work
should exploit all the data available.

7 Conclusion

We describe our AMRTVSumm system for the two
SummScreen datasets in the CreativeSumm 2022
shared task. Based on our proposed scene AMR
graph and hierarchical architecture with cross-level
cross-attention, our system achieves substantial
improvement over its hierarchical baseline under
the same out-of-domain pretraining. However, it
still does not outperform the state-of-the-art model
that relies on extensive in-domain pretraining. Our
work suggests that despite graph representation’s
power in modeling complicated dialogue structures,
it does not replace the role of dialogue-specific and
TV-specific pretraining. A promising future direc-
tion will be to leverage the advantages of both by
augmenting a state-of-the-art pretrained language
model with scene AMRs.
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