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Abstract
This paper describes our approach to the CRAC
2022 Shared Task on Multilingual Coreference
Resolution. Our model is based on a state-of-
the-art end-to-end coreference resolution sys-
tem. Apart from joined multilingual training,
we improved our results with mention head pre-
diction. We also tried to integrate dependency
information into our model. Our system ended
up in 3rd place. Moreover, we reached the best
performance on two datasets out of 13.

1 Introduction

Coreference resolution is the task of finding lan-
guage expressions that refer to the same real-world
entity (antecedent) of a given text. Sometimes the
corefering expressions can come from a single sen-
tence. However, the expressions can be one or
more sentences apart as well. It is necessary to see
the whole document in some hard cases to judge
whether two expressions are corefering adequately.
This task can be divided into two subtasks. Identi-
fying entity mentions, and grouping the mentions
together according to the real-world entity they re-
fer to. The task of coreference resolution is closely
related to anaphora resolution – see (Sukthanker
et al., 2020) to compare these two tasks.

This paper describes our approach to the CRAC
2022 Shared Task on Multilingual Coreference Res-
olution. The task is based on the CorefUD dataset
(Nedoluzhko et al., 2022). The CorefUD corpus
contains 13 different datasets for ten languages in
a harmonized scheme. As the CorefUD is meant to
be the extension of Universal Dependencies with
coreference annotation, all the datasets in CorefUD
are treebanks. For some languages, human anno-
tators provided the dependency annotations. For
others, the annotation is created automatically with
a parser. The coreference annotation is built upon
the dependencies. This means that the mentions
are subtrees in the dependency tree and can be rep-
resented with the head. In fact, in some of the

datasets, there are non-treelet mentions – the men-
tions which do not form a single subtree. But even
for these non-treelet mentions, a single headword
is selected. There are some notable differences be-
tween the datasets. One of the most prominent ones
is the presence of singletons. Singletons are clus-
ters that contain only one mention. Singletons are
not present in any coreference relation. However,
they are annotated as mentions. For details about
the dataset, please see Nedoluzhko et al. (2022) or
Nedoluzhko et al. (2021). The task was simplified
to predict only non-singleton mentions and group
them into entity clusters.

For evaluation, the CorefUD scorer1 is provided.
The primary evaluation score is the CoNLL F1

score with partial mention matching and singletons
excluded. In the CorefUD scorer, a system mention
matches a gold mention if all its words are included
in the gold mention, and one of them is the key
head. This means that the minimal correct span
is the head, and it might be beneficial to predict
mentions as only the heads.

2 Model

Our model builds on the official transformer-based
end-to-end baseline (Pražák et al., 2021). The
underlying neural end-to-end coreference resolu-
tion model was originally proposed by Lee et al.
(2017). The model predicts the antecedents directly
from all possible mention spans without a previous
discrete decision about mentions. In the training
phase, it maximizes the marginal log-likelihood of
all correct antecedents:

J(D) = log

N∏
i=1

∑
ŷ∈Y (i)∩GOLD(i)

P (ŷ) (1)

1https://github.com/ufal/
corefud-scorer

https://github.com/ufal/corefud-scorer
https://github.com/ufal/corefud-scorer
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CorefUD dataset
Total size

docs sents words empty singletons discont.

Catalan-AnCora 1550 16,678 488,379 6,377 74.6% 0%
Czech-PDT 3165 49,428 834,721 33,086 35.3% 3.1%
Czech-PCEDT 2312 49,208 1,155,755 45,158 1.4% 4.1%
English-GUM 150 7,408 134,474 0 75% 0%
English-ParCorFull 19 543 10,798 0 6.1% 0.7%
French-Democrat 126 13,054 284,823 0 81.8% 0%
German-ParCorFull 19 543 10,602 0 5.8% 0.3%
German-PotsdamCC 176 2,238 33,222 0 76.5% 6.3%
Hungarian-SzegedKoref 400 8,820 123,976 4,849 7.9% 0.4%
Lithuanian-LCC 100 1,714 37,014 0 11.2% 0%
Polish-PCC 1828 35,874 538,891 864 82.6% 1.0%
Russian-RuCor 181 9,035 156,636 0 2.5% 0.5%
Spanish-AnCora 1635 17,662 517,258 8,111 73.4% 0%

Table 1: Dataset Statistics

Model Pretrained params New params

mBERT 180M 40M
XLM-R 350M 50M

Table 2: Number of trainable parameters of the models

where GOLD(i) is the set of spans in the training
data that are antecedents.

The model achieves state-of-the-art performance
on the OntoNotes dataset where singletons are not
annotated. We believe the model is optimal for
the CorefUD dataset as well since some of the
datasets of the CorefUD do not contain singletons.
Moreover, the evaluation metric ignores singletons,
so it does not matter that the model is not able to
predict them.

Employed Models We based our model on XLM
Roberta large (Conneau et al., 2020), which is sig-
nificantly larger than multilingual BERT (Devlin
et al., 2018) used by the baseline. The number of
parameters is provided in Table 2. We also tried to
use the best monolingual model for each language.

Joined Model Pretraining As you can see from
Table 2, there are approximately 50 million param-
eters trained from scratch for XLM-R. For smaller
datasets, it is practically impossible to train so
many random parameters. To solve this issue, we
first pre-train the model on the joined dataset and
then fine-tune the model for a specific language.

Heads Prediction As mentioned above, the of-
ficial scorer uses min-span evaluation with head
words as min spans. Because we do not know
the rules used to select single mention head in the
dataset, we decided to train to model to predict
the heads instead of the whole spans to optimize
the evaluation metric. Having all the useful infor-
mation (even dependency trees), the model should
learn the original rules for selecting the head.

The simplest way to predict the mention heads
would be to simply represent mention with its head
word on the input. But this is not an ideal solution
since multiple mentions can have the same head. If
we represented a mention with only the head, some
mentions would be joined, and their clusters would
be merged.

To avoid this, we represent mention with the
whole span, and just at the top of our model, we
predict the head of each mention and output only
the head word(s). This way, the mentions are repre-
sented with their spans when we build the clusters,
and the clusters of two different mentions with the
same head are not merged as in the case of the
simple approach mentioned above.

We implemented two versions of the head pre-
diction model. Both are implemented as separate
classification heads on the top of our coreference
resolution model.

The first model predicts the relative position of
the head word(s) inside a span using the hidden rep-
resentation of the span from the CR model. Output
probabilities of head positions are obtained using
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sigmoid activation so the model can predict mul-
tiple heads even though there is only single head
word in the gold data. This is particular optimiza-
tion of the evaluation metric: If there are more
words likely to be a head word of the span, it is
statistically better to output all of them.

The second model uses a binary classification of
each span and head candidate pair, so again, there
can be more head words of a single span predicted.

Trees We believe dependency information can
help the model significantly, especially when man-
ually annotated dependencies are provided (Czech
PDT, for example). Moreover, the dependency in-
formation is necessary to find mention head.

To encode syntactic information, we add to each
token representation its path to ROOT in the de-
pendency tree. In more detail, we first set the max-
imum tree depth parameter and then concatenate
Bert representations of all parents up to max depth
with the embedding of the corresponding depen-
dency relation. Thus the resulting tree structure
representation has the size of max_tree_depth×
(bert_emb_size+deprel_emb_size). This repre-
sentation is then concatenated with bert embedding
of each token.

3 Training

We trained all the models on NVIDIA A40 graphic
cards using online learning (batch size 1 document).
We limit the maximum sequence length to 6 non-
overlapping segments of 512 tokens. During train-
ing, if the document is longer than 6× 512 tokens,
a random segment offset is sampled to take random
continuous block of 6 segments, and the rest of
them is discarded. During prediction, longer doc-
uments are split into independent sub-documents
(for simplicity, non-overlapping again). We train a
model for each dataset for approximately 80k up-
dates in our monolingual experiments. For joined-
pre-trained models, we use 80k steps for model
pre-training on all the datasets and approximately
30k for fine-tunning on each dataset. Each training
took from 8 to 20 hours.

4 Results & Discussion

Results of several variants of our model are pre-
sented in Table 3.

Monoling column shows the result of the mono-
lingual model specific for each language. XLM-
R column presents results of XLM Roberta large

trained for each dataset separately. Joined is the
joined model described in the Model section. The
columns marked with + mean the best model from
all to the left, with the additional feature. +dev
means that the dev data part was added to training
data, +S2H is the model with mention head pre-
diction described earlier. Both methods for men-
tion head prediction have statistically equal perfor-
mance (we cannot tell which one is better). The
reported numbers are for the first one. The results
in column +tree correspond to adding the depen-
dency structure as described.

It is not surprising that employing a larger model
(XLMR-R large or monolingual) significantly im-
proved the performance of the baseline. The results
of the joined model are much more interesting. We
can see that for some smaller datasets (e. g. Ger-
man), the performance gain is huge. But if we
have a look at Table 2, it makes sense because it is
hard (or impossible) to train 50M parameters from
scratch on a small dataset. It is also interesting that
Polish is the only language where the monolingual
model outperformed the joined model. But the
reasons for this are probably straightforward. The
polish dataset is one of the largest, so joined pre-
training is not needed. Moreover there is a large
monolingual model for Polish, so it is natural that
it outperformed XLM-R large. For three datasets,
there is a significant gain by employing mention
head prediction. The difference should be even big-
ger when we add syntactic structure to the model.
2 Unfortunately, we did not manage to include this
feature on time. From the results table, we can see
that adding the trees does not help. In fact, it de-
creases performance significantly. We believe this
is caused by some bug in our implementation, but
we did not have enough time to correct it before
the end of the competition.

4.1 Comparison To Other Systems

The comparison to other participating systems is
shown in Table 4. Our system ended up in 3rd

place. Surprisingly, although the winning system
outperformed ours by a large margin on average,
our system reached the best performance for two
datasets (german_parcor and hungarian). It would
be interesting to look at both systems’ differences
to find out why.

2The potential gain by outputting only mention heads can
be found in Žabokrtský et al. (2022)
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Dataset/Model monolingual model name reference BASELINE Monoling XLM-R joined +dev +S2H +Tree

ca_ancora PlanTL-GOB-ES/roberta-base-ca (Armengol-Estapé et al., 2021) 63.74 69.61 66.19 68.81 70.55 69.91 68.32
cs_pcedt Czert-B-base-cased (Sido et al., 2021) 70 73.74 73.55 73.85 74.07 71.12 73.61
cs_pdt Czert-B-base-cased (Sido et al., 2021) 67.27 69.81 70.99 70.63 71.49 72.42 70.99
de_parcorfull deepset/gbert-base (Chan et al., 2020) 33.75 43.04 33.75 68.91 73.9 68.3 65.29
de_potsdamcc deepset/gbert-large (Chan et al., 2020) 55.44 58.81 59.03 70.35 66.02 68.68 67.35
en_gum roberta-large (Zhuang et al., 2021) 62.59 68 66.27 68.16 68.31 66.88 67.39
en_parcorfull roberta-large (Zhuang et al., 2021) 36.44 25.84 36.44 30.21 31.9 23.45 40.05
es_ancora PlanTL-GOB-ES/roberta-large-bne (Gutiérrez-Fandiño et al., 2022) 65.98 60.12 67.99 71.24 71.48 72.32 72.04
fr_democrat camembert/camembert-large (Martin et al., 2020) 55.55 56.76 55.94 59.8 60.12 61.39 60.03
hu_szegedkoref SZTAKI-HLT/hubert-base-cc (Nemeskey, 2021) 52.35 59.76 60.68 63.24 65.01 64.67 62.77
lt_lcc EMBEDDIA/litlat-bert (Ulčar and Robnik-Šikonja, 2021) 64.81 66.93 64.81 66.34 68.05 67.49 64.01
pl_pcc allegro/herbert-large-cased (Mroczkowski et al., 2021) 65.34 75.2 73.19 73.66 74.46 74.56 73.38
ru_rucor DeepPavlov/rubert-base-cased (Kuratov and Arkhipov, 2019) 67.66 69.33 77.5 75.5 74.82 76.02 75.94
avg 58.53 61.30 62.03 66.21 66.94 65.94 65.94

Table 3: Results

# User avg ca cs_pcedt cs_pdt de_pc de_pots en_gum en_pc es fr hu lt_lcc pl_pcc ru
1 straka 70.72 78.18 78.59 77.69 65.52 70.69 72.5 39 81.39 65.27 63.15 69.92 78.12 79.34
2 straka-single-multil 69.56 78.49 78.49 77.57 59.94 71.11 73.2 33.55 80.8 64.35 63.38 67.38 78.32 77.74
3 ours 67.64 70.55 74.07 72.42 73.9 68.68 68.31 31.9 72.32 61.39 65.01 68.05 75.2 77.5
4 straka-single-data 64.3 76.34 77.87 76.76 36.5 56.65 70.66 23.48 78.78 64.94 62.94 61.32 73.36 76.26
5 berulasek 59.72 64.67 70.56 67.95 38.5 57.7 63.07 36.44 66.61 56.04 55.02 65.67 65.99 68.17
6 BASELINE 58.53 63.74 70 67.27 33.75 55.44 62.59 36.44 65.98 55.55 52.35 64.81 65.34 67.66
7 Moravec 55.05 58.25 68.19 64.71 31.86 52.84 59.15 36.44 62.01 54.87 52 59.49 63.4 52.49
8 simple_baseline 18.14 15.58 5.51 9.48 29.81 19.41 21.99 11.37 16.64 21.74 17 27.53 15.69 24.06
9 k-sap 5.9 0 0 0 0 0 0 0 0 0 0 0 76.67 0

Table 4: Comparison to Other Participating Systems

5 Conclusion

We successfully applied an end-to-end neural coref-
erence resolution system to the CRAC 2022 shared
task. There are two main outcomes of our work. 1)
Joined training helps a lot. Our experiments sup-
port the fulfillment of the goals of the CorefUD
dataset to help the models by harmonizing the an-
notation schemas. 2) For the official scoring metric,
predicting only the mention heads increases perfor-
mance. This means that syntactic structure helps to
identify mentions. Of course, such evaluation is a
bit artificial and does not reflect the real-world sce-
nario, where we do not have the gold syntax. We
also suggested injecting syntactic information into
the model. Unfortunately, we did not manage to get
any improvement with this approach. Our system
ended up in 3rd place. Moreover, we reached the
best performance on two datasets out of 13.
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Michal Seják, and Miloslav Konopík. 2021. Czert–
czech bert-like model for language representation.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2021), pages 1326–1338.

Rhea Sukthanker, Soujanya Poria, Erik Cambria, and
Ramkumar Thirunavukarasu. 2020. Anaphora and
coreference resolution: A review. Information Fu-
sion, 59:139–162.
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