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Abstract

A number of papers have recently argued in
favor of using artificially generated languages
to investigate the inductive biases of linguistic
models, or to develop models for low-resource
languages with underrepresented typologies.
But the promise of artificial languages comes
with a caveat: if these artificial languages are
not sufficiently reflective of natural language,
then using them as a proxy may lead to inac-
curate conclusions. In this paper, we take a
step towards increasing the realism of artificial
language by introducing a variant of indexed
grammars that draw their weights from hierar-
chical Pitman-Yor processes. We show that this
framework generates languages that emulate
the statistics of natural language corpora better
than the current approach of directly formulat-
ing weighted context-free grammars.

1 Introduction

In the World Atlas of Linguistic Structures, Dryer
(2013) reports that the plurality of world languages
follow a subject-object-verb (SOV) word order.
However, relatively few SOV languages (Japanese,
Turkish, Persian) have a significant Internet foot-
print. Today, the Internet is dominated by subject-
verb-object (SVO) languages like English, Spanish,
and Chinese. The resulting paucity of non-SVO
data makes it difficult to study whether linguistic
models have an inductive bias towards particular
word orders, or to develop models that perform
well on low-resource languages from underrepre-
sented linguistic families. In recent work, Wang
and Eisner (2016), Ravfogel et al. (2019) and White
and Cotterell (2021) argue that artificial languages
could be an effective tool for addressing challenges
like these, enabling researchers to create large cor-
pora that manifest targeted linguistic phenomena.

An obvious objection presents itself: what if the
models aren’t realistic enough? If not, then con-
clusions drawn from artificial languages may not

transfer to natural languages. One response to this
objection would be to abandon the entire enterprise,
and with it the potential advantages of simulated
data. An alternative is to follow the tradition of
other disciplines who model natural systems (e.g.
physics, geology, meteorology) and iterate on these
models until they are sufficiently good predictors
of observed phenomena.

In this spirit, this paper builds upon the frame-
work of White and Cotterell (2021), who used
weighted context-free grammars to construct ar-
tificial languages for studying the inductive biases
of neural language models towards particular word
orders. Observing that their framework did not
account for selectional preference (the linguistic
phenomenon that head words and their syntactic
dependents are not probabilistically independent),
we generalize weighted context-free grammars by
introducing the weighted random-access indexed
grammar, which facilitates the development of ar-
tificial languages that manifest selectional prefer-
ence. We also present a methodology for building
grammars that emulate statistical relationships ob-
served in natural language corpora. Inspired by Teh
(2006), we use hierarchical Pitman-Yor processes
(Pitman and Yor, 1997) as the token-generating
distributions for open-class categories (like noun,
verb, and adjective). We set the hyperparameters
by matching the statistics of the produced artifi-
cial languages with natural language corpora. As
a pilot experiment for our framework, we partially
replicate an experiment performed by White and
Cotterell (2021) that studied the inductive bias of
transformer and LSTM-based language models to-
wards languages featuring various syntactic param-
eter configurations (Chomsky, 1981; Baker, 2008).

Finally, we accompany this paper with a Python
package called testperanto1, to allow researchers
to use and refine our framework for further linguis-

1https://github.com/Mark-Hopkins-at-Williams/
testperanto (Apache 2.0 license)

85

https://github.com/Mark-Hopkins-at-Williams/testperanto
https://github.com/Mark-Hopkins-at-Williams/testperanto


Figure 1: A comparison of the singleton proportion curves of adjective-noun bigrams in the Europarl corpus with
bigrams generated using independent adjective and noun distributions.

tic studies.

2 Related Work

Both Wang and Eisner (2016) and Ravfogel et al.
(2019) constructed artificial languages by manipu-
lating sentences from existing natural language cor-
pora. Both approaches made use of a dependency
parser (or a gold parsed corpus) to inform these
manipulations, altering syntactic constituent order
(Wang and Eisner, 2016; Ravfogel et al., 2019) or
token morphology (Ravfogel et al., 2019).

White and Cotterell (2021) argued that manip-
ulated natural language corpora have downsides.
Based on a series of negative results (Cotterell et al.,
2018; Mielke et al., 2019), they suggested that it
may not be possible to remove confounding lin-
guistic features from an existing corpus, making
it difficult to isolate typological features for study.
To maximize the ability to run a controlled experi-
ment, they generated fully artificial languages from
hand-built weighted context-free grammars. How-
ever, although their grammars modeled certain syn-
tactic dependencies (e.g. conjugating a verb with
its subject), they did not model semantic depen-
dencies. We assert that it is prohibitively difficult
to directly formulate weighted context-free gram-
mars that model semantic dependencies (e.g. selec-
tional preference), motivating our extension – the
weighted random-access indexed grammar.

3 Motivation

White and Cotterell (2021) generated artificial
language using a weighted context-free grammar
(WCFG). A WCFG augments a context-free gram-

mar (CFG) with a function q that assigns a non-
negative weight q(r) to each grammar rule r. This
induces a weight for each derivation: the product
of the weights of the rules used in the derivation.
More formal details can be found in Collins (2013).

WCFGs produce terminal symbols (words) ac-
cording to probability distributions that depend ex-
clusively on the grammar nonterminals. Consider
the following CFG:

S → NN VP

VP → VB NN

VB → drank | ate
NN → you | it | water | food

By using plain nonterminals like VB and
NN, the respective probabilities of sentences
it drank water and it drank food depend only
on the probability of the rules VB → water and
VB → food. Crucially, the verb choice does not
differentiate the sentence probabilities. This is un-
realistic – it is more common to drink water than to
drink food, whereas it is more common to eat food
than to eat water. This phenomenon (that linguistic
arguments are not independent of their predicates)
is known as selectional preference.

One way to detect selectional preference (Teh,
2006) is to collect dependency relationships from
a parsed natural language corpus (e.g. amod,
nsubj, dodj) and extract the dependency bigrams
(e.g. for amod, the first three dependency bigrams
in Europarl are internal market, European
citizens, and cultural exception). Then, as
we stream through the dependency bigrams, we
plot either the number of observed bigram types
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Figure 2: An example hierarchical Pitman-Yor process.
NN[] is the global noun distribution. NN[1] and NN[2]
respectively represent the likelihood that a noun is the
subject or object of a verb. NN[2, 27] and NN[2, 28]
respectively represent the likelihood that a noun is the
object of verb 27 (eat) or verb 28 (drink) of the vocab.

(a type-token curve) or the proportion of bigrams
whose type has been observed exactly once (a sin-
gleton proportion curve). In Figure 1, we contrast
the curves generated2 using four Europarl corpora
(Koehn, 2005) with a bigram corpus constructed
by sampling one adjective and one noun from inde-
pendent distributions respectively derived from ad-
jective and noun frequency in the English Europarl
corpus. The curves generated using the indepen-
dent bigram corpus are outliers. For instance, when
the number of observed bigrams is plotted on a log
scale, the natural corpora have roughly linear sin-
gleton proportion curves, whereas the independent
corpus has a considerable bow in the curve.

We would like to generate artificial languages
such that the dependencies have similar statistics to
naturally observed dependencies. Rather than inde-
pendently generating open-class words, Teh (2006)
suggests using a hierarchical Pitman-Yor process
(Pitman and Yor, 1997) – a tree-structured set of
distributions over the same domain, in which child
distributions are resamplings of their parents. Fig-
ure 2 shows an example. A hierarchical Pitman-Yor
process allows us to model context-specific word
distributions (e.g. food is more likely to appear as
the object of the verb eat than water, I, or me) that

2To generate Figure 1, we shuffled the Europarl sentences
and extracted the adjective-noun dependencies using spaCy.
The shuffling smooths irregularities caused by topic shift.

are jointly influenced by global word frequency
priors. A Pitman-Yor process PY(d, θ, Pbase) is
characterized by a discount parameter d ∈ [0, 1),
a strength parameter θ ∈ (−d,∞), and a base
distribution Pbase over integers {1, . . . , V }. We
follow (Teh, 2006) in describing a Pitman-Yor pro-
cess as a stochastic process that generates samples
〈x1, x2, ...〉 from i.i.d. samples 〈y1, y2, ...〉 drawn
from base distribution Pbase. Intuitively, it is a
“rich-get-richer” process, in which the jth sample
xj is set to either the value yi assigned to a previ-
ous x-sample (with probability proportional to the
number of previous x-samples that were assigned
the value yi), or the next y-sample in the sequence
that hasn’t yet been used. Formally, let b1 = 1
and draw subsequent binary values bn+1 from a
Bernoulli (coin-flip) distribution where:

P (bn+1 = 1) =

θ + d
∑

1≤i≤n
bi

θ + n

Variable bn+1 determines whether the (n + 1)th
sample is set to the value of a previous assignment
(bn+1 = 0) or the next unused yi sample (bn+1 =
1). Now define t1 = 1 and consider j, n ∈ Z+. If
bn+1 = 0, then let tn+1 = j with probability:

1

n

∑

1≤i≤n
1(ti = j)

Otherwise, if bn+1 = 1:

tn+1 = 1 +
∑

1≤i≤n
bi

The nth sample drawn from the Pitman-Yor pro-
cess is xn = ytn . A Pitman-Yor process, for all
practical purposes, can generate an “open-class” of
words by using a uniform base distribution Punif

with a sufficiently large vocabulary size V (for our
experiments, we use the space of all 32-bit inte-
gers).

A hierarchical Pitman-Yor process is simply a
Pitman-Yor process that uses another Pitman-Yor
process as its base distribution. For instance, we
could define a global adjective distribution Padj =
PY(0.4, 500, Punif), and then for noun y1 of our
vocabulary, we could define a noun-dependent ad-
jective distribution Padj,y1 = PY(d, θ, Padj).

4 Approach

The main challenge: how do we construct a WCFG
that derives its weights from the linked distribu-
tions of a hierarchical Pitman-Yor process? Con-
cerned with the induction of better n-gram language
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Figure 3: An example derivation, using the indexed
grammar from Figure 4.

ζ

S[] → S[z1] z1 7→ VB[]
S[y1] → NN[z1] VP[y1] z1 7→ NN[1, y1]

VP[y1] → VB[y1] NN[z1] z1 7→ NN[2, y1]
VB[27] → ate

VB[28] → drank

NN[9] → it

NN[56] → food

NN[57] → water

Figure 4: An example indexed grammar. The base
weight w0(ρ) of each indexed rule ρ is 1.

models, previous work (Teh, 2006; Blunsom and
Cohn, 2011) mainly focused on how to incorporate
hierarchical Pitman-Yor processes into sequential
models like Hidden Markov Models. Here, our con-
cern is how to incorporate these distributions into
a generative syntactic model convenient for engi-
neering artificial languages with specific linguistic
typologies. There exist many syntactic models to
choose from, including dependency grammars (Eis-
ner, 1996), tree-adjoining grammars (Joshi, 1987),
lexical functional grammars (Kaplan, 1985), CCGs
(Steedman and Baldridge, 2011), HPSGs (Pollard
and Sag, 1994) and GPSGs (Gazdar et al., 1985). In
this work, we choose to extend context-free gram-
mars, partly because of their popularity and partly
to facilitate comparison with (White and Cotterell,
2021), who used WCFGs – however, our approach
can be adapted to other syntactic formalisms.

4.1 Intuition
Our approach is a variation on indexed grammars
(Aho, 1968; Hopcroft et al., 2001), which augment
CFG nonterminals with a sequence of symbols
called indices. Before going through the formalism,

we briefly preview how it works, using a deriva-
tion (Figure 3) for an example indexed grammar
(Figure 4). At the top level, it applies CFG rule
S[]→ S[28], which involves two choices:

1. the choice of “indexed rule": S[]→ S[z1]

2. the choice of indices to assign to its z-
variables: {z1 7→ 28}

Next, the derivation expands S[28] by applying the
CFG rule S[28] → NN[9] VP[28]. Again, this
involves two choices:

1. the choice of indexed rule: S[y1] →
NN[z1] VP[y1]

2. the choice of indices to assign to its z-
variables: {z1 7→ 9}

Note the role of the variables: y-variables match
LHS indices and copy them to the RHS, whereas
z-variables introduce new indices on the RHS.
Each z-variable zi of an indexed rule is associ-
ated with a key ζ(zi) (Figure 4, right column)
that references a distribution in a “distribution ta-
ble” τ . The weight associated with a derivation
rule (e.g. S[28] → NN[9] VP[28]) is the prod-
uct of the base weight w0 of the indexed rule (e.g.
w0(S[y1]→ NN[z1] VP[y1]), and the probabilities
of the z-assignments (e.g. τ(NN[1, 28])(9)). As
with CFGs, the weight of a derivation is the prod-
uct of the derivation rules.

4.2 Random-access Indexed Grammars
Let Y = {y1, y2, ...} and Z = {z1, z2, ...} be
reserved symbols called y- and z-variables. A
random-access indexed grammar (RIG)3 is a 5-
tuple (N,T, F, S,R) where:

• N is a set of nonterminal symbols

• T is a set of terminal symbols

• F is a set of index symbols, or indices4

• S ∈ N is the start symbol
3The standard definition of indexed grammars (Hopcroft

et al., 2001) treats the indices as a stack, rather than as a
random-access array. Our departure from the standard defini-
tion (introducing y- and z-variables to allow random-access
matching) prioritizes the ease of grammar engineering over
definitional conciseness and representational power. More-
over, since our use case is generation, we are not concerned
with indexed grammar variants that prioritize efficiency of
parsing or induction (e.g. (Gazdar, 1987)).

4In this paper, we will use the set of nonnegative 32-bit
integers as our set F of indices.
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• R is a finite set of indexed rules (to be defined
shortly)

In contrast to standard CFG rules, indexed rules
use indexed nonterminals, symbols of the form
A[φ], where A ∈ N and φ ∈ (F ∪ Y ∪ Z)∗. A
grounded indexed nonterminal is an indexed non-
terminal A[φ] such that φ ∈ F ∗. An indexed rule
has the form:

A[φ]→ rhs

where A[φ] is an indexed nonterminal without z-
variables, and rhs is a sequence of terminals and
indexed nonterminals whose y-variables all appear
in φ.

To define the semantics of a RIG, let a substi-
tution be a function σ : D → F with domain
D ⊆ Y ∪ Z. We apply a substitution σ to a in-
dexed nonterminal A[φ1, . . . , φn] as follows:

σ(A[φ1, . . . , φn]) = A[σ̄(φ1), · · · , σ̄(φn)]

where:

σ̄(x) =

{
σ(x) if x ∈ D
x if x 6∈ D

for x ∈ F ∪ Y ∪ Z. We apply a substitution σ to
an indexed rule ρ by applying σ to every indexed
nonterminal in ρ. For example, if:

σ = {y1 7→ 52, z1 7→ 14}
ρ = S[y1]→ NN[z1] VP[y1]

then:

σ(ρ) = S[52]→ NN[14] VP[52]

Each indexed rule ρ implicitly represents the set
of CFG rules that can be obtained by applying a
substitution to the variables of the indexed rule:

R(ρ) = {σ(ρ) | σ : V (ρ)→ F}

Here, V (ρ) ⊆ Y ∪ Z is the set of variables that
appear in indexed rule ρ. The RIG encodes a CFG
consisting of the union

⋃
ρ∈RR(ρ) of these rules.

4.3 Weighted RIGs
Next, we introduce weights from a hierarchical
Pitman-Yor process. We reference the process dis-
tributions via a distribution table – a function τ
that maps grounded indexed nonterminals to dis-
tributions (e.g. the distributions of a hierarchical

Pitman-Yor process). For instance, in the distri-
bution table τ implied by Figure 2, τ(NN[2, 28])
corresponds to the lower right distribution.

A weighted random-access indexed grammar
(WRIG) is a tuple (G, τ, w0, ζ) where:

• G = (N,T, F, S,R) is a RIG

• τ is a distribution table

• w0 assigns a nonnegative weight (called the
base weight) to each indexed rule ρ ∈ R

• ζ assigns a z-weighting to each indexed rule
ρ ∈ R. The z-weighting ζ(ρ), abbreviated
ζρ for clarity, is a function that assigns an
indexed nonterminal (that may contain y- but
not z-variables) to each z-variable of the rule.

Every WRIG encodes a WCFG. Each CFG rule
r = σ(ρ) encoded by indexed rule ρ (where σ :
V (ρ)→ F is a substitution) has weight:

q(r) = w0(ρ) ·
∏

z∈Z(ρ)
wz(σ(z))

where Z(ρ) ⊆ Z is the set of z-variables that ap-
pear in indexed rule ρ, and wz = τ(σ(ζρ(z))) is
the distribution associated with grounded indexed
nonterminal σ(ζρ(z)) in the distribution table τ .

Example: The second rule of the RIG in Fig-
ure 4 encodes (among others) the CFG rule:

S[28]→ NN[9] VP[28]

The weight of this CFG rule is:

w0(S[y1]→ NN[z1] VP[y1])

· τ(NN[1, 28])(9)

In other words, it is the base weight of the indexed
rule, multiplied by the probability of word 9 (it)
being the subject of verb 28 (drink).

4.4 Voiceboxes
Using a WRIG, syntax can be specified with rela-
tive ease, i.e. without the need to manually formu-
late an arduous number of rules. However, terminal
rules (i.e. rules that generate the lexemes) are a dif-
ferent story. We need an auxiliary mechanism to
automatically invent lexemes from grounded in-
dexed preterminals, i.e. a mechanism that will
translate a preterminal (see Figure 4) like VB[27] –
the 27th verb of the vocabulary – into a lexeme (e.g.,
ate). To do so, we pair the WRIG with a voicebox,
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ζ

S[] → S[z1, z2] z1 7→ VB[], z2 7→ COUNT[]
S[y1, y2] → IC[y1, y2] , DC[z1, z2] z1 7→ VB[], z2 7→ COUNT[]

IC[y1, y2] → NP[z1, y2, 1] VP[y1, y2] z1 7→ NN[1, y1]
DC[y1, y2] → weil NP[z1, y2, 1] VPD[y1, y2] z1 7→ NN[1, y1]
VP[y1, y2] → VB[y1, y2] NP[z1, z2, 2] z1 7→ NN[2, y1], z2 7→ COUNT[]

VPD[y1, y2] → NP[z1, z2, 2] VB[y1, y2] z1 7→ NN[2, y1], z2 7→ COUNT[]
NP[y1, y2, y3] → DT[y2, y3] NN[y1, y2, y3]

Figure 5: A WRIG capturing simple German syntax and morphology. Each indexed rule has base weight 1.

x τ(x) description
VB[] PY(0.4, 1, Punif) global verb distribution
NN[] PY(0.4, 500, Punif) global noun distribution
NN[1] PY(0.4, 500, τ(NN[])) global subject distribution
NN[1, y1] PY(0.4, 10, τ(NN[1])) subject distribution for head verb y1
NN[2] PY(0.4, 500, τ(NN[])) global object distribution
NN[2, y1] PY(0.4, 0.1, τ(NN[2])) object distribution for head verb y1
COUNT[] Unif({1, 2}) global count distribution (1=singular, 2=plural)

Figure 6: Distribution table for the WRIG in Figure 5. Punif is a uniform distribution over all 32-bit integers.

a function that maps grounded indexed nontermi-
nals (specifically, preterminals) to lexemes. The
voicebox is then used to generate terminal rules
on-the-fly. Note that the voicebox can also sup-
port morphology. For example, if the pretermi-
nal VB[27, 3, 1] encodes the third-person singular
conjugation of verb 27, then the voicebox might
produce β(VB[27, 3, 1]) = eats.

5 Demo: Simple German Syntax with
Selectional Preference

To demonstrate how linguistic phenomena can be
modeled by a WRIG, we present a small exam-
ple in Figure 5, whose distribution table is given
by Figure 6. It models various aspects of German
syntax: word order (independent clauses are SVO,
whereas dependent clauses are SOV), verb conjuga-
tion (present singular and present plural), and case
roles (nominative and accusative). Figure 7 shows
the first five sentences of a corpus generated by
the WRIG. To interpret the indexed nonterminals,
note that subject count (1=singular, 2=plural) and
case (1=nominative, 2=accusative) are encoded as
integer indices:

• S[y1, y2], IC[y1, y2],DC[y1, y2]: respectively
produce a sentence, independent clause, and
dependent clause with subject count y2, whose
head is the y1

th verb of the vocabulary

• NP[y1, y2, y3]: produces a noun phrase with
count y2 and case y3, whose head is the y1

th

noun of the vocabulary

• VP(D)[y1, y2]: produces a (dependent clause)
verb phrase with subject count y2, whose head
is the y1

th verb of the vocabulary

• NN[y1, y2, y3]: produces the y1
th noun of the

vocabulary, declined for count y2 and case y3

• VB[y1, y2]: produces the y1
th verb of the vo-

cabulary, conjugated for subject count y2

• DT[y1, y2]: produces a determiner for a noun
with count y1 and case y2

Terminal rules for open-class nonterminals
NN[y1, y2, y3] and VB[y1, y2] are generated by a
voicebox that randomly concatenates German syl-
lables to create new words, and adds German mor-
phological endings based on count and case. For
the closed-class DT[y1, y2], the voicebox generates
the German definite determiner for the specified
count and case. For instance (see Figure 7), the
noun hunghub5 appears as den hunghub when it
is accusative singular and die hunghuben when it
is accusative plural.

5In this grammar, all nouns are masculine. See the
testperanto tutorials for an example of how to model noun
gender.
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Figure 7: Example sentences generated by the simple German WRIG. Observe that the verb milchsichkeiten
strongly tends to take the noun hunghub as its object – the hyperparameters of this particular WRIG have been set
to encourage atypically strong selectional preference between verbs and their objects.

Figure 8: Singleton proportion of verb-object depen-
dency bigrams as corpus size increases.

By associating the noun distributions with the
distributions of a hierarchical Pitman-Yor process,
we also model selectional preference. By assigning
a Pitman-Yor process of very low strength (0.1)
to the verb-dependent object distributions, we en-
force unusually strong selectional preference be-
tween verbs and objects, allowing us to see its man-
ifestation of in just a small sample of generated
sentences (Figure 7). In particular, the invented
verb milchsichkeiten frequently takes the noun
hunghub as its object.

6 Experiment: Word Order Bias

As a pilot study of our framework, we re-created
an experiment performed by White and Cotterell
(2021), who used WCFGs to investigate the induc-
tive biases of neural language models for various
word orders exhibited by natural language. We cre-
ated a WRIG based on their WCFG description,
which produces simple declarative sentences with
relative clauses, prepositional phrases, and clausal
complements. We used a voicebox that assigned
concatenations of random syllables to each generic
noun, verb, and adjective. It used English prepo-

singleton type-token
proportion ratio
dev test dev test

amod base 0.099 0.094 0.23 0.23
ours 0.0074 0.013 0.016 0.018

nsubj base 0.045 0.057 0.083 0.12
ours 0.0044 0.010 0.014 0.041

dobj base 0.081 0.088 0.18 0.22
ours 0.0081 0.014 0.036 0.054

Figure 9: Absolute difference of singleton proportion
and type-token ratio between artificial corpora (ours and
base) and natural corpora (dev and test), averaged over
power-of-two corpora sizes from 27 to 222.

sitions, determiners, and morphology (e.g. verbs
with a singular subject were suffixed with the letter
“s”). We set the parameters of our Pitman-Yor pro-
cesses by specifying discount and strength parame-
ters so that our produced sentences closely matched
the type-token ratio and singleton proportion curves
of the English side of the WMT 2014 German-
English parallel corpus (Bojar et al., 2014; Luong
et al., 2015) for the following dependency bigrams:
adjective-noun (amod), verb-subject (nsubj), verb-
object (dobj). Figure 8 compares the singleton pro-
portion curves of verb-object dependencies for our
generated corpus, versus the development corpus
(WMT 2014 Ger-Eng) and a held-out test corpus:
the English side of the JParaCrawl 3.0 Jpn-Eng cor-
pus (Morishita et al., 2022). We also compare our
corpus statistics to a baseline that attempts to repli-
cate (White and Cotterell, 2021), using independent
adjective, noun, and verb distributions rather than
tied hierarchical Pitman-Yor distributions. Visual
inspection shows that the independent baseline is
an outlier, unrepresentative of the statistics man-
ifested by natural corpora. We can distill these
curves into a single numeric indicator by averaging
the absolute difference between an artificial corpus
curve (ours or base) and a natural corpus curve
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Figure 10: Visualization of experimental results using a
point plot. The transformer produces lower-perplexity
language models for the artificial languages that follow
a Japanese word order, while the LSTM produces lower-
perplexity language models for the artificial languages
that follow an English word order.

(dev or test) for each power of two on the x-axis.
Figure 9 presents these numbers for singleton pro-
portion and the type-token ratio: the statistics for
our generated corpus are an order-of-magnitude
closer to natural corpora than the baseline.

We created two variants of the WRIG, corre-
sponding to the standard word orders of English
and Japanese. For instance, as a head-final lan-
guage, the Japanese WRIG included the rule6:

VP[y1, y2]→ NP[z1, z2] VB[y1, y2]

and as a head-initial language, the English WRIG
included the rule:

VP[y1, y2]→ VB[y1, y2] NP[z1, z2]

Following (White and Cotterell, 2021), the WRIGs
also differed in:

• the position of the complementizer in comple-
ments, relative to the sentential component

• the position of the adposition in adpositional
phrases, relative to the adpositional object

• the position of a relative clause, relative to the
noun it modifies

We generated 1,000,000 sentences for each WRIG
variant, and divided these into ten evenly sized cor-
pora. Each corpus of 100,000 sentences was further

6A brief guide to the referenced indexed nonterminals
of the WRIG: VP[y1.y2] produces a verb phrase with sub-
ject count y2, whose head is the y1

th verb of the vocabulary.
NP[y1, y2] produces a noun phrase with count y2, whose head
is the y1

th noun of the vocabulary. VB[y1, y2] produces the
y1

th verb of the vocabulary, conjugated for subject count y2.

divided into an 80k-10k-10k train-dev-test partition.
On each train set, we trained7 a transformer-based
and an LSTM-based language model, resulting in
10 trained language models (LMs) per choice of
neural architecture and WRIG. Finally, we evalu-
ated these LMs on the respective test sets.

For each architecture (transformer and LSTM)
and word order (English and Japanese), Figure 10
visualizes the test perplexity over the ten trials us-
ing a point plot8. For transformer LMs, we ob-
tained lower perplexity on the languages that fol-
lowed a Japanese word order. For LSTM LMs, we
observed the opposite: a (statistically significant)
lower perplexity on the languages that followed an
English word order. While these results generally
support the findings of White and Cotterell (2021),
White and Cotterell (2021) did not find significant
differences between the LSTM LMs. We find it
encouraging that our results do not differ wildly
from White and Cotterell (2021) (it would be trou-
bling for the prospects of artificial languages if
each iterative improvement dramatically reversed
the conclusions of the previous iteration). At the
same time, we also find it encouraging that the dif-
ferences between their results and ours offer a pos-
sible reconciliation between White and Cotterell
(2021) and Ravfogel et al. (2019), who reported,
based on experiments with naturally-derived cor-
pora, that LSTM LMs performed better on SVO
(versus SOV) languages.

7 Conclusion

With this work, our goal is to enable researchers
to more easily develop models for typologically
diverse languages, and to investigate under what
conditions such models perform effectively. By
demonstrating that RIGs (weighted by hierarchical
Pitman-Yor processes) can model realistic syntac-
tic and semantic dependencies, we hope to provide
some confidence that the framework can prove a
useful proxy for real-world data, when such data is
not readily available. To facilitate adoption of our
framework, we are also releasing an open-source
Python package called testperanto for building
WRIGs, providing fellow researchers with a means
to generate artificial languages that emulate the ty-
pology of the natural languages they seek to study.

7Like White and Cotterell (2021), we used the fairseq
implementation (Ott et al., 2019) of these language models.

8We used seaborn to generate the plot. A point plot shows
the mean of the ten trials (the dot) and the 95% confidence
interval (the line).
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