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Message from the Program Chairs

This volume contains papers describing the CRAC 2022 Shared Task on Multilingual Coreference
Resolution and the participating systems. The public edition of the multilingual collection CorefUD 1.0
was used as the source of training and evaluation data, spanning 13 datasets for 10 languages, namely
Catalan, Czech, English, French, German, Hungarian, Lithuanian, Polish, Russian, and Spanish. Shared
task participants were supposed to identify mentions in texts and to predict coreference relations between
the identified mentions; only identity coreference is considered in this shared task.

A total of 5 teams participated in this task, with 8 submitted systems ranging from a very simple
rule-based system to a deep-learning system trained jointly on all languages. In this volume, system
description papers delivered by 3 teams are presented, preceded with an overview paper describing in
more detail the task itself, the input data, the baseline system, the main evaluation metric, and global
performance comparisons.

From our viewpoint, major goals of the shared task were reached: not only that new systems capable
of coreference resolution in various languages were created, but the state-of-the-art performance for the
given multilingual collection was improved considerably. We hope that this success will attract new
researchers to the area of multilingual coreference resolution, and hopefully also new participants to the
future editions of the present shared task.

We would like to thank all the participants for their efforts, and program committee members for
reviewing the submitted manuscripts. Last but not least, we would like to thank organizers of the previous
shared tasks for sharing their experience with us, and in general all authors of the involved coreference
datasets for making the results of their work publicly accessible.

September 2022
Maciej Ogrodniczuk, Zdeněk Žabokrtský

on behalf of the shared task organizers
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Abstract

This paper presents an overview of the shared
task on multilingual coreference resolution
associated with the CRAC 2022 workshop.
Shared task participants were supposed to de-
velop trainable systems capable of identify-
ing mentions and clustering them according
to identity coreference. The public edition of
CorefUD 1.0, which contains 13 datasets for 10
languages, was used as the source of training
and evaluation data. The CoNLL score used in
previous coreference-oriented shared tasks was
used as the main evaluation metric. There were
8 coreference prediction systems submitted by
5 participating teams; in addition, there was
a competitive Transformer-based baseline sys-
tem provided by the organizers at the beginning
of the shared task. The winner system outper-
formed the baseline by 12 percentage points (in
terms of the CoNLL scores averaged across all
datasets for individual languages).

1 Introduction

Multilingual shared tasks are an important source
of momentum in various subfields of NLP research,
with the CoNLL-X shared task on multilingual de-
pendency parsing (Buchholz and Marsi, 2006) be-
ing one of the most successful and influential ex-
amples. Clearly, the limiting factor for organizing
such shared tasks is the availability of multilingual
data whose annotations are harmonized at least to
some extent, so that the experiments on individ-
ual languages can be performed and evaluated in a
uniform way.

In the coreference world, one of the first multilin-
gual shared tasks were SemEval-2010 (Recasens

et al., 2010) with seven languages and CoNLL-
2012 (Pradhan et al., 2012), in which OntoNotes
data for three languages (English, Chinese, and
Arabic) were included. With the recent advance of
the CorefUD collection (Nedoluzhko et al., 2021a,
2022), harmonized coreference data for 10 lan-
guages (covered in CorefUD’s publicly available
edition) became available. Hence, CorefUD is the
source of data for the present shared task; more
information about the collection is given in Sec-
tion 2. In brief, participants of this shared task are
supposed to (a) identify mentions in texts and (b)
predict which mentions belong to the same corefer-
ence cluster (i.e., refer to the same entity or event),
using the CorefUD data both for training and eval-
uation of their coreference resolution systems.

A specific feature of CorefUD is that it combines
coreference with dependency syntax, using the an-
notation scheme (and file format too) of the Univer-
sal Dependencies (UD) project (de Marneffe et al.,
2021). In all datasets included in the collection, the
coreference annotation is manual and the depen-
dency annotation is either manual too, if available,
or produced by a dependency parser. Empirical
evidence showing advantages of such symbiosis of
coreference and dependency syntax is presented in
two case studies (Popel et al., 2021; Nedoluzhko
et al., 2021b). Participants of this shared task can
employ the dependency annotation for determining
mention spans (as mentions often correspond to
syntactically meaningful units) and for determin-
ing core parts of mentions (which correspond to
syntactic head in CorefUD).

To the best of our knowledge, this is the first
1



shared task on multilingual coreference resolution
that accepts zeros (e.g. elided subjects) as poten-
tial members of coreference chains.1 Zeros are an
integral part of some of the CorefUD datasets, us-
ing empty nodes in enhanced UD representation
to annotate them. We keep all annotated zeros, en-
couraging participants to resolve coreference also
for this type of potential mentions.

As with other shared tasks, evaluation is cru-
cial. Unfortunately, and unlike e.g. in dependency
parsing, there is no simple and easily interpretable
accuracy metric for coreference. We adhere to
using the CoNLL score developed in former coref-
erence shared tasks. More specifically, we use an
average of the F1 values of MUC, B3 and CEAF-e
scores as the main evaluation metric. More details
concerning evaluation are presented in Section 3.

A Transformer-based coreference prediction sys-
tem (Pražák et al., 2021) was provided as a strong
baseline to the shared task participants. The base-
line system as well as 8 systems submitted by the
participants are briefly described in Section 4 and
some of the systems are described in more detail
in separate papers in this volume. Their results are
summarized in Section 5. Possible directions for
future editions of the shared task are outlined in
Section 6.

2 Datasets

For training and evaluation purposes, the present
shared task uses 13 coreference datasets for 10
languages as available in the public edition of the
CorefUD 1.0 collection (Nedoluzhko et al., 2022)
and follows the train/dev/test split of the collection,
too.

2.1 Data Resources

Key features of the original coreference resources
harmonized under the CorefUD scheme are ex-
tracted from Nedoluzhko et al. (2022) into the fol-
lowing paragraphs; some of their quantitative prop-
erties are summarized in Table 1.

Prague Dependency Treebank (Czech) (de-
noted as cs_pdt for short in this paper) is a corpus
of Czech newspaper texts (∼830K tokens) with
manual multi-layer annotation (Hajič et al., 2020).
Coreference and bridging relations are annotated

1Recasens et al. (2010) do not state how zeros were
treated for pro-drop languages such as Spanish and Catalan in
SemEval-2010, and Pradhan et al. (2012) excluded all zeros
from the CoNLL-2012 shared task data.

as links on the deep syntactic layer. The links lead
from the node of the syntactic head of the anaphor
to the node representing the syntactic head of the
antecedent and the whole subtrees of these nodes
are considered to be mention spans.

Prague Czech-English Dependency Treebank –
the Czech part (cs_pcedt) is one side of the
PCEDT parallel corpus (Nedoluzhko et al., 2016)
consisting of more than 1M tokens. The annotation
of coreference-like phenomena is principally simi-
lar to the Prague Dependency Treebank with some
minor differences and no bridging annotation.

Georgetown University Multilayer Corpus (En-
glish) (en_gum) (Zeldes, 2017) is a growing
open source corpus of 12 written and spoken En-
glish genres (∼180K tokens as of 2022). Next
to UD syntax trees and discourse parses, it ex-
haustively annotates all mentions, including nested,
named/non-named entities, singletons, and 10 en-
tity classes and 6 information status tags. It distin-
guishes 8 anaphoric links: pronominal anaphora
and cataphora, lexical and predicative coreference,
apposition, discourse deixis, split antecedents and
bridging. For licence reasons, Reddit data is
excluded from both the UD_English-GUM and
CorefUD 1.0 releases of GUM.

Polish Coreference Corpus (pl_pcc) (Ogrod-
niczuk et al., 2013, 2015) is a corpus (∼ 540K to-
kens) of Polish nominal coreference built upon the
National Corpus of Polish (Przepiórkowski et al.,
2008). Mentions are annotated as linear spans, with
additionally marked semantic heads. The annota-
tion includes identity coreference, quasi-identity
relations and non-identity close-to-coreference re-
lations.

Democrat (French) (fr_democrat) (Landragin,
2021) is a diachronic corpus of written French texts
from the 12th to the 21st century. The annotation
focuses on nominal mentions (pronouns and full
NPs only) and includes information of definiteness
and syntactic type of mentions. Its conversion in
CorefUD is based only on its automatically parsed
subset of texts from 19th-21st century (Wilkens
et al., 2020) (∼280K tokens).

Russian Coreference Corpus (ru_rucor)
(Toldova et al., 2014) is a corpus of ∼150K
tokens annotated with anaphoric and coreferential
relations between noun groups. Mentions are
annotated as linear spans, with additionally

2



CorefUD dataset docs sents words zeros entities avg. len. non-singletons

Catalan-AnCora 1550 16,678 546,665 6,377 69,239 1.6 62,416
Czech-PCEDT 2312 49,208 1,155,755 43,054 52,743 3.4 178,376
Czech-PDT 3165 49,428 834,721 32,617 78,880 2.5 169,545
English-GUM 175 9,130 164,392 92 24,801 1.9 28,054
English-ParCorFull 19 543 10,798 0 180 4.0 718
French-Democrat 126 13,054 284,823 0 40,937 2.0 47,172
German-ParCorFull 19 543 10,602 0 259 3.5 896
German-PotsdamCC 176 2,238 33,222 0 3,752 1.4 2,519
Hungarian-SzegedKoref 400 8,820 123,968 4,857 5,182 3.0 15,165
Lithuanian-LCC 100 1,714 37,014 0 1,224 3.7 4,337
Polish-PCC 1828 35,874 538,885 470 127,688 1.5 82,804
Russian-RuCor 181 9,035 156,636 0 3,636 4.5 16,193
Spanish-AnCora 1635 17,662 559,782 8,112 73,210 1.7 70,664

Table 1: Data sizes in terms of the total number of documents, sentences, tokens, zeros (empty words), coreference
entities, average entity length (in number of mentions) and the total number of non-singleton mentions. Train/dev/test
splits of these datasets roughly follow 8/1/1 ratio. See Nedoluzhko et al. (2022) for details.

distinguished syntactic heads. Only NPs which
take part in coreference relations are considered
and singletons are not annotated.

ParCorFull (German and English)
(de_parcorfull and en_parcorfull) is a par-
allel corpus of ∼160K tokens annotated for
coreference (Lapshinova-Koltunski et al., 2018).
Mentions are NPs which form part of pronoun-
antecedent pairs, pronouns without antecedents
or VPs if they are antecedents of anaphoric
NPs (discourse deixis). The annotation includes
identity coreference relations only. Due to license
restrictions, CorefUD contains only its WMT
News section (∼20K tokens).

AnCora: Multi-level Annotated Corpora
for Catalan and Spanish (ca_ancora and
es_ancora) (Taulé et al., 2008; Recasens and
Martí, 2010) consist of very detailed annotations
of coreference (including zero anaphora, split an-
tecedent, discourse deixis, etc.). The corpora (∼1M
tokens) also contain annotations of related phenom-
ena such as argument structure, thematic roles, se-
mantic classes of verbs, named entities, denotative
types of deverbal nouns etc.

Potsdam Commentary Corpus (German)
(de_potsdam) is a relatively small (∼35K tokens)
corpus of newspaper articles (Bourgonje and Stede,
2020) annotated for nominal and pronominal iden-
tity coreference. Mentions are further classified
into primary (e.g. pronouns, definite NPs, proper

names), secondary (indefinite NPs, clauses), and
non-referring mentions. The corpus also contains
gold constituent syntax, information structure
(including topic and focus, see Lüdeling et al.
(2016)), and discourse parses.

Lithuanian Coreference Corpus (lt_lcc)
(Žitkus and Butkienė, 2018) is a corpus of
written texts, focusing on political news (∼35K
tokens). Coreference annotation is link-based and
additional coreference information is divided into
four levels that include types of mentions, types of
anaphoric relations, the direction of the relation,
and annotation of split antecedents.

SzegedKoref: Hungarian Coreference Corpus
(hu_szeged) (Vincze et al., 2018) is a corpus of
written texts (∼125K tokens) selected from the
Szeged Treebank. The treebank has manual an-
notations at several linguistic layers such as deep
phrase-structured syntactic analysis, dependency
syntax and morphology. Mentions are linear spans
without specially marked heads, the relations are
classified into anaphoric classes such as repetitions,
synonyms, hypernyms, hyponyms etc.

2.2 Annotation Details

CorefUD collection is fully compliant with the
CoNLL-U format,2 using the MISC column for
annotation of coreference. Besides coreference,

2https://universaldependencies.org/
format.html
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also other anaphoric relations (e.g. bridging, split
antecedents) are labeled in some CorefUD datasets.
Nevertheless, the shared task focuses only on coref-
erence. Therefore, the participants are asked to pre-
dict only the Entity attribute in the MISC column,
namely the bracketing of mention spans (including
possible discontinuities) and entity/cluster IDs as-
signing the mentions to entities. They do not need
to identify mention heads or fill other coreference-
related features that can be found in CorefUD data.

Reconstructed zeros are an integral part of some
of the CorefUD datasets. CorefUD utilizes empty
nodes in enhanced UD representation to mark them.
In the shared task data, we keep all annotated ze-
ros and ask the participants to predict coreference
also for them. However, note that we decided not
to strip off the empty nodes from the test data in
the first edition of the shared task. Although some
datasets mark also non-anaphoric zeros, presence
of an empty node may indicate its anaphoricity.
Its assignment to a cluster of other mentions still
remains unknown, yet this makes the setup a bit
unrealistic. We find it a reasonable compromise be-
tween exploring insufficiently known area of zero
anaphora in coreference resolution and making the
shared task simple and accessible.

Apart from annotation of coreference and
anaphora, CorefUD comprises also standard UD-
like annotation of parts of speech, morphological
features and dependency syntax. With some excep-
tions, if the original resources contained manual an-
notation of morpho-syntax, it has been kept also in
CorefUD. Otherwise, it has been obtained automat-
ically using UDPipe 2.0 (Straka, 2018). Therefore,
it must be noted that if a system takes advantage of
this morpho-syntactic information, its performance
on the datasets with manual morpho-syntax may be
a bit overestimated, compared to real-world NLP
scenarios in which manual annotations of morphol-
ogy and syntax are usually not available.

3 Evaluation Metrics

Systems participating in the shared task are evalu-
ated with the CorefUD scorer.3 The primary evalu-
ation score is the CoNLL F1 score with singletons
excluded and using partial mention matching. We
also assess the shared task submissions by multiple
supplementary scores.

3https://github.com/ufal/
corefud-scorer

Official scorer We use our modification of the
coreference scorer – CorefUD scorer. It is based
on the Universal Anaphora (UA) scorer (Yu et al.,
2022)4 reusing the implementations of all gener-
ally used coreferential measures without any mod-
ification. This guarantees that the measures are
computed in exactly the same way. However, our
scorer is capable of processing the coreference an-
notation files in the CorefUD 1.0 format. Among
other things, it allows evaluation of coreference for
zeros.5 Moreover, it re-defines matching of key
and response mentions in the way to be able to
handle potentially discontinuous mentions, which
are present in some CorefUD datasets. Last but not
least, we proposed and implemented the MM score
to measure the accuracy of mention matching (see
below).

Partial matching The CorefUD collection in-
cludes datasets (e.g. cs_pdt) that do not specify
mention spans in their original annotations. In
these datasets, a mention is only specified by its
head and loosely by a dependency subtree rooted
in this head. Also in other datasets, the exact speci-
fication of mention boundaries may be difficult, for
instance, if mentions comprise embedded clauses,
long detailed specifications, etc. Therefore, authors
of some datasets address this issue by defining a
syntactic or semantic head (single word) or a mini-
mal span (multiple words possible, e.g. in ARRAU,
Uryupina et al., 2020), i.e., a unit that carries the
most important semantic information.

CorefUD specifies a mention head only syn-
tactically. However, as it has been shown in
Nedoluzhko et al. (2021b), heads labeled within
coreference annotation most often correspond to
heads defined by a dependency tree.

Availability of heads/minimal spans in key (i.e.
gold reference) annotation allows for partial men-
tion matching during the computation of any eval-
uation measure. In the UA scorer, a response (i.e.
predicted by a system) mention matches a key
mention if the boundaries of the response span
lie within the key span and surround the key min-
imal span at the same time. In order to support
evaluation of discontinuous mentions, we modi-
fied this criterion using a set/subset relation. In the

4This in turn reimplements the official CoNLL-2012 scorer
(Pradhan et al., 2014).

5Nonetheless, the current implementation is not able to
handle a response document whose tokens are not completely
identical to ones in the key document. This holds also for
empty nodes.
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Figure 1: Examples of successful and unsuccessful par-
tial mention matching of key mentions (the yellow ones
in the top; the mention head depicted by a small circle)
by various response mentions. Showing cases of both
continuous and discontinuous mentions. Recall the def-
inition of partial match: A response mention matches
a key mention if all its words are included in the key
mention and one of them is the key head.

CorefUD scorer, a response mention matches a key
mention if all its words are included in the key men-
tion and one of them is the key head. See Figure 1
for examples of response mentions that succeed or
fail to match a key mention, depending on whether
the mentions are continuous or discontinuous.

Head matching The partial-match approach to
evaluation described above has two disadvantages.
First, it suffices for the systems to predict only
heads instead of full mention spans. For this rea-
son, we report also the exact-match version as a
secondary measure.

Second, some authors may decide to post-
process predictions of their systems by reducing the
span of each mention to the head word only using
one of the methods described below. We can see in
Table 4 that five systems (straka*, berulasek and
simple-rule-based) applied this post-processing
and improved thus their results in terms of the pri-
mary metric. However, this post-processing can be
applied to any system, so we have decided to in-
troduce it as another secondary metric called head-
match. This way we can see what is the effect of
such post-processing for systems which have not
applied it. The head-match metric is even more
benevolent than partial-match because it does not
penalize extra words added to the span as long as
the head remains the same.

The shared task did not require to predict the
head in each mention. However, the head can be
predicted given the span and the provided depen-
dency tree as the “highest” node. We used Udapi

block corefud.MoveHead for this purpose.6

The easiest post-processing method (chosen in
all three straka* submissions) is to reduce the span
of each mention to the head.7 However, the result-
ing CoNLL-U files may be invalid because two
mentions may be assigned the same span.8 One
solution (chosen in the berulasek submission) is
to merge the entities of the two mentions which
got assigned the same span. In the head-match
solution, we chose a more conservative solution:
if two spans share the same head, we reduce only
the smaller span and keep the larger span intact.
We confirmed that differences between the three
methods described in this paragraph according to
the evaluation metrics are negligible because the
cases of two mentions sharing the same head are
rare.

Singletons The primary score is calculated ex-
cluding potential singletons, i.e., entities compris-
ing only a single mention, in both key and response
coreference chains. We selected this option as the
primary metric because a majority of datasets in
the CorefUD collection does not have singletons
annotated.

Primary score As a primary evaluation metric,
we employed the CoNLL F1 score (Denis and
Baldridge, 2009; Pradhan et al., 2014), which has
been established as a standard for the evaluation of
coreference resolution. It is an unweighted average
of F1 scores of three coreference measures: MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998)
and CEAF-e (Luo, 2005), each adopting a different
view on coreference relations, namely link-based,
mention-based and entity-based, respectively. A
single primary score providing a final ranking of
participating submissions is a macro-average over
all datasets in the CorefUD test collection.

Supplementary scores In addition to the primary
CoNLL F1 score, we calculate three alternative

6https://github.com/udapi/
udapi-python/blob/master/udapi/block/
corefud/movehead.py This block was used also for
annotating the heads in the gold data.

7With Udapi, it can be done using a command
udapy -s corefud.MoveHead util.Eval
coref_mention='mention.words=[mention.head]'
< in.conllu > out.conllu.

8For example in coordinations, the mention covering the
whole coordination and the mention covering the first con-
junct share the same head. It should be noted we did not
require the submissions to pass the official UD validation tests
(validate.py --level 2 --coref).
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versions of this metric: head-match, exact-match
and with-singletons.

Besides the primary score and its three variants,
we also report the systems’ performance in terms
of two additional scores: BLANC (Recasens and
Hovy, 2011) and LEA (Moosavi and Strube, 2016).

In addition, we implement the MOR9 score mea-
suring to what extent key and response mentions
match, no matter to which coreference entity they
belong. First, we find such one-to-one alignment
A(K,R) between the sets of all key mentions
K and all response mentions R that maximizes
the overall number of overlapping words within
aligned mentions. We then calculate the recall of
mention overlap as a ratio of the total number of
overlapping words in mentions and the overall size
of all key mentions (sum of its lengths):

MORrec =

∑
(K,R)∈A(K,R) |K ∩R|

∑
K∈K |K|

Precision is calculated analogously using the set of
all response mentions R in the denominator. Note
that position of the head in mentions does not play
a role in MOR score.

In order to show performance of the systems
on zeros, we use an anaphor-decomposable score
which is an application of the scoring schema intro-
duced by Tuggener (2014). For each zero mention
other than the first one in the entity, we indicate
a true positive (tp) case if an overlap in at least
one preceding mention is found between respective
key and response entities. Wrong linkage (wl) is
indicated if no such mention is found and False
positive/negative (fp/fn) case if the anaphoric re-
sponse/key mention is not anaphoric (or it is the
first mention of the entity) in the key/response docu-
ment, respectively. Having these counts aggregated,
recall is calculated as tp

tp+wl+fn and precision as
tp

tp+wl+fp .

4 Participating Systems

4.1 Baseline

The baseline system (BASELINE10) is based on
the multilingual coreference resolution system pre-
sented by Pražák et al. (2021). The model uses
multilingual BERT (Devlin et al., 2018) in the end-
to-end setting. In high-level terms, the model goes

9It stands for Mention Overlap Ratio.
10The baseline system was submitted to CodaLab under the

name sidoj, but we rename it here to BASELINE for clarity.

through all potential spans and maximizes the prob-
ability of gold antecedents for each span. The same
system is used for all the languages in the training
dataset.

The simplified system adapted to CorefUD 1.0 is
publicly available on GitHub11 along with tagged
dev data and its dev data results.

4.2 System Comparison

Table 2 shows the basic properties of all submit-
ted systems for evaluation. The table is organized
by individual teams. Some teams submitted more
than one system. Roughly half of the systems ex-
ploited the provided baseline and the majority of
the systems relied on machine learning.

Further details of the machine learning systems
are described in Table 3. The table indicates that all
machine-learning systems rely on large pretrained
models consisting of hundreds of millions of param-
eters. The ÚFAL CorPipe team and the UWB team
employ multilingual models. Karol Saputa utilizes
a Polish model as he submitted results for Polish
only. All teams who developed their deep-learning
solution use the maximum sequence length of 512
sub-word tokens which equals the maximum al-
lowed length of the employed models. Clearly, all
the teams are aware of the necessity to model long
dependencies in the coreference resolution task.
The ÚFAL CorPipe trains on sentences and they
put 8 samples in a batch. The UWB team works
with documents and they put 1 document in a batch.
Karol Saputa uses a dynamic batch to fill the buffer
of 4 000 subwords. The number of gradient updates
is similar to the teams that train on all languages.
Karol Saputa trains with a much smaller number of
updates since he trains only on one corpus.

4.3 Teams

The descriptions below are based on the informa-
tion provided by the respective participants in an
online questionnaire.

ÚFAL CorPipe submitted three systems (for
details see (Straka and Straková, 2022) in this
volume). All are based on pre-trained masked
language models, either the RemBERT (Chung
et al., 2020) or the XLM-RoBERTa (Conneau et al.,
2019) large models. Each sentence is processed
as an individual example. Additionally, the neigh-
boring sentences from the document are included

11https://github.com/ondfa/
coref-multiling
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Team Submission Baseline based Approach

ÚFAL CorPipe straka No DL
straka-single-multilingual-model No DL
straka-only-single-treebank-data No DL

UWB ondfa Yes DL
BASELINE – DL

Matouš Moravec Moravec Yes – files only rule-based postprocess of DL
Barbora Dohnalová berulasek Yes – files only rule-based postprocess of DL

simple-rule-based No rules
Karol Saputa k-sap No DL

Table 2: System comparison. The baseline solution, if involved, was either modified internally, or only its predictions
were used and modified subsequently (“files only”). “DL” stands for a deep learning solution.

Team Submission Model SL Size Batch size Updates HParams

ÚFAL CorPipe straka google/rembert 512 614M 8 960k 4
straka-single. . . google/rembert 512 614M 8 960k 4
straka-only. . . google/rembert 512 614M 8 960k 4

UWB ondfa xlm-roberta-large 512 600M 1 800k 4
BASELINE multiling. BERT 512 220M 1 800k 0

Karol Saputa k-sap allegro/herbert-
base-cased

512 415M Dynamic 27k ∼10

Table 3: Machine Learning Parameters. SL means sequence length, Size is the number of trainable parameters in
the models, Updates is the number of gradient updates during training and HParames shows the number of tuned
hyper-parameters.

as context – the right context is limited to 50 sub-
words, and the size of the left context is chosen
so that the whole input has 512 subwords. The
model is trained jointly to perform two tasks – men-
tion span detection and coreference linking. The
mention detection is trained using a CRF sequence
tagging scheme based on a generalization of BIO
encoding allowing overlapping mentions. Then, for
each mention, it is decided which of the preceding
mentions is its antecedent (selecting the original
mention if there is no antecedent). To obtain a dis-
tribution over the previous mentions, a query and a
key are computed using a nonlinear transformation,
and then masked dot-product attention is utilized.
Some experiments include corpus id – a special
token at the beginning of a sample indicating the
source corpus of the sample.

The straka system is trained jointly on all train-
ing data in all languages. This strategy exhibited a
considerably better performance than training on
individual corpora separately. For each corpus, the
optimal model and epoch is chosen according to its
development score. The straka-single-multilingual-
model system employs a single checkpoint of a sin-

gle model, thus corresponding to a real deployment
scenario. The chosen model is based on Rembert,
samples training data according to the logarithm of
the respective corpus size, and does not utilize the
corpus id. The straka-only-single-treebank-data
system uses an independent model for each corpus
with corresponding training data only. The model
is based on Rembert, and for each corpus the sub-
mitted predictions are from the epoch with the best
development performance. All three submissions
were post-processed by reducing mentions spans
to the head (cf. Head matching in Section 3).

UWB submitted one system ondfa which extends
the baseline system (for details see Pražák and
Konopik (2022) in this volume). The system relies
on combined datasets to employ cross-lingual train-
ing. The authors did not know the exact procedure
to generate heads for mentions. Therefore, they
attempted to learn the heads from the data. The
system relies on XLM-Roberta large, which is a
substantially bigger model than in the baseline.

Barbora Dohnalová submitted two systems,
berulasek and simple-rule-based, implemented as

7



rule-based blocks in Udapi (Popel et al., 2017).12

berulasek post-processes the baseline predic-
tions by first reducing mention spans to the head (cf.
Head matching in Section 3) and then adding all
proper nouns (upos=PROPN) with the same lemma
into the same entity cluster (potentially adding new
mentions to existing entities). The second step is
applied only to cs, de, es, fr, and hu because it
improved the results on the dev set only for these
languages.

simple-rule-based starts by linking each pronoun
to the nearest previous noun of the same gender (as
annotated in the provided CoNLL-U files) and then
applies the “berulasek” post-processing.

The purpose of these two submissions was to
show what results can be achieved with just a few
lines of code and without using the training data.

Matouš Moravec submitted one system
moravec. The system is based on postprocessing
existing coreference prediction using named entity
information. Specifically, the submission starts
with baseline predictions, runs the NameTag
web service13 (Straková et al., 2019) on the
underlying texts and applies the following three
postprocessing rules using Udapi (Popel et al.,
2017): (1) changing coreference spans to spans
of named entities, (2) removing coreference links
between different named entity types, and (3)
adding coreference links between named entities
of the same type that have a high string similarity.
The author was not able to obtain any results
that were better than the baseline for a whole
dataset, although in some individual documents
within these datasets coreference prediction was
improved.

Karol Saputa submitted one system k-sap (for
details see (Saputa, 2022) in this volume). It em-
ploys BERT-based antecedent scoring for possible
spans based on representation of span start and
end tokens. The submission employs the approach
described by Kirstain et al. (2021).

5 Results and Comparison

The straka system by the ÚFAL CorPipe team is
clearly the winner of the shared task. It surpasses

12The simple-rule-based system was originally called sim-
ple_baseline in CodaLab, but we renamed it here to prevent
confusing it with the official baseline (described in Section 4.1
and named sidoj in CodaLab).

13http://lindat.mff.cuni.cz/services/
nametag/api-reference.php

other systems not only in terms of the primary score
(see the primary column in Table 4) but consistently
also in almost all coreference metrics, both in pre-
cision and recall (see Table 5).

Table 6 shows that systems submitted by the
ÚFAL CorPipe team are dominant on the great
majority of datasets. They are outperformed only
by the ondfa system, namely on de_parcorfull and
hu_szeged datasets. Per-dataset evaluation also
reveals that the last place of the k-sap system in the
overall ranking is unequivocally caused by ignoring
all but the pl_pcc dataset where it ranks 3rd.

In comparison to the baseline system, most sys-
tems ouperformed it by a relatively large margin.
The winning straka system achieves over 12 points
in the primary score, which is more than 20% im-
provement over the baseline performance. This is
an extremely beneficial effect of the shared task,
which may drive further development in multilin-
gual coreference resolution.

Results unsurprisingly also confirm a doubtless
dominance of machine learning approaches. Al-
though rule-based postprocessing has been em-
ployed by some teams (also encouraged by avail-
ability of the baseline predictions), its incorpora-
tion is either motivated by the nature of the primary
score (straka* systems) or it improves upon the
baseline only marginally (the berulasek system) or
not at all (the moravec system).

We observe almost the same picture in evalu-
ation with singletons (see Table 4) – the straka*
systems outperforming all the other systems. More-
over, these submissions are the only ones that are
positively affected by the inclusion of singletons.
It suggests that unlike other teams, ÚFAL CorPipe
have optimized for singletons as well (confirmed
by statistics on mentions and entities in Table 9).

Interestingly, no system outperformed the base-
line in the exact-match evaluation (see the exact-
match column in Table 4). Considerably low scores
compared to the partial matching setting are ap-
parently caused by the choice of partial matching
as part of the primary score, which most of the
teams optimized for. Two teams (ÚFAL CorPipe
and Barbora Dohnalová) even utilize the present
dependency structure to reduce their mentions to
heads only in post-processing (cf. Head matching
in Section 3).14 The preference of most systems in

14It would be interesting to evaluate the ÚFAL CorPipe
(straka*) systems before this post-processing, which slightly
improves the primary metric (partial-match), but substantially
worsens the exact-match.
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underspecified mentions is confirmed by the head-
match scores (Table 4), which are almost identical
to the primary scores, and by MOR scores (see Ta-
ble 5), reaching high precision but failing in recall.

5.1 Automatic analysis

To the best of our knowledge, this is the first shared
task on multilingual coreference resolution that in-
cludes zeros. Therefore, Table 7 focuses more on
the performance with respect to zero anaphora (cf.
Table 1 for proportion of all zeros in the data). It
shows anaphor-decomposable scores achieved by
the systems on zeros across the datasets that com-
prise anaphoric zeros. The best-performing sys-
tems surpass 90 F1 points for most of the languages.
Nevertheless, recall that the setup for zeros is
slightly unrealistic as participants have been given
the input documents with zeros (both anaphoric
and non-anaphoric) already reconstructed.

We provide several additional tables in the appen-
dices to shed more light on the differences between
the submitted systems. Table 8 shows results fac-
torized according the different part of speech tags
in the mention heads. Tables 9–11 show various
statistics on the entities and mentions in a concate-
nation of all the test sets. Tables 12–14 show the
same statistics for cs_pcedt, which is the largest
dataset in CorefUD 1.0.

5.2 Manual analysis

In addition to numerical scores, we also want to
gain some insight into the types of errors that indi-
vidual systems do. Such error analysis is inevitably
incomplete, as we cannot manually check over
50,000 non-singleton mentions from all the test
datasets, times eight system submissions. Never-
theless, here are some observations for illustration:

BASELINE, cs_pdt
It often does not recognize a mention. For exam-
ple, adjectives derived from locations (ostravské
“Ostrava-based”) tend to be mentions in CorefUD,
often nested ones (ostravské firmy “Ostrava-based
companies”) but the system does not recognize
them. It also fails to recognize many mentions that
are regular noun phrases.

Once the system detects a mention, it often has
the correct mention span, although there are some
odd failures, too.

In case of a newspaper interview, first and sec-
ond person pronouns are recognized as mentions,
coreference between mentions of the same person

is found correctly, but their link to a person’s name
is easily misinterpreted.

straka, cs_pdt
It detects some mentions that BASELINE does not
see (e.g. ostravské).

Linking names to first and second person pro-
nouns is also a problem, although the system got
right one instance where the baseline failed.

BASELINE, es_ancora
There is an even more dramatic disproportion be-
tween number of mentions found and those in the
gold data. This is probably caused by the large
number of singletons in AnCora.

On the other hand, it correctly identified men-
tions (including coreference) that were not anno-
tated in the gold data: M1 = tanto China como Perú
“China as well as Peru”, M2 = estas dos naciones
“these two nations”.

Elsewhere, the coreference resolver got misled
by similar titles of two different people: el canciller
peruano “the Peruvian secretary” was linked to el
canciller chino “the Chinese secretary”.

straka, es_ancora
Much more successful in identifying mentions; un-
like the baseline, it seems to be able to identify
singletons.

Unlike the baseline, straka did not recognize
tanto China como Perú as a mention. It also did
not link the word China from this expression to a
previous (singleton) instance of China; but since
the same surprising annotation appears in the gold
data, the system scored here.

6 Conclusions and Future Work

This paper summarizes the outcomes of the Multi-
lingual Coreference Resolution Shared Task held
with the CRAC 2022 workshop. We hope that the
presented shared task establishes a new state of the
art in multilingual coreference resolution.

Possible future editions of the shared task could
be improved or extended along the following direc-
tions:

• We will fix minor errors in CorefUD’s harmo-
nization procedure that have been identified
during the shared task.

• We would like to include additional datasets,
especially for languages that have not been
covered in CorefUD yet; about 20 resources
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system primary head-match exact-match with-singletons

straka 70.72 70.72 (+0.00) 33.18 (-37.54) 72.98 (+2.26)
straka-single. . . 69.56 69.56 (+0.00) 33.06 (-36.51) 71.81 (+2.25)
ondfa 67.64 68.51 (+0.87) 54.73 (-12.91) 58.06 (-9.58)
straka-only. . . 64.30 64.30 (+0.00) 32.28 (-32.02) 67.93 (+3.63)
berulasek 59.72 59.72 (+0.00) 31.50 (-28.22) 50.84 (-8.88)
BASELINE 58.53 59.67 (+1.13) 56.72 (-1.82) 49.69 (-8.84)
moravec 55.05 56.35 (+1.29) 52.68 (-2.37) 46.79 (-8.27)
simple-rule-based 18.14 18.14 (+0.00) 12.60 (-5.54) 17.13 (-1.00)
k-sap 5.90 5.93 (+0.03) 5.84 (-0.05) 3.83 (-2.07)

Table 4: Main results: the CoNLL metric macro-averaged over all datasets. The table shows the primary metric
(partial-match, excluding singletons) and its three versions: head-match, exact-match and with-singletons. The best
score in each column is in bold.

system MUC B3 CEAF-e BLANC LEA MOR

straka 74 / 76 / 74 67 / 72 / 68 71 / 70 / 70 63 / 70 / 65 63 / 69 / 65 32 / 83 / 45
straka-single. . . 72 / 76 / 73 65 / 72 / 67 67 / 70 / 68 61 / 71 / 64 62 / 68 / 64 32 / 84 / 45
ondfa 69 / 76 / 72 61 / 71 / 65 62 / 69 / 65 59 / 69 / 63 58 / 67 / 62 52 / 84 / 62
straka-only. . . 65 / 71 / 68 58 / 68 / 62 61 / 67 / 63 55 / 66 / 59 54 / 63 / 58 30 / 83 / 43
berulasek 58 / 76 / 64 50 / 70 / 57 52 / 67 / 58 46 / 70 / 53 45 / 66 / 53 27 / 88 / 40
BASELINE 56 / 74 / 63 48 / 69 / 56 51 / 66 / 57 45 / 68 / 51 44 / 64 / 51 49 / 86 / 61
moravec 53 / 70 / 60 45 / 65 / 52 50 / 59 / 53 41 / 59 / 46 41 / 60 / 48 49 / 81 / 60
simple-rule-based 14 / 22 / 16 14 / 26 / 17 23 / 27 / 22 10 / 20 / 11 7 / 17 / 9 16 / 55 / 23
k-sap 6 / 7 / 6 5 / 7 / 6 5 / 6 / 6 5 / 7 / 6 5 / 6 / 6 5 / 7 / 6

Table 5: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets. Note
that the high recall and F1 MOR scores of ONDFA (relative to STRAKA* systems) is caused by the fact that ONDFA
does not use any post-processing restricting mention spans to the head.
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cc
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straka 78.18 78.59 77.69 65.52 70.69 72.50 39.00 81.39 65.27 63.15 69.92 78.12 79.34
straka-single. . . 78.49 78.49 77.57 59.94 71.11 73.20 33.55 80.80 64.35 63.38 67.38 78.32 77.74
ondfa 70.55 74.07 72.42 73.90 68.68 68.31 31.90 72.32 61.39 65.01 68.05 75.20 77.50
straka-only. . . 76.34 77.87 76.76 36.50 56.65 70.66 23.48 78.78 64.94 62.94 61.32 73.36 76.26
berulasek 64.67 70.56 67.95 38.50 57.70 63.07 36.44 66.61 56.04 55.02 65.67 65.99 68.17
BASELINE 63.74 70.00 67.27 33.75 55.44 62.59 36.44 65.99 55.55 52.35 64.81 65.34 67.66
moravec 58.25 68.19 64.71 31.86 52.84 59.15 36.44 62.01 54.87 52.00 59.49 63.40 52.49
simple-rule-based 15.58 5.51 9.48 29.81 19.41 21.99 11.37 16.64 21.74 17.00 27.53 15.69 24.06
k-sap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76.67 0.00

Table 6: Results for individual languages in the primary metric (CoNLL).
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system ca
_a

nc
or

a

cs
_p

dt

cs
_p

ce
dt

es
_a

nc
or

a

hu
_s

ze
ge

d

pl
_p

cc

straka 91 / 91 / 91 91 / 92 / 92 87 / 90 / 89 94 / 95 / 95 79 / 71 / 75 62 / 60 / 61
straka-single. . . 91 / 92 / 91 91 / 92 / 92 88 / 90 / 89 94 / 95 / 95 76 / 76 / 76 79 / 83 / 81
ondfa 88 / 88 / 88 88 / 92 / 90 85 / 89 / 87 92 / 94 / 93 81 / 74 / 77 62 / 60 / 61
straka-only. . . 89 / 88 / 88 90 / 92 / 91 87 / 89 / 88 92 / 92 / 92 74 / 70 / 72 71 / 63 / 67
berulasek 82 / 83 / 82 84 / 86 / 85 80 / 84 / 82 87 / 89 / 88 55 / 54 / 54 42 / 50 / 45
BASELINE 82 / 82 / 82 84 / 86 / 85 80 / 83 / 82 87 / 88 / 87 52 / 51 / 52 42 / 50 / 45
moravec 81 / 82 / 82 84 / 85 / 84 80 / 83 / 81 87 / 88 / 87 52 / 51 / 52 42 / 50 / 45
simple-rule-based 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
k-sap 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 4 / 100 / 8

Table 7: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only the datasets that contain anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable neither to the CoNLL score nor to the
supplementary scores calculated with respect to whole entities in Table 5.

that have not been harmonized yet due to var-
ious reasons are listed in Nedoluzhko et al.
(2021a) (or have been harmonized, but can-
not be distributed publicly because of license
limitations).

• We will try to find ways to include also
coreference data from the OntoNotes project,
which would be extremely valuable because
of their size, quality, and popularity.

• We will make the setup more realistic. Firstly,
we will delete empty nodes from the test data
to be processed by participants’ systems. It
also requires adjusting the scorer so that it can
evaluate pairs of documents with different sets
of empty nodes. Secondly, we will replace the
manual morpho-syntax annotation with the
automatic one for the shared task.

• We will consider introducing subtasks focused
on other anaphoric relations than just identity
coreference (see Yu et al. (2022) for a descrip-
tion of Universal Anaphora Scorer that is ca-
pable of evaluating also non-identity corefer-
ence relations); for instance, some CorefUD
datasets contain hand-annotated bridging rela-
tions already now.
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A Partial CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM

straka 68.71 73.72 72.29 66.58 47.71 38.44 49.85 48.30
straka-single. . . 67.17 73.25 70.35 62.65 49.84 36.91 45.77 44.97
ondfa 66.04 71.43 70.72 69.01 39.67 25.47 38.51 33.52
straka-only. . . 61.46 67.08 63.89 60.60 41.38 30.71 35.70 39.55
berulasek 56.43 61.55 59.47 48.91 32.74 18.37 23.67 31.02
BASELINE 55.24 60.44 58.23 48.65 30.43 18.29 23.44 29.87
moravec 52.91 58.82 52.43 46.80 27.49 18.19 23.41 29.22
simple-rule-based 10.22 18.27 17.78 6.32 2.96 3.31 1.58 4.97
k-sap 5.74 5.80 5.99 5.84 4.72 5.77 4.08 5.98

Table 8: CoNLL F1 score evaluated only on entities with heads of a given UPOS. In both the gold and prediction
files we deleted some entities before running the evaluation. We kept only entities with at least one mention with a
given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node had deprel=flat
children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN” both NOUN
and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns NOUN and
PROPN. Otherwise, the CoNLL F1 scores are the same as in the primary metric, i.e. an unweighted average over all
datasets, partial-match, without singletons. Note that when distinguishing entities into events and nominal entities,
the VERB column can be considered as an approximation of the performance on events. One of the limitations of
this approach is that copula is not treated as head in the Universal Dependencies, so e.g. phrase She is nice is not
considered for the VERB column, but for the ADJ column (head of the phrase is nice).

B Statistics of the submitted systems on concatenation of all test sets

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 41,001 104 509 2.2 54.9 23.5 9.2 4.3 8.0
BASELINE 4,541 11 217 11.2 0.0 33.1 8.6 6.0 52.3
berulasek 4,583 12 242 11.1 0.4 32.8 8.9 6.1 51.8
k-sap 1,744 4 41 4.0 0.1 50.1 18.8 8.6 22.4
moravec 5,469 14 210 10.8 1.8 28.2 9.6 4.6 55.8
ondfa 4,628 12 174 11.7 0.0 31.6 9.5 5.4 53.5
simple-rule-based 1,729 4 149 16.3 0.0 4.5 1.3 7.8 86.5
straka 12,669 32 200 7.1 27.1 4.5 3.6 6.8 58.0
straka-only. . . 12,552 32 338 7.2 25.5 4.4 4.1 7.3 58.7
straka-single. . . 12,669 32 243 7.1 26.2 4.4 4.0 6.9 58.5

Table 9: Statistics on coreference entities. The total number of entities and the average number of entities per
1000 tokens in the running text. The maximum and average entity “length”, i.e., number of mentions in the entity.
Distribution of entity lengths (singletons have length = 1).
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 69,406 175 104 3.3 10.2 39.4 19.6 8.5 4.4 17.9
BASELINE 50,783 128 26 2.2 13.3 46.3 19.1 7.3 3.4 10.7
berulasek 50,935 129 1 0.9 13.4 86.6 0.0 0.0 0.0 0.0
k-sap 6,941 18 29 1.6 0.0 75.1 14.1 4.1 2.0 4.7
moravec 58,883 149 26 2.1 11.5 50.2 18.5 7.2 3.2 9.5
ondfa 54,018 137 30 1.7 12.5 65.8 9.6 3.8 1.9 6.4
simple-rule-based 28,130 71 1 1.0 0.0 100.0 0.0 0.0 0.0 0.0
straka 86,412 218 1 0.9 8.4 91.6 0.0 0.0 0.0 0.0
straka-only. . . 87,059 220 1 0.9 8.4 91.6 0.0 0.0 0.0 0.0
straka-single. . . 86,689 219 1 0.9 8.4 91.6 0.0 0.0 0.0 0.0

Table 10: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., number of nonempty nodes in the
mention. Distribution of mention lengths (zeros have length = 0).

mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 9.9 0.7 2.6 52.6 17.9 13.9 5.4 2.5 3.5 1.0 1.1 2.0
BASELINE 15.0 0.0 2.1 38.7 28.6 14.0 8.4 2.6 3.9 1.1 0.3 2.3
berulasek 13.4 0.0 0.0 38.2 28.5 14.7 8.4 2.6 3.8 1.1 0.3 2.2
k-sap 0.2 0.0 1.5 39.9 14.1 13.3 3.0 1.2 19.5 0.5 0.1 8.4
moravec 12.9 0.0 2.4 35.0 24.6 21.7 7.7 2.3 3.5 1.0 0.4 3.9
ondfa 13.3 0.0 1.4 40.7 27.6 13.6 8.1 2.6 3.6 1.2 0.4 2.3
simple-rule-based 0.0 0.0 0.0 15.6 62.6 21.8 0.0 0.0 0.0 0.0 0.0 0.0
straka 8.1 0.0 0.0 52.4 18.4 13.9 5.6 2.2 3.5 0.9 1.1 2.1
straka-only. . . 8.1 0.0 0.0 52.0 18.3 14.0 5.5 2.3 3.8 0.9 1.0 2.2
straka-single. . . 8.1 0.0 0.0 52.4 18.3 14.1 5.6 2.2 3.5 0.8 1.0 2.1

Table 11: Detailed statistics on mentions. The left part of the table shows percentage of: mentions with at least
one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and non-treelet
mentions, i.e. mentions not forming a connected subgraph in the dependency tree (non-tree). Note that these three
types of mentions may be overlapping. The right part of the table shows distribution of mentions based on the
universal part-of-speech tag (UPOS) of the head word. Note that the participants were not required to predict the
head, so we used Udapi block corefud.MoveHead on all submissions for the purpose of these statistics.
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C Statistics of the submitted systems on cs_pcedt

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 2,533 45 89 3.3 1.8 63.7 14.8 6.4 13.3
BASELINE 2,048 37 78 3.5 0.0 62.1 16.5 6.1 15.4
berulasek 2,062 37 80 3.5 0.7 62.2 15.8 6.0 15.3
moravec 2,284 41 77 3.6 2.1 55.8 18.3 6.8 16.9
ondfa 2,136 38 74 3.5 0.0 61.9 16.1 6.3 15.7
simple-rule-based 271 5 57 6.1 0.0 46.1 14.4 11.1 28.4
straka 2,770 49 81 3.0 16.4 50.1 15.2 6.4 11.9
straka-only. . . 2,741 49 80 3.0 16.9 48.9 15.0 6.8 12.4
straka-single. . . 2,773 49 82 3.0 18.1 48.6 15.3 6.1 11.9

Table 12: Statistics on coreference entities in cs_pcedt.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 8,365 149 61 3.6 22.6 26.9 17.4 8.6 3.9 20.6
BASELINE 7,258 129 22 2.5 24.6 28.2 18.7 9.0 4.1 15.4
berulasek 7,262 130 1 0.8 24.9 75.1 0.0 0.0 0.0 0.0
moravec 8,228 147 22 2.4 21.7 31.7 19.2 9.2 4.1 14.1
ondfa 7,527 134 21 2.7 23.4 27.4 18.3 9.0 4.5 17.3
simple-rule-based 1,640 29 1 1.0 0.0 100.0 0.0 0.0 0.0 0.0
straka 7,890 141 1 0.8 24.0 76.0 0.0 0.0 0.0 0.0
straka-only. . . 7,888 141 1 0.8 24.1 75.9 0.0 0.0 0.0 0.0
straka-single. . . 7,831 140 1 0.8 24.1 75.9 0.0 0.0 0.0 0.0

Table 13: Statistics on non-singleton mentions in cs_pcedt.

mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 29.2 1.2 4.5 44.9 28.0 6.4 12.4 0.9 2.7 1.5 0.7 2.6
BASELINE 28.3 0.0 3.8 45.1 30.2 6.4 12.2 0.6 1.5 1.3 0.7 2.0
berulasek 24.9 0.0 0.0 44.6 30.1 7.2 12.2 0.5 1.5 1.3 0.7 1.9
moravec 24.8 0.0 3.8 41.5 26.5 12.4 10.7 0.6 1.3 1.1 0.7 5.2
ondfa 27.5 0.0 3.5 45.3 29.0 6.1 12.7 0.7 2.0 1.4 0.6 2.3
simple-rule-based 0.0 0.0 0.0 3.4 78.2 18.4 0.0 0.0 0.0 0.0 0.0 0.0
straka 23.3 0.0 0.0 45.0 28.1 5.9 12.7 0.8 2.7 1.3 0.7 2.8
straka-only. . . 23.2 0.0 0.0 44.9 28.2 6.1 12.5 1.0 2.8 1.3 0.6 2.7
straka-single. . . 23.3 0.0 0.0 45.0 28.2 6.0 12.7 0.8 2.6 1.3 0.6 2.8

Table 14: Detailed statistics on mentions in cs_pcedt.
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Abstract
The paper presents our system for coreference
resolution in Polish. We compare the system
with previous works for the Polish language
as well as with the multilingual approach in
the CRAC 2022 Shared Task on Multilingual
Coreference Resolution thanks to a universal,
multilingual data format and evaluation tool.
We discuss the accuracy, computational per-
formance, and evaluation approach of the new
System which is a faster, end-to-end solution.

1 Introduction

The paper describes our approach to coreference
resolution in the Polish language submitted to the
CRAC 2022 Shared Task on Multilingual Corefer-
ence Resolution.

The scope of the Shared Task was multilingual
systems for 10 languages included in CorefUD
1.0 (Nedoluzhko et al., 2022). However, here we
focus mainly on the improvements for the Polish
language within this task and present end-to-end
coreference resolution for Polish.

2 Related Work

There are two important types of references for
our work: the evaluation methods for coreference
resolution and previous solutions for the Polish
language.

2.1 Evaluation
The popular standard for coreference resolution
was created during CoNLL-2011 Shared Task as
an average of MUC, B-cubed, and CEAFe scores.
It is also used in the CRAC 2022 Shared Task on
Multilingual Coreference Resolution.

Previous implementations included Perl script
evaluation of annotation in CoNNL-U (Pradhan
et al., 2014). Similarly, there is a Scorefer-
ence1 tool Java implementation including addi-
tionally CEAFm, and BLANC, which operates on

1http://zil.ipipan.waw.pl/Scoreference

TEI (Consortium, 2022) or MMAX2 (Müller and
Strube, 2006) files. It was used in the evaluation
of most coreference resolution tools for the Pol-
ish language because of its compatibility with Pol-
ish Coreference Corpus (Ogrodniczuk et al., 2016)
data formats.

CorefUD dataset integrates Polish Coreference
Corpus and many others into one format com-
patible with Universal Dependencies datasets and
presents a new Python reimplementation of the met-
ric CorefUD scorer2. Thanks to that, there is a clear
way to evaluate and compare different coreference
systems.

2.2 Coreference Resolution in Polish
The current state-of-the-art solution was a Cornef-
erencer system (Nitoń et al., 2018). It is a system
based only on mention clustering i.e. it requires a
text with already correctly detected mentions which
are further grouped into coreference clusters and
remaining singleton mentions.

The mention pairs need to have labeled heads e.g.
from a dependency parsing due to input features in-
cluding embedding representation of mention head
token. There are other hand-crafted features e.g.
mention type, mention pair distance, and mention
tokens’ lemmas.

It also requires the generation of mention-pairs
representations which in the highest scoring ver-
sion (all2all) results in O(n2) complexity for
all mention pairs passed to the system.

The Corneferencer system achieved 81.23 F1
CoNLL (Pradhan et al., 2011) measure in the best
setting during evaluation on gold mentions.

3 System description

3.1 Architecture
The submitted system is based on the
start-to-end system (Kirstain et al.).

2https://github.com/ufal/
corefud-scorer

18



This system was developed for English and is
based on transformer architecture for natural
language processing. It extends the Shared Task
baseline system (Pražák et al., 2021) with the
simplified mention-candidate representation.

3.1.1 Input features

Pre-trained model The words representation is
based on the HerBERT3 (Mroczkowski et al., 2021)
pre-trained, BERT-based text encoder for the Polish
language. The model has a maximum input length
of 512 tokens so the longer texts are passed split
(on sentence ends when possible).

End-to-end features The system works in an
end-to-end fashion (Lee et al., 2017) with text-only
input. In its original version (Kirstain et al.) based
on the OntoNotes dataset (Weischedel et al., 2013),
it included some additional annotations such as
genre and speaker information which was not used
here.

Such annotation is not available for the Polish
dataset. Furthermore, hand-crafted features like
speaker information hamper production deploy-
ment of the System.

3.1.2 Mentions

Mention representation Mention candidates are
all spans of tokens (up to maximum length). Repre-
sentations of candidates are based on the represen-
tation of the start and end tokens. Span represen-
tation is made to represent features related to the
span is a mention.

Mention scoring Mentions are scored by cal-
culating the biaffine combination of start and end
token representations. Scores are used to prune the
least scored spans from the mention candidates list.

3.1.3 Antecedents

Antecedent representation Antecedent represen-
tations are produced similarly to the mention repre-
sentation except using a separate set of weights.
Antecedent representation is made to represent
coreference features.

Antecedent scoring Antecedents are scored by
calculating the biaffine combination of two spans
as concatenated start and end representations. The
antecedent score measures whether two mentions
are coreferent.

3allegro/herbert-large-cased

3.2 Linguistic modeling constraints
The biggest advantage of the architecture is its sim-
plicity and low computational complexity. There
are several constraints imposed by this architec-
ture for application to Polish Coreference Corpus
annotations.

3.2.1 Nested mentions
It is important for the architecture to recognize
nested spans and match them with different entities.
For example "the Association of Youth filmmakers"
consists of two nested mentions coreferent with the
association and the filmmakers. So it is needed
to handle overlapping, nested spans. It is possible
in start-to-end architecture by including all
possible spans.

3.2.2 Singleton and mention head recognition
Polish Coreference Corpus includes annotation of
singletons - mentions that have no coreferent men-
tions.

Scoring during the CRAC 2022 Shared Task
on Multilingual Coreference Resolution omits sin-
gletons. Start-to-end architecture does not
detect singletons as the spans are scored for the
antecedent relation in pairs and it is the only ele-
ment of the loss function (and model optimization).
Singletons may not be included in the detected
mentions since they should not be considered in
antecedent scoring.

Including singletons in the task would need a
modification of the loss function or adding an addi-
tional model.

3.3 Data augmentation
Polish Coreference Corpus consists of about 1800
documents consisting of one or more paragraphs
of text, each originating from one source. Samples
used for training included the original texts and
subsamples.

Paragraphs and pairs of sentences were treated as
additional separate subsamples that can be added to
training samples. The coreference annotation was
filtered to include only relations inside the sample.

The process of augmentation was controlled by
parameters of a fraction of sentence pairs and para-
graphs to include in the training sample.

Using samples of shorter lengths was important
to improve performance on short texts.

3.4 Training
Dynamic batching There was dynamic batching
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System Precision Recall F1
submission 88.11 71.22 78.77
herbert–base 86.83 75.33 80.67
herbert–large 86.26 80.60 83.33

Table 1: Mention detection F1 measure results for
Polish on the development set, singletons excluded.

System F1
submission 63.64
herbert–base 72.44
herbert–large 73.39
corneferencer 82.44

Table 2: CoNLL F1 measure results for coreference
resolution in Polish on the development set, singletons
excluded.

applied - a constant maximum total batch length of
texts. It was important in batching samples of dif-
ferent sizes e.g. short and long texts, and sentence
pairs.

Optimization Model was optimized using Py-
Torch AdamW implementation with learning rate
(1e-5), linear decay, and warm-up steps (5000)
as recommended in start-to-end implemen-
tation4.

4 Results

We compare metrics speed for the System with the
Corneferencer and other submissions.

4.1 Performance
4.1.1 Mention detection
Mention detection is an important element of the
system. Lack of detected spans impacts corefer-
ence resolution measures. Results are presented in
Table 1.

Redundant spans do not lower performance be-
cause they can be assigned no coreference relation
(null span antecedent). It corresponds to the higher
precision of the system. Improving mention de-
tection could be the first element of the overall
improvement.

4.1.2 Coreference Resolution
Corneferencer comparison The previous solution
for Polish, Corneferencer, was tested on gold men-
tion annotation because the mentions are needed
to process texts with this tool and used available

4https://github.com/yuvalkirstain/
s2e-coref

Training step Train F1 Dev F1 Difference
1000 1.56 0.87 0.69
5000 26.46 24.72 1.74
10000 58.73 55.45 3.28
15000 77.65 66.10 11.55
20000 84.81 69.31 15.50
25000 89.96 71.40 18.56
30000 92.90 72.10 20.81
35000 95.01 72.24 22.77
40000 96.03 72.63 23.40
45000 96.88 73.46 23.43

Table 3: Comparison of the development set general-
ization of the System during training, F1 evaluation of
training and development sets.

model5 , thus a different subset of PCC was used
for comparison in Table 2, 200 texts from the test
split used in Corneferencer evaluation.

Pre-trained models We compared the base (12
layers, herbert-base) and large (24 layers,
herbert-large) version of the pre-trained en-
coder used in the System. The results are presented
in Table 2. The smaller model was trained 71 000
steps and the larger one with 45 000 steps. The
larger model gave a 1.31% improvement, with a
1.7% increase gained in the last 10 000 steps (F1
difference between 35 000 training steps and the
final one). One step is one optimization step of the
model.

4.2 Development set generalization
Comparison of the development set generalization
of the System during training is presented in Ta-
ble 3. As presented in (Yang et al.), it is a behavior
of the big models, such as BERT-based models, to
overcome the bias-variance tradeoff. The increas-
ing difference between training and development
sets does not impact model generalization.

4.3 Multilingual generalization
The System was tested on other languages in the
Shared Task to test the degree of performance drop
in such a zero-shot setting. Results are presented
in Table 4. There was no attempt to use a multi-
lingual pre-trained model or training on the other
languages. The best result, 41.84, was achieved
on the English dataset, the architecture used in the
System was initially used for this language.

5http://zil.ipipan.waw.pl/
Corneferencer?action=AttachFile&do=view&
target=model_1190_features.h5
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Dataset F1
en_parcorfull 22.34
de_parcorfull 13.67
lt_lcc 21.91
en_gum 41.84
es_ancora 21.87
fr_democrat 0.0
cs_pcedt 23.67
cs_pdt 27.94
ru_rucor 17.88
ca_ancora 17.49
pl_pcc 76.67
de_potsdamcc 40.59
hu_szegedkoref 11.45
average 25.95

Table 4: CoNLL F1 measure results for the System
for all languages - trained only on Polish corpus with
pre-trained model for Polish. Value for fr_democrat was
not calculated due to technical issues.

System Time [s]
herbert–large (GPU) 0.0542
herbert–large (CPU) 0.1845
corneferencer 271.7

Table 5: Document processing time - comparison of
processing speed between start-to-end architec-
ture and Corneferencer - previous solution for Polish.
The

4.4 Processing speed

For the comparison of the System with the previ-
ous solution for Polish an important aspect is also
the processing speed. Table 5 presents the results
of comparison for Corneferencer and GPU/CPU
versions of the System. Corneferencer time was
calculated as a mean of two executions for three
randomly chosen texts, and the System time was
calculated as a mean over the test set.

Time included in the Corneferencer processing
does not include e.g. mention detection. It is not
a total time needed for the coreference resolution
task and still, it is three orders of magnitude longer.

4.5 Submission

The model submitted to the Shared Task
achieved a score of 76.67 F1 measure on the
Polish test set. The submission was named
k-sap. It was not the best result for Pol-
ish in the competition. It was overtaken by
straka (78.12 F1, 1.019% improvement) and

Submission F1 Polish
straka-single-multilingual-model 78.32
straka 78.12
k-sap 76.67
ondfa 75.20
straka-only-single-treebank-data 73.36

Table 6: CRAC 2022 Shared Task on Multilingual
Coreference Resolution Evaluation results for Polish,
top 5 results.

straka-single-multilingual-model
(78.32 F1, 1.022%) which were multilingual
submissions.

The submitted model was undertrained (Sec-
tion 4.2), and the train-dev difference was 9.77 F1
points. The results of the submission model on the
Corneferencer dataset are lower (Table 2). There
could have been test data leakage from original TEI
files which we did not think was possible during
the submission phase.

5 Further Work

Longformer There is a Longformer model for Pol-
ish available on Hugging Face Models6. It could
improve results for longer texts (which are included
in the Polish test set). However, it is not popular
yet and was not tested.

Multilingual comparison 4 Shared Task sub-
missions achieved above 60 F1 score, all of which
gained more than 70 F1 for the Polish test sub-
set. A comparison of these methods should help
to answer questions: (1) is there still a need for a
language-specific solution, (2) whether there are
issues with data quality between corpora for dif-
ferent languages that could be improved by using
guidelines from top-scored datasets.

6 Summary

For Polish, the System is faster, end-to-end, and has
comparable performance to the previous solution.

There is a need to analyze other submissions to
assess the state of language-specific systems’ per-
formance, however, we see that there is a capability
to build a high-performing multilingual system.

The presence of a multilingual dataset and evalu-
ation tool provides the infrastructure to build such
a system efficiently and track progress.

6sdadas/polish-longformer-large-4096
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Kopeć, Agata Savary, and Magdalena Zawisławska.
2016. Polish Coreference Corpus. In Human Lan-
guage Technology. Challenges for Computer Science
and Linguistics, Lecture Notes in Computer Science,
pages 215–226, Cham. Springer International Pub-
lishing.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted mentions:
A reference implementation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
30–35, Baltimore, Maryland. Association for Com-
putational Linguistics.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. CoNLL-2011 Shared Task: Modeling Unre-
stricted Coreference in OntoNotes. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–27, Port-
land, Oregon, USA. Association for Computational
Linguistics.
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Abstract
This paper describes our approach to the CRAC
2022 Shared Task on Multilingual Coreference
Resolution. Our model is based on a state-of-
the-art end-to-end coreference resolution sys-
tem. Apart from joined multilingual training,
we improved our results with mention head pre-
diction. We also tried to integrate dependency
information into our model. Our system ended
up in 3rd place. Moreover, we reached the best
performance on two datasets out of 13.

1 Introduction

Coreference resolution is the task of finding lan-
guage expressions that refer to the same real-world
entity (antecedent) of a given text. Sometimes the
corefering expressions can come from a single sen-
tence. However, the expressions can be one or
more sentences apart as well. It is necessary to see
the whole document in some hard cases to judge
whether two expressions are corefering adequately.
This task can be divided into two subtasks. Identi-
fying entity mentions, and grouping the mentions
together according to the real-world entity they re-
fer to. The task of coreference resolution is closely
related to anaphora resolution – see (Sukthanker
et al., 2020) to compare these two tasks.

This paper describes our approach to the CRAC
2022 Shared Task on Multilingual Coreference Res-
olution. The task is based on the CorefUD dataset
(Nedoluzhko et al., 2022). The CorefUD corpus
contains 13 different datasets for ten languages in
a harmonized scheme. As the CorefUD is meant to
be the extension of Universal Dependencies with
coreference annotation, all the datasets in CorefUD
are treebanks. For some languages, human anno-
tators provided the dependency annotations. For
others, the annotation is created automatically with
a parser. The coreference annotation is built upon
the dependencies. This means that the mentions
are subtrees in the dependency tree and can be rep-
resented with the head. In fact, in some of the

datasets, there are non-treelet mentions – the men-
tions which do not form a single subtree. But even
for these non-treelet mentions, a single headword
is selected. There are some notable differences be-
tween the datasets. One of the most prominent ones
is the presence of singletons. Singletons are clus-
ters that contain only one mention. Singletons are
not present in any coreference relation. However,
they are annotated as mentions. For details about
the dataset, please see Nedoluzhko et al. (2022) or
Nedoluzhko et al. (2021). The task was simplified
to predict only non-singleton mentions and group
them into entity clusters.

For evaluation, the CorefUD scorer1 is provided.
The primary evaluation score is the CoNLL F1

score with partial mention matching and singletons
excluded. In the CorefUD scorer, a system mention
matches a gold mention if all its words are included
in the gold mention, and one of them is the key
head. This means that the minimal correct span
is the head, and it might be beneficial to predict
mentions as only the heads.

2 Model

Our model builds on the official transformer-based
end-to-end baseline (Pražák et al., 2021). The
underlying neural end-to-end coreference resolu-
tion model was originally proposed by Lee et al.
(2017). The model predicts the antecedents directly
from all possible mention spans without a previous
discrete decision about mentions. In the training
phase, it maximizes the marginal log-likelihood of
all correct antecedents:

J(D) = log

N∏

i=1

∑

ŷ∈Y (i)∩GOLD(i)
P (ŷ) (1)

1https://github.com/ufal/
corefud-scorer
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CorefUD dataset
Total size

docs sents words empty singletons discont.

Catalan-AnCora 1550 16,678 488,379 6,377 74.6% 0%
Czech-PDT 3165 49,428 834,721 33,086 35.3% 3.1%
Czech-PCEDT 2312 49,208 1,155,755 45,158 1.4% 4.1%
English-GUM 150 7,408 134,474 0 75% 0%
English-ParCorFull 19 543 10,798 0 6.1% 0.7%
French-Democrat 126 13,054 284,823 0 81.8% 0%
German-ParCorFull 19 543 10,602 0 5.8% 0.3%
German-PotsdamCC 176 2,238 33,222 0 76.5% 6.3%
Hungarian-SzegedKoref 400 8,820 123,976 4,849 7.9% 0.4%
Lithuanian-LCC 100 1,714 37,014 0 11.2% 0%
Polish-PCC 1828 35,874 538,891 864 82.6% 1.0%
Russian-RuCor 181 9,035 156,636 0 2.5% 0.5%
Spanish-AnCora 1635 17,662 517,258 8,111 73.4% 0%

Table 1: Dataset Statistics

Model Pretrained params New params

mBERT 180M 40M
XLM-R 350M 50M

Table 2: Number of trainable parameters of the models

where GOLD(i) is the set of spans in the training
data that are antecedents.

The model achieves state-of-the-art performance
on the OntoNotes dataset where singletons are not
annotated. We believe the model is optimal for
the CorefUD dataset as well since some of the
datasets of the CorefUD do not contain singletons.
Moreover, the evaluation metric ignores singletons,
so it does not matter that the model is not able to
predict them.

Employed Models We based our model on XLM
Roberta large (Conneau et al., 2020), which is sig-
nificantly larger than multilingual BERT (Devlin
et al., 2018) used by the baseline. The number of
parameters is provided in Table 2. We also tried to
use the best monolingual model for each language.

Joined Model Pretraining As you can see from
Table 2, there are approximately 50 million param-
eters trained from scratch for XLM-R. For smaller
datasets, it is practically impossible to train so
many random parameters. To solve this issue, we
first pre-train the model on the joined dataset and
then fine-tune the model for a specific language.

Heads Prediction As mentioned above, the of-
ficial scorer uses min-span evaluation with head
words as min spans. Because we do not know
the rules used to select single mention head in the
dataset, we decided to train to model to predict
the heads instead of the whole spans to optimize
the evaluation metric. Having all the useful infor-
mation (even dependency trees), the model should
learn the original rules for selecting the head.

The simplest way to predict the mention heads
would be to simply represent mention with its head
word on the input. But this is not an ideal solution
since multiple mentions can have the same head. If
we represented a mention with only the head, some
mentions would be joined, and their clusters would
be merged.

To avoid this, we represent mention with the
whole span, and just at the top of our model, we
predict the head of each mention and output only
the head word(s). This way, the mentions are repre-
sented with their spans when we build the clusters,
and the clusters of two different mentions with the
same head are not merged as in the case of the
simple approach mentioned above.

We implemented two versions of the head pre-
diction model. Both are implemented as separate
classification heads on the top of our coreference
resolution model.

The first model predicts the relative position of
the head word(s) inside a span using the hidden rep-
resentation of the span from the CR model. Output
probabilities of head positions are obtained using
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sigmoid activation so the model can predict mul-
tiple heads even though there is only single head
word in the gold data. This is particular optimiza-
tion of the evaluation metric: If there are more
words likely to be a head word of the span, it is
statistically better to output all of them.

The second model uses a binary classification of
each span and head candidate pair, so again, there
can be more head words of a single span predicted.

Trees We believe dependency information can
help the model significantly, especially when man-
ually annotated dependencies are provided (Czech
PDT, for example). Moreover, the dependency in-
formation is necessary to find mention head.

To encode syntactic information, we add to each
token representation its path to ROOT in the de-
pendency tree. In more detail, we first set the max-
imum tree depth parameter and then concatenate
Bert representations of all parents up to max depth
with the embedding of the corresponding depen-
dency relation. Thus the resulting tree structure
representation has the size of max_tree_depth×
(bert_emb_size+deprel_emb_size). This repre-
sentation is then concatenated with bert embedding
of each token.

3 Training

We trained all the models on NVIDIA A40 graphic
cards using online learning (batch size 1 document).
We limit the maximum sequence length to 6 non-
overlapping segments of 512 tokens. During train-
ing, if the document is longer than 6× 512 tokens,
a random segment offset is sampled to take random
continuous block of 6 segments, and the rest of
them is discarded. During prediction, longer doc-
uments are split into independent sub-documents
(for simplicity, non-overlapping again). We train a
model for each dataset for approximately 80k up-
dates in our monolingual experiments. For joined-
pre-trained models, we use 80k steps for model
pre-training on all the datasets and approximately
30k for fine-tunning on each dataset. Each training
took from 8 to 20 hours.

4 Results & Discussion

Results of several variants of our model are pre-
sented in Table 3.

Monoling column shows the result of the mono-
lingual model specific for each language. XLM-
R column presents results of XLM Roberta large

trained for each dataset separately. Joined is the
joined model described in the Model section. The
columns marked with + mean the best model from
all to the left, with the additional feature. +dev
means that the dev data part was added to training
data, +S2H is the model with mention head pre-
diction described earlier. Both methods for men-
tion head prediction have statistically equal perfor-
mance (we cannot tell which one is better). The
reported numbers are for the first one. The results
in column +tree correspond to adding the depen-
dency structure as described.

It is not surprising that employing a larger model
(XLMR-R large or monolingual) significantly im-
proved the performance of the baseline. The results
of the joined model are much more interesting. We
can see that for some smaller datasets (e. g. Ger-
man), the performance gain is huge. But if we
have a look at Table 2, it makes sense because it is
hard (or impossible) to train 50M parameters from
scratch on a small dataset. It is also interesting that
Polish is the only language where the monolingual
model outperformed the joined model. But the
reasons for this are probably straightforward. The
polish dataset is one of the largest, so joined pre-
training is not needed. Moreover there is a large
monolingual model for Polish, so it is natural that
it outperformed XLM-R large. For three datasets,
there is a significant gain by employing mention
head prediction. The difference should be even big-
ger when we add syntactic structure to the model.
2 Unfortunately, we did not manage to include this
feature on time. From the results table, we can see
that adding the trees does not help. In fact, it de-
creases performance significantly. We believe this
is caused by some bug in our implementation, but
we did not have enough time to correct it before
the end of the competition.

4.1 Comparison To Other Systems

The comparison to other participating systems is
shown in Table 4. Our system ended up in 3rd

place. Surprisingly, although the winning system
outperformed ours by a large margin on average,
our system reached the best performance for two
datasets (german_parcor and hungarian). It would
be interesting to look at both systems’ differences
to find out why.

2The potential gain by outputting only mention heads can
be found in Žabokrtský et al. (2022)
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Dataset/Model monolingual model name reference BASELINE Monoling XLM-R joined +dev +S2H +Tree

ca_ancora PlanTL-GOB-ES/roberta-base-ca (Armengol-Estapé et al., 2021) 63.74 69.61 66.19 68.81 70.55 69.91 68.32
cs_pcedt Czert-B-base-cased (Sido et al., 2021) 70 73.74 73.55 73.85 74.07 71.12 73.61
cs_pdt Czert-B-base-cased (Sido et al., 2021) 67.27 69.81 70.99 70.63 71.49 72.42 70.99
de_parcorfull deepset/gbert-base (Chan et al., 2020) 33.75 43.04 33.75 68.91 73.9 68.3 65.29
de_potsdamcc deepset/gbert-large (Chan et al., 2020) 55.44 58.81 59.03 70.35 66.02 68.68 67.35
en_gum roberta-large (Zhuang et al., 2021) 62.59 68 66.27 68.16 68.31 66.88 67.39
en_parcorfull roberta-large (Zhuang et al., 2021) 36.44 25.84 36.44 30.21 31.9 23.45 40.05
es_ancora PlanTL-GOB-ES/roberta-large-bne (Gutiérrez-Fandiño et al., 2022) 65.98 60.12 67.99 71.24 71.48 72.32 72.04
fr_democrat camembert/camembert-large (Martin et al., 2020) 55.55 56.76 55.94 59.8 60.12 61.39 60.03
hu_szegedkoref SZTAKI-HLT/hubert-base-cc (Nemeskey, 2021) 52.35 59.76 60.68 63.24 65.01 64.67 62.77
lt_lcc EMBEDDIA/litlat-bert (Ulčar and Robnik-Šikonja, 2021) 64.81 66.93 64.81 66.34 68.05 67.49 64.01
pl_pcc allegro/herbert-large-cased (Mroczkowski et al., 2021) 65.34 75.2 73.19 73.66 74.46 74.56 73.38
ru_rucor DeepPavlov/rubert-base-cased (Kuratov and Arkhipov, 2019) 67.66 69.33 77.5 75.5 74.82 76.02 75.94
avg 58.53 61.30 62.03 66.21 66.94 65.94 65.94

Table 3: Results

# User avg ca cs_pcedt cs_pdt de_pc de_pots en_gum en_pc es fr hu lt_lcc pl_pcc ru
1 straka 70.72 78.18 78.59 77.69 65.52 70.69 72.5 39 81.39 65.27 63.15 69.92 78.12 79.34
2 straka-single-multil 69.56 78.49 78.49 77.57 59.94 71.11 73.2 33.55 80.8 64.35 63.38 67.38 78.32 77.74
3 ours 67.64 70.55 74.07 72.42 73.9 68.68 68.31 31.9 72.32 61.39 65.01 68.05 75.2 77.5
4 straka-single-data 64.3 76.34 77.87 76.76 36.5 56.65 70.66 23.48 78.78 64.94 62.94 61.32 73.36 76.26
5 berulasek 59.72 64.67 70.56 67.95 38.5 57.7 63.07 36.44 66.61 56.04 55.02 65.67 65.99 68.17
6 BASELINE 58.53 63.74 70 67.27 33.75 55.44 62.59 36.44 65.98 55.55 52.35 64.81 65.34 67.66
7 Moravec 55.05 58.25 68.19 64.71 31.86 52.84 59.15 36.44 62.01 54.87 52 59.49 63.4 52.49
8 simple_baseline 18.14 15.58 5.51 9.48 29.81 19.41 21.99 11.37 16.64 21.74 17 27.53 15.69 24.06
9 k-sap 5.9 0 0 0 0 0 0 0 0 0 0 0 76.67 0

Table 4: Comparison to Other Participating Systems

5 Conclusion

We successfully applied an end-to-end neural coref-
erence resolution system to the CRAC 2022 shared
task. There are two main outcomes of our work. 1)
Joined training helps a lot. Our experiments sup-
port the fulfillment of the goals of the CorefUD
dataset to help the models by harmonizing the an-
notation schemas. 2) For the official scoring metric,
predicting only the mention heads increases perfor-
mance. This means that syntactic structure helps to
identify mentions. Of course, such evaluation is a
bit artificial and does not reflect the real-world sce-
nario, where we do not have the gold syntax. We
also suggested injecting syntactic information into
the model. Unfortunately, we did not manage to get
any improvement with this approach. Our system
ended up in 3rd place. Moreover, we reached the
best performance on two datasets out of 13.
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Abstract
We describe the winning submission to the
CRAC 2022 Shared Task on Multilingual
Coreference Resolution. Our system first
solves mention detection and then corefer-
ence linking on the retrieved spans with an
antecedent-maximization approach, and both
tasks are fine-tuned jointly with shared Trans-
former weights. We report results of fine-
tuning a wide range of pretrained models. The
center of this contribution are fine-tuned mul-
tilingual models. We found one large multilin-
gual model with sufficiently large encoder to
increase performance on all datasets across the
board, with the benefit not limited only to the
underrepresented languages or groups of typo-
logically relative languages. The source code
is available at https://github.com/ufal/
crac2022-corpipe.

1 Introduction

Coreference resolution is a task of identifying and
clustering multiple occurrences of entities across a
textual document. The CRAC 2022 Shared Task on
Multilingual Coreference Resolution (Žabokrtský
et al., 2022) features coreference resolution on 13
datasets in 10 languages, originating from the Core-
fUD 1.0 multilingual dataset (Nedoluzhko et al.,
2021, 2022).

Coreference resolution is often divided into two
subtasks, mention detection and coreference link-
ing (also clustering). Our contribution solves these
tasks neither as a purely pipeline approach with two
separate sequential models, nor as an end-to-end
system (Lee et al., 2017, 2018), as is recently more
common (e.g., the baseline; Pražák et al., 2021),
but somewhere in between: We first solve men-
tion detection and then coreference linking with an
antecedent-maximization algorithm, but both tasks
are jointly fine-tuned in one shared large language
model. This circumvents the explosion of possible
spans in an end-to-end approach, allows for a sin-
gle retrieval of mentions only, while keeping the

benefit of sharing the weights and training only one
model for two highly related tasks (contribution 1).

Our architecture is a fine-tuned large language
model, with experimental results leaning toward
large pretrained models with better multilingual
representation. We experimented with a wide
range of pretrained language models (Devlin et al.,
2019; Conneau et al., 2020; Chung et al., 2021;
Armengol-Estapé et al., 2021; Straka et al., 2021;
Chan et al., 2020; Devlin et al., 2019; Joshi et al.,
2020; Cañete et al., 2020; Martin et al., 2020;
Nemeskey, 2020; Ulčar and Robnik-Šikonja, 2021;
Mroczkowski et al., 2021; Kuratov and Arkhipov,
2019), of which RemBERT (Chung et al., 2021)
proved the most effective (contribution 2).

We found multilingual models at the center of
our research attention in the CRAC 2022 Shared
Task. The shared task featured datasets with sizes
ranging from tiny (457 training sentences in de and
en parcorfull) to relatively large (nearly 40K
training sentences in cs pcedt and cs pdt), all of
them evaluated with equal weight (macro average).
This implied that special care must be devoted to
leveling the performance on all datasets. We exper-
imented with various combinations of fine-tuned
multilingual models and various sampling strate-
gies. Although our motivation was to mitigate the
poor performance on smaller specimens, we sur-
prisingly found that one large multilingual model
with sufficiently large encoder improves results on
all datasets, not only the small or linguistically re-
lated ones (contribution 3).

To sum up, our contributions are the following:
1. We present a jointly trained pipeline approach

for coreference resolution.
2. Although many monolingual base models sur-

pass their multilingual base counterparts, in
the end, one large multilingual pretrained
model gives the best performance over base,
albeit specifically pretrained monolingual en-
coders.
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3. One fine-tuned all-data multilingual model
with sufficiently large encoder outperforms
individual models across all datasets, not only
the smaller or typologically related ones.

The source code of our system is available at
https://github.com/ufal/crac2022-corpipe.

2 Related Work

Coreference resolution is often divided into two
subtasks: mention detection and coreference link-
ing (or clustering). These can be solved either
separately (pipeline approach) or, more recently,
in an end-to-end fashion (Lee et al., 2017, 2018).
Such was also the approach of the baseline (Pražák
et al., 2021). Our proposal takes what we hope
is advantageous from both approaches: We solve
both tasks sequentially, but the weights are trained
jointly in a shared network.

As in all other NLP areas, deep learning with rep-
resentations from large language models represents
the current state-of-the-art (Kantor and Glober-
son, 2019; Joshi et al., 2019, 2020). We build
on these works which use BERT (Devlin et al.,
2019) by comparing BERT with its successors, the
language-specific mutations of BERT (Armengol-
Estapé et al., 2021; Straka et al., 2021; Chan et al.,
2020; Devlin et al., 2019; Joshi et al., 2020; Cañete
et al., 2020; Martin et al., 2020; Nemeskey, 2020;
Ulčar and Robnik-Šikonja, 2021; Mroczkowski
et al., 2021; Kuratov and Arkhipov, 2019), and
multilingual variants: mBERT (Devlin et al., 2019),
XLM-R base and XLM-R large (Conneau et al.,
2020), and RemBERT (Chung et al., 2021).

There are mixed accounts in the literature on
globally decoding the entities (clusters) via higher-
order methods. Kantor and Globerson (2019) im-
proved state-of-the-art on the CoNLL-2012 shared
task with differentiable end-to-end manner en-
abling higher-order inference: mentions are rep-
resented as the sum of all mentions of the entity
(entity equalization). Other higher-order corefer-
ence linking methods include attended antecedent
(Lee et al., 2018; Fei et al., 2019; Joshi et al., 2019,
2020). On the other hand, Xu and Choi (2020) thor-
oughly investigated the contribution of higher-order
methods to the models performance and conclude
that with modern encoders, higher-order methods
contribute only marginally or negatively. As we
model all antecedent links during training in a dot-
product attention matrix, we inherently “equalize”
entities, although not with an explicit algorithm.

3 Methods

An overview of the model architecture is shown in
Figure 1. In the following sections, we describe the
components of the model in detail, with reference
to the corresponding parts of Figure 1.

3.1 Architecture

We consider that the enumeration of all possible
spans as mention candidates in an end-to-end ap-
proach, despite aggressive pruning, may lead to
explosion of options and possibly harm the coref-
erence linking because the candidate set is heavily
biased toward negative outcome: only a fraction of
the spans is an actual mention and of these, only a
fraction is a mention of the same entity. Further-
more, this approach does not allow the retrieval
of mentions only. Hence, we propose a jointly
trained, pipeline approach: we first solve mention
detection and then coreference linking only on the
retrieved mentions. However, to share the informa-
tion between these highly related tasks and to keep
a single model, we fine-tune one shared large lan-
guage model, only with separately stacked hidden
layers on top of the shared large language model for
each task. In Figure 1, the orange box corresponds
to the shared fine-tuned large language model (en-
coder), the green box corresponds to the mention
detection task and the purple box corresponds to
the coreference linking task.

In all fairness it should be said that we did not
experimentally compare our architecture with the
purely pipeline models with separate encoders nor
the end-to-end approach, as pursuing three archi-
tectures to final submission was beyond our means
in the given time frame. We venture to suggest
that separately trained pipeline models might have
the advantage of greater capacity (separate large
language model for each task) but might become
expensive as both models must be separately fine-
tuned and hyperparameter-searched.

3.2 Token Representations (Encoder)

Each token receives a contextualized representa-
tion from the encoder, a vector of dimension D
(D = 768 for base encoders, D = 1024 for XLM-
R large, D = 1152 for RemBERT). The retrieval
of contextualized token representation corresponds
to the orange box in the bottom of Figure 1. The
representation is shared between the mention detec-
tion and coreference linking tasks.
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Coreference Linking

Charles University is the oldest university in Czech Republic . It is ...

RemBERT

Token representation, dim 

Charles University is the oldest university in Czech Republic . It is

Mention Detection

Dense layer + ReLU, dim 

tag logits: dense layer, dim number_of_tags

0, PUSH 1, POP 1 0 0 0 0, PUSH,
POP 1 0 0, PUSH 1, POP 1 0 0, PUSH,

POP 1 0

first token rep. last token rep. first token rep. last token rep.first token rep. last token rep.first token rep. last token rep.

Pretrained Masked Language Model

 hidden: dense layer + ReLU, dim 

 (mention representation): dense layer, dim 

 hidden: dense layer + ReLU, dim 

 (antecedent representation): dense layer, dim 

Charles University is the oldest university in Czech Republic . It is

CRF

Figure 1: CorPipe model architecture. Best viewed in color.

We experimented with the following pretrained
multilingual language models:

• RemBERT (Chung et al., 2021),
• XLM-R base and large (Conneau et al., 2020),
• mBERT (Devlin et al., 2019),

and the following published language-specific mod-
els:1

• Catalan BERTa (Armengol-Estapé et al.,
2021),

• Czech RoBERTa RobeCzech (Straka et al.,
2021),

• German gBERT (Chan et al., 2020),
• English SpanBERT (Joshi et al., 2020),
• Spanish BETO (Cañete et al., 2020),
• French CamemBERT (Martin et al., 2020),

1For each language, we present the monolingual model
that worked best in our settings, if more exist.

• Hungarian HuBERT (Nemeskey, 2020),
• Lithuanian LitLatBERT (Ulčar and Robnik-

Šikonja, 2021),
• Polish HerBERT (Mroczkowski et al., 2021),
• Russian RuBERT (Kuratov and Arkhipov,

2019).

3.3 Empty Nodes

Some dependency grammar annotation schools al-
low, or even require, the so-called empty nodes,
which are superficial nodes of a dependency graph
unseen on the surface level, i.e., not directly corre-
sponding to any surface token of the sentence. The
empty nodes usually account for ellipsis, such as
in a sentence “Mary likes roses and John (likes)
violets.”, in which the verb “likes” is omitted but
depending on the annotation guidelines may be re-
constructed in the dependency tree. These nodes
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may carry coreference annotation, and they very
often do in pro-drop languages (like Slavic or Ro-
mance languages). In Czech example: ”Řekl, že
nepřijde.”, translated as ”(He) said that (he) won’t
come.”, both pronouns are dropped but implied by
the morphology of the verb.

To allow the empty nodes, if occurring, to be
naturally represented on the input and the output
of the fine-tuned model and be part of the fine-
tuning, we simply draw them to the surface, that
is, we create a new token occupying the implied
position of the artificial empty node and assign
whatever text that was annotated with it (or none).2

To recognize such artificial tokens from regular
tokens, we prepend an artificial special character to
any such token originating from an empty-node.

3.4 Mention Detection

We model mention detection as a sequence token-
level classification problem, which considers a se-
quence of tokens on the input and a corresponding
sequence of tags on the output. The proposed tags
are an extension of BIO encoding, which in addi-
tion can handle embedded and also overlapping
mention spans. Each tag is a sequence of the fol-
lowing stack manipulation instructions:

• 0..N POP instructions, each closing a mention
from the stack. To handle crossing mention
spans, the instruction has a parameter speci-
fying which mention to close using its index
from the top of the stack. The most frequently
used value is 1 (the top of the stack), because
closing the mention on the top of the stack
is sufficient to encode arbitrarily embedded
non-crossing mention spans.

• 0..N PUSH instructions, each starting a new
mention on the top of the stack.

• 0..N POP instructions again, each closing a
single-token mention started by a previous
PUSH in the same step. We could represent
such single-word mentions using specialized
UNIT instructions instead of a PUSH-POP pair,
but we opted for less instructions for the sim-
plicity of the decoder.

The above mentioned stack instructions are con-
catenated into a single tag, predicted by a classifier
as one label per token.

Because not all sequences of tags are valid (i.e.,
we are performing structured prediction), we pro-

2We use the form associated with a given empty node; if
empty, we fall back to the (possibly empty) lemma.

cess the tags by a linear-chain CRF. Finally, in
order to allow the CRF to check whether there is
a mention to be closed by a POP instruction, we
include the size of the stack in the tag.3

The mention detection classifier corresponds to
the green box in Figure 1. Token representation of
dimension D is processed by a hidden ReLU layer
of dimension 4D, then by a linear layer producing
tag logits, and finally by a CRF layer.

3.5 Coreference Linking

We approach coreference linking by considering,
for each mention, a probability distribution of
the preceding mentions in the previous context
(more on context window in Section 3.6) being
antecedents of the current mention. We also in-
clude the mention itself in the distribution, and
consider it a technical antecedent if the mention
has no antecedents.

During training, our goal is to predict all men-
tion antecedents using a categorical cross-entropy
loss. During prediction, however, we predict only
the most probable antecedent for every mention,
noting that any correct antecedent results in the
same coreference cluster.4

The computation of the antecedent distribution,
corresponding to the purple box in Figure 1, starts
by constructing an initial representation of every
mention by concatenating the token representations
of its first and last tokens.5 Using this representa-
tion, we compute Q (the representation of a refer-
ence candidate) and K (the representation of an
antecedent candidate), both using a hidden ReLU
layer with dimensionality 4D followed by a bias-
free linear layer of dimensionality D. Finally, we
compute the antecedent distribution using masked
dot-product self-attention (Vaswani et al., 2017).

The inclusion of “self” in the pool of antecedents
naturally allows for the so-called singletons, which
are mentions without antecedent (entities men-
tioned only once, for example “Czech Republic”
in Figure 1). Singletons were excluded from the

3Our approach does not handle discontinuous mentions.
While we could support them by introducing an instruction
continuing an already closed span, handling discontinuous
mentions would also require support in the mention encoder.

4This is true only when considering previous mentions as
antecedents; if we considered both previous and following
mentions as antecedents, disconnected components of a single
coreference cluster could be formed.

5Such an approach assumes the mentions are continuous.
We handle discontinuous mentions by limiting them to their
largest continuous sub-span containing the syntactic head of
the mention (see Section 3.8).
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official evaluation primary metric, but the official
evaluation with singletons on the test set and the
ablation experiments with singletons on the dev set
can be found in Section 4.6.

The fact that during training a reference should
recognize all its antecedents might seem inconsis-
tent with the inference regime, where only a single
most probable antecedent is retrieved. We therefore
demonstrate the effectiveness of considering all an-
tecedents by also evaluating a strategy of limiting
the number of gold antecedents to at most 1, 2, or
3 previous ones (At most 1 link, At most 2 links or
At most 3 links) in Section 4.5.

3.6 Context Window
For each sentence, we consider a sliding context of
512 tokens, aligning the end of the current sentence
towards the end of the window to allow for a larger
left (past) context than the right (future) context.
We experiment with several settings of the size of
the right context in Section 4.4:

• Right context 0: The end of the current sen-
tence is perfectly aligned with the context of
512 tokens (no right context).

• Right context 50: We leave 50 tokens for the
right (future) context after the sentence end
and whatever remains is the left (past) con-
text; if there is not enough left context to fill
the whole window of 512 tokens (e.g., the
first sentence of the document), we increase
the size of the right context to fill all the 512
tokens.

• Right context 100: Same as before, but 100
tokens for the right context.

Unless stated otherwise, we use right context of 50.

3.7 Multilingual Models
We introduced multilinguality as our natural re-
search interest of CRAC 2022 Shared Task. We
experimented with various combinations of models
with respect to size and/or language, and in the
end, we submitted three contributions to the final
evaluation:

• individual: The models were fine-tuned using
solely the training data of the corresponding
dataset.6

• multilingual: All training data were used for
fine-tuning a single multilingual model, with

6With the exception of de and en parcorfull – these
corpora are extremely small (457 sentences each) and transla-
tions of each other, so we always train on a concatenation of
them when finetuning an individual language model.
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Figure 2: Dependency of the number of the optimum
training epochs on the logarithm of the corpus size.

examples sampled according to the logarithm
of the individual dataset sizes. The final check-
point of the last training epoch was used for
prediction, so there is only one single large
model for all datasets, an option which could
most easily qualify as a deliverable software
product for multilingual coreference resolu-
tion.

• best dev: In this setting we considered, for ev-
ery dataset, the test set prediction correspond-
ing to a model and optimum epoch achieving
the best development set performance. An
intuition behind this decision is that in the
multilingual settings, the smaller datasets con-
verge sooner, while the large ones need more
iterations. This is supported by the seemingly
linear relationship between the logarithm of
the number of training sentences and the opti-
mum number of training epochs in Figure 2.

When mixing multilingual data, sampling ra-
tios of the datasets must be determined. We ex-
perimented with three strategies for sampling the
datasets; the examples are then always sampled
uniformly from the chosen dataset:

• logarithmic: Datasets are sampled with the
probability reflecting the logarithm of their
size.7

• uniform: Datasets are sampled with uniform
probability.

• linear: Datasets are sampled in proportion
linear to their size, which effectively equals
to sampling the examples uniformly from the
concatenation of the datasets.

7We scaled the logarithmic sampling rations to the range
1 to 5, and rounded them for convenience.
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Finally, dataset labels (corpus ids) may or may
not be be added to the input to discriminate the
origins. We call these settings w/ corpus id and w/o
corpus id.

We compare all the above mentioned strategies
for creating multilingual models in Section 4.1.

3.8 Limiting Mention Spans to Their Heads

The official CRAC 2022 Shared Task evaluation
relied on the lenient partial matching, which con-
siders mention span correctly detected if it contains
the syntactic head of the gold mention and at the
same time, the predicted mention span does not
include any tokens outside the gold mention span.
Hence it seems prudent to not “overpredict” too
long mention spans and prune the predicted men-
tion spans to their syntactic head, given that syn-
tactic analysis is available in the data. We show
ablation results including the full mention spans in
Section 4.7.

3.9 Training

We trained our models using a lazy variant of the
Adam optimizer (Kingma and Ba, 2015), with a
batch size of 8. The base variants were fine-tuned
on a single 16GB GeForce/Quadro GPU, using
a slanted triangular learning rate schedule – first
linearly increasing from 0 to 2 · 10−5 in the first
10% of the training, and then linearly decaying to 0
at the end of the training. The multilingual models
were trained for 30 epochs, each consisting of 6000
batches; the individual models were trained for up
to 100 epochs depending on dataset size.

The large models required fine-tuning on two
25GB GeForce GPUs, the peak learning rate was
10−5 , the multilingual models were trained for 20
epochs and the individual models up to 50 epochs.
We trained 8 large multilingual models (each tak-
ing 42 hours), considering both XLM-R large and
RemBERT, uniform and logarithmic mixing, pres-
ence of corpus id, and β2 = 0.99 in addition to
the default one. The best-performing model uses
RemBERT, logarithmic mixing without corpus id,
and default β2.

4 Results

Official results of the CRAC 2022 Shared Task on
the test set can be found in Table 1. Our multilin-
gual models, best dev and multilingual, scored 1st
and 2nd, respectively, while our individual models
trained on each dataset placed 4th.

4.1 Multilingual Models

A view on the effectiveness of multilingual mod-
els is shown in official ablation results on test data
in Table 2, which compares all our three individ-
ual/multilingual settings: multilingual as a base-
line, individual and best dev, using a base encoder
(XLM-R base for the multilingual baseline, best-
performing base encoder for the remaining cases)
and a large encoder (RemBERT). The multilingual
is superior to individual for all datasets, with the
exception of the three largest datasets using a base
encoder – we hypothesize that the base encoder
does not have sufficient capacity to capture the
largest datasets in the multilingual setting, because
with a large encoder, also the three largest datasets
benefit from the multilingual model. Furthermore,
Table 4.C demonstrates that while XLM-R large
is the best in the individual settings, RemBERT
delivers superior multilingual performance.

Motivated by the improvements of the multilin-
gual models, we considered a setting where 50% of
the training data comes from a single dataset and
the rest from all other datasets (with logarithmic
mixing). Surprisingly, such setting delivers con-
sistently worse performance than the multilingual
models (last line of Table 4.C).

The comparison of logarithmic, uniform, and
linear mixing, together with the presence or ab-
sence of corpus id, is evaluated in Table 4.D and
Table 4.E. Unexpectedly, neither the mixing rations
nor the corpus id have a large effect on the results,
which is surprising especially for the linear mixing,
where the smallest treebanks are nearly 100 times
less frequent than the largest one.

4.2 Zero-shot Evaluation

The prospect of not including the corpus id opens
an interesting possibility of using the model in zero-
shot setting, i.e., on a different language than it was
trained on. To perform such zero-shot evaluation,
we trained for every language a multilingual model
without datasets in this language, and then eval-
uated the model on them. The results, presented
in Table 4.F, were below our expectations, slightly
surpassing 60% macro average on the development
set with the RemBERT model.

4.3 Monolingual Pretrained Language Models

Table 4.G presents the evaluation of the best-
performing monolingual base-sized pretrained
models we found. While the specialized models
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Team/Submission Avg ca
cs

pcedt
cs
pdt

de
parc

de
pots

en
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en
parc

es fr hu lt pl ru

ÚFAL CorPipe
best dev

70.72
1

78.18
2

78.59
1

77.69
1

65.52
2

70.69
2

72.50
2

39.00
1

81.39
1

65.27
1

63.15
3

69.92
1

78.12
2

79.34
1

ÚFAL CorPipe
multilingual

69.56
2

78.49
1

78.49
2

77.57
2

59.94
3

71.11
1

73.20
1

33.55
3

80.80
2

64.35
3

63.38
2

67.38
3

78.32
1

77.74
2

UWB
ondfa†

67.64
3

70.55
4

74.07
4

72.42
4

73.90
1

68.68
3

68.31
4

31.90
4

72.32
4

61.39
4

65.01
1

68.05
2

75.20
4

77.50
3

ÚFAL CorPipe
individual

64.30
4

76.34
3

77.87
3

76.76
3

36.50
5

56.65
5

70.66
3

23.48
5

78.78
3

64.94
2

62.94
4

61.32
6

73.36
5

76.26
4

Barbora Dohnalová
berulasek

59.72
5

64.67
5

70.56
5

67.95
5

38.50
4

57.70
4

63.07
5

36.44
2

66.61
5

56.04
5

55.02
5

65.67
4

65.99
6

68.17
5

UWB
BASELINE‡

58.53
6

63.74
6

70.00
6

67.27
6

33.75
6

55.44
6

62.59
6

36.44
2

65.98
6

55.55
6

52.35
6

64.81
5

65.34
7

67.66
6

Matouš Moravec
moravec

55.05
7

58.25
7

68.19
7

64.71
7

31.86
7

52.84
7

59.15
7

36.44
2

62.01
7

54.87
7

52.00
7

59.49
7

63.40
8

52.49
7

Table 1: Official results of CRAC 2022 Shared Task on the test set (CoNLL score in %). The systems † and ‡ are
described in Pražák and Konopik (2022) and Pražák et al. (2021), respectively; the rest in Žabokrtský et al. (2022).

Experiment Avg ca
cs

pcedt
cs
pdt

de
parc

de
pots

en
gum

en
parc

es fr hu lt pl ru

XLM-R base, multilingual 67.8 77.1 75.8 74.3 54.7 66.9 70.1 38.5 77.6 64.2 62.3 69.4 73.3 76.6
Best base model, individual -5.2 -4.0 +1.5 +2.2 -18.2 -9.8 -3.4 -15.0 -2.4 -2.4 -2.0 -8.1 +0.0 -5.6
Best base model, best dev +0.4 -0.6 +1.5 +2.2 +2.0 +0.6 -1.0 -0.9 +1.2 -1.1 +0.6 +0.4 +0.0 +0.2
RemBERT, multilingual +1.8 +1.4 +2.6 +3.3 +5.2 +4.2 +3.1 -4.9 +3.2 +0.1 +1.1 -2.0 +5.0 +1.1
RemBERT, individual -3.5 -0.7 +2.0 +2.5 -18.2 -10.3 +0.6 -15.0 +1.2 +0.7 +0.7 -8.1 +0.0 -0.4
RemBERT, best dev +3.0 +1.1 +2.7 +3.4 +10.8 +3.8 +2.4 +0.5 +3.8 +1.0 +0.9 +0.5 +4.8 +2.7

Table 2: Official results of ablation experiments on the test set (CoNLL score in %).

Team/Submission Avg. with singletons

ÚFAL CorPipe, best dev 72.98
ÚFAL CorPipe, multilingual 71.81
ÚFAL CorPipe, individual 67.93
UWB, ondfa 58.06
Barbora Dohnalová, berulasek 50.84
UWB, BASELINE 49.69
Matouš Moravec, moravec 46.79

Table 3: Official results of evaluation with singletons
on the test set.

consistently surpass mBERT and are mostly bet-
ter than XLM-R base, they are all worse than the
individual XLM-R large models (with the excep-
tion of Lithuanian) and even more dominated by
the RemBERT multilingual model. This indicates
that, nowadays, pretraining a base-sized monolin-
gual BERT model has merit only in improving the
running time, not model performance, when large
pretrained multilingual models are now available.

4.4 Context Window

Table 4.H shows the effect of using a right context
of size 0, 50, and 100. The evaluation, performed
on a base-sized model with a preliminary, develop-

ment version of CorPipe, shows that the presence of
the right context is beneficial, but does not clearly
indicate whether context of size 100 is better than
50.

4.5 Number of Links

The effect of limiting the number of predicted an-
tecedents during training is presented by Table 4.I.
The evaluation (performed again on a base-sized
model with a preliminary, development version of
CorPipe) shows that performance increases with
the number of antecedents considered during train-
ing.

4.6 Singletons

Singletons (entities with only one mention in the
document) were excluded from the official evalua-
tion primary metric. Our antecedent-maximization
strategy however accounts for them by adding “self”
to antecedent candidates pool. We publish the of-
ficial evaluation with singletons on the test set in
Table 3 and the ablation evaluation with singletons
on the dev set in Table 4.B.
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Experiment Avg ca
cs

pcedt
cs
pdt

de
parc

de
pots

en
gum

en
parc

es fr hu lt pl ru

A) THE EFFECT OF USING FULL MENTIONS INSTEAD OF ONLY THEIR HEADS
CorPipe multilingual 73.2 76.9 79.3 78.1 70.6 74.7 74.8 61.2 80.9 67.4 64.6 76.0 75.2 71.4
+ full mentions -1.8 -2.4 -1.2 -0.9 -3.0 -2.1 -1.7 -3.0 -2.6 -1.1 -1.8 -1.3 -1.2 -1.2
CorPipe individual 71.1 76.3 78.7 76.9 65.7 62.0 73.8 63.2 79.5 66.8 64.8 73.4 71.7 69.9
+ full mentions +0.3 -1.9 -0.7 +0.2 +1.9 +10.6 -0.7 -5.0 -1.3 -0.5 -1.9 +1.3 +2.3 +0.3
CorPipe best dev 76.0 78.1 79.5 78.5 73.9 78.3 76.0 75.1 81.8 69.0 69.2 78.0 76.3 74.6
+ full mentions -4.6 -3.6 -1.4 -1.3 -6.3 -5.6 -3.0 -16.9 -3.5 -2.6 -6.3 -3.3 -2.4 -4.4

B) EVALUATION INCLUDING SINGLETONS
CorPipe multilingual 74.8 82.3 78.0 74.5 68.7 79.8 82.2 52.1 85.1 76.6 63.3 73.7 84.2 69.5
CorPipe individual 73.7 82.4 77.2 73.4 63.4 71.7 82.2 60.6 84.1 76.4 62.5 71.3 82.2 67.8
CorPipe best dev 77.5 83.2 78.0 74.7 70.4 82.6 83.2 71.6 85.8 77.5 66.8 74.8 84.7 73.0

C) EFFECT OF MULTILINGUAL DATA AND THE PRETRAINED MODEL
XLM-R base multilingual 73.3 75.8 76.0 75.0 73.4 74.1 73.1 75.4 78.4 66.1 65.2 78.0 72.1 71.7
XLM-R large multilingual +1.5 +1.7 +1.8 +2.0 +0.3 +4.1 +2.1 -4.5 +2.2 +1.7 +3.1 -0.0 +2.9 +0.9
RemBERT multilingual +1.9 +1.6 +3.3 +3.3 +2.9 +2.4 +2.4 -6.1 +2.7 +2.0 +4.0 -1.2 +3.7 +2.9
XLM-R base individual -4.6 -4.4 -0.3 -1.1 -7.8 -12.1 -1.9 -12.2 -2.8 -3.0 -3.8 -4.6 -2.3 -6.1
XLM-R large individual -0.6 +0.2 +2.8 +3.0 -7.7 -5.2 -0.9 -4.4 +1.0 +0.3 +3.7 -5.4 +3.5 -1.2
RemBERT individual -4.7 +0.6 +2.8 +1.9 -23.0 -12.1 +0.7 -30.5 +1.1 +0.7 -0.4 -8.9 +2.7 -1.8
RemBERT 50% additional +0.3 +1.0 +2.5 +2.4 -1.4 -0.5 +1.7 -8.3 +0.9 +1.3 +1.6 -3.5 +3.6 +1.7

D) EFFECT OF MIXING RATIOS USING XLM-R BASE PRETRAINED MODEL
Logarithmic, w/o corpus id 73.3 75.8 76.0 75.0 73.4 74.1 73.1 75.4 78.4 66.1 65.2 78.0 72.1 71.7
Logarithmic, w/ corpus id -0.4 -0.5 +0.1 +0.3 -0.8 -0.3 -0.6 -4.6 +0.1 +0.6 +1.3 -0.9 +0.3 -0.7
Uniform, w/o corpus id -0.8 -0.5 -0.2 -0.9 -1.8 -3.5 -0.2 -1.9 +0.0 -0.0 +0.4 -1.1 +0.0 -1.5
Uniform, w/ corpus id -1.6 -1.1 -0.5 -0.6 -6.4 -2.1 -0.4 -7.0 +0.1 +0.1 -0.5 -1.1 -0.6 -1.2
Linear, w/o corpus id -0.3 +0.1 +0.8 +1.1 -1.1 -0.5 -0.5 -3.5 -0.1 +0.3 +1.0 +0.3 -0.1 -1.6

E) EFFECT OF MIXING RATIOS USING REMBERT PRETRAINED MODEL
Logarithmic, w/o corpus id 75.3 77.4 79.3 78.3 76.3 76.5 75.5 69.3 81.1 68.1 69.2 76.8 75.8 74.6
Logarithmic, w/ corpus id +0.6 +0.4 +0.1 +0.1 +3.0 +1.2 -0.1 +5.8 +0.3 +0.9 -2.4 -1.3 +0.1 -0.2
Uniform, w/o corpus id +0.1 +1.2 -0.3 -0.1 +2.4 +0.5 +0.0 -0.9 -0.1 +0.7 -0.6 -0.2 +0.1 -1.2
Uniform, w/ corpus id -0.1 -0.0 -0.2 -0.3 -4.2 +0.3 -0.1 +4.5 +0.4 +0.6 -1.0 -0.1 +0.1 -1.2
Linear, w/o corpus id -0.1 +1.3 +0.1 +0.2 -2.3 -0.5 -1.5 +1.9 +0.5 +0.7 -1.0 +0.4 +0.0 -1.3

F) ZERO-SHOT EVALUATION OF A MULTILINGUAL MODEL
Multilingual XLM-R base 73.3 75.8 76.0 75.0 73.4 74.1 73.1 75.4 78.4 66.1 65.2 78.0 72.1 71.7
Zero-shot XLM-R base -17.1 -11.1 -28.6 -23.8 -13.3 -13.8 -19.8 -18.5 -6.8 -7.6 -16.1 -23.8 -24.6 -15.1
Multilingual RemBERT +1.9 +1.6 +3.3 +3.3 +2.9 +2.4 +2.4 -6.1 +2.7 +2.0 +4.0 -1.2 +3.7 +2.9
Zero-shot RemBERT -12.5 -6.7 -23.7 -20.6 -11.1 -7.5 -15.6 -9.8 -2.8 -8.3 -10.5 -20.0 -18.3 -7.2

G) EFFECT OF SEVERAL LANGUAGE-SPECIFIC BASE PRETRAINED MODELS
XLM-R base individual 68.7 71.4 75.7 73.9 65.7 62.0 71.2 63.2 75.6 63.1 61.5 73.4 69.8 65.6
mBERT (Devlin et al., 2019) -2.8 -1.5 -3.0 -3.4 -3.3 +0.4 -2.8 -1.1 -1.8 -1.1 -2.7 -7.5 -4.4 -3.6
BERTa (Armengol-Estapé et al., 2021) +1.3
RobeCzech (Straka et al., 2021) +2.0 +2.8
gBERT (Chan et al., 2020) -9.9 +5.3
SpanBERT (Joshi et al., 2020) -0.4 -2.4
BETO (Cañete et al., 2020) +0.4
CamemBERT (Martin et al., 2020) -0.2
HuBERT (Nemeskey, 2020) +3.6
LitLatBERT (Ulčar and Robnik-Šikonja, 2021) +2.7
HerBERT (Mroczkowski et al., 2021) +1.6
RuBERT (Kuratov and Arkhipov, 2019) +0.2
XLM-R large individual +4.0 +4.6 +3.1 +4.1 +0.0 +6.9 +1.0 +7.8 +3.8 +3.3 +7.4 -0.8 +5.8 +4.8
RemBERT individual -0.0 +4.9 +3.1 +3.1 -15.2 +0.0 +2.6 -18.3 +3.9 +3.8 +3.3 -4.3 +5.0 +4.3
XLM-R large multilingual +6.1 +6.1 +2.1 +3.2 +8.0 +16.2 +4.1 +7.7 +5.0 +4.8 +6.9 +4.6 +5.1 +6.9
RemBERT multilingual +6.6 +6.0 +3.6 +4.4 +10.6 +14.5 +4.3 +6.1 +5.5 +5.1 +7.7 +3.5 +6.0 +9.0

H) EFFECT OF THE RIGHT CONTEXT SIZE; DEVELOPMENT VERSION
Right context 0 67.4 70.7 75.0 73.6 59.2 62.4 68.3 68.6 74.4 61.1 59.2 71.5 69.2 62.2
Right context 50 +0.8 -0.4 +1.3 +0.6 +3.9 +1.8 -0.7 +1.2 -0.5 +0.0 +1.7 +0.5 +0.3 +1.7
Right context 100 +0.6 -1.2 +1.5 +0.7 +5.1 +2.7 -0.1 -3.8 -0.5 +0.6 +2.1 -0.2 +0.6 +0.7

I) EFFECT OF THE MAXIMUM NUMBER OF LINKS DURING TRAINING; DEVELOPMENT VERSION
Unlimited 67.4 70.7 75.0 73.6 59.2 62.4 68.3 68.6 74.4 61.1 59.2 71.5 69.2 62.2
At most 1 link -3.8 -3.3 -0.9 -3.6 -3.1 -4.3 -4.8 -8.7 -4.0 -3.1 -2.6 -5.0 -3.0 -3.8
At most 2 links -1.4 -1.4 +0.2 -2.0 +1.5 -2.4 -1.9 -5.6 -0.8 -0.1 -1.0 -0.5 -2.6 -1.3
At most 3 links -0.6 -0.9 +0.5 -0.2 +3.5 -0.4 -0.4 -6.5 -1.2 -0.4 -0.2 +1.1 -1.9 -0.6

Table 4: Ablation experiments evaluated on the development sets (CoNLL score in %). In A) and B), the scores of
the official submissions are used; in C) to I), we report the highest development set score from any epoch.
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4.7 Limiting Mention Spans to Their Heads

Comparison between full predicted mention spans
and the predicted spans reduced to their syntactic
heads in Table 4.A shows that partial matching fa-
vors post-processing which keeps syntactic heads
and avoids “overprediction” beyond the gold men-
tion span.

5 Conclusions

We presented a jointly trained pipeline approach
as a winning contribution to the CRAC 2022
Shared Task on Multilingual Coreference Resolu-
tion (Žabokrtský et al., 2022). We published a thor-
ough comparison of pretrained large language mod-
els for the task. Finally, we focused on multilin-
gual models and we conclude that one multilingual,
all-data model with large encoder outperformed
individual monolingual fine-tuned models on all
datasets. The source code is available at https:
//github.com/ufal/crac2022-corpipe.
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Zdeněk Žabokrtský, and Daniel Zeman. 2021. Coref-
erence in universal dependencies 0.1 (CorefUD 0.1).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Dávid Márk Nemeskey. 2020. Natural Language Pro-
cessing Methods for Language Modeling. Ph.D. the-
sis, Eötvös Loránd University.
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