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Abstract

While there is increasing concern about the in-
terpretability of neural models, the evaluation
of interpretability remains an open problem,
due to the lack of proper evaluation datasets and
metrics. In this paper, we present a novel bench-
mark to evaluate the interpretability of both neu-
ral models and saliency methods. This bench-
mark covers three representative NLP tasks:
sentiment analysis, textual similarity and read-
ing comprehension, each provided with both
English and Chinese annotated data. In order
to precisely evaluate the interpretability, we
provide token-level rationales that are carefully
annotated to be sufficient, compact and compre-
hensive. We also design a new metric, i.e., the
consistency between the rationales before and
after perturbations, to uniformly evaluate the in-
terpretability on different types of tasks. Based
on this benchmark, we conduct experiments on
three typical models with three saliency meth-
ods, and unveil their strengths and weakness
in terms of interpretability. We will release
this benchmark1 and hope it can facilitate the
research in building trustworthy systems.

1 Introduction

In the last decade, deep learning (DL) has been
rapidly developed and has greatly improved vari-
ous artificial intelligence tasks in terms of accuracy
(Deng and Yu, 2014; Litjens et al., 2017; Pouyanfar
et al., 2018). However, as DL models are black-box
systems, their inner decision processes are opaque
to users. This lack of transparency makes them
untrustworthy and hard to be applied in decision-
making applications in fields such as health, com-
merce and law (Fort and Couillault, 2016). Conse-
quently, there is a growing interest in explaining the
predictions of DL models (Simonyan et al., 2014;
Ribeiro et al., 2016; Alzantot et al., 2018; Bastings
et al., 2019; Jiang et al., 2021). Accordingly, many

1https://www.luge.ai/#/luge/task/taskDetail?
taskId=15

Sentiment Analysis (SA)
Instanceo: although it bangs a very cliched drum at times,
this crowd-pleaser’s fresh dialogue, energetic music, and
good-natured spunk are often infectious.
Sentiment label: positive
Instancep: although it bangs a very cliched drum at times,
this crowd-pleaser’s novel dialogue, vigorous music, and
good-natured spunk are often infectious.
Sentiment label: positive

Semantic Textual Similarity (STS)
Instance1o: Is there a reason why we should travel alone?
Instance2o: What are some reasons to travel alone?
Similarity: same
Instance1p: Is there any reason why we travel alone?
Instance2p: List some reasons to travel alone?
Similarity: same

Machine Reading Comprehensive (MRC)
Question: What part of France were the Normans located?
Articleo: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...
Answer: north
Question: Where in France were the Normans located?
Articlep: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...
Answer: north

Table 1: Examples from our benchmark. In each in-
stance, colored tokens are rationales, and tokens in the
same color constitute an independent rationale set. Each
perturbed example (p) is created on an original example
(o), where underlined tokens in the original example
have been altered. The consistency of rationales under
perturbations is used to evaluate interpretability.

evaluation datasets are constructed and the corre-
sponding metrics are designed to evaluate related
works (DeYoung et al., 2020; Jacovi and Goldberg,
2020).

In order to accurately evaluate model inter-
pretability2 with human-annotated rationales3 (i.e.,
evidence that supports the model prediction), many
researchers successively propose the properties that
a rationale should satisfy, e.g., sufficiency, compact-

2Despite fine-grained distinctions between “interpretabil-
ity” and “explainability”, we use them interchangeably.

3In this paper, we focus on highlight-based rationales,
which consist of input elements, such as words and sentences,
that play a decisive role in the model prediction.
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ness and comprehensiveness (see Section 3.3 for
their specific definitions) (Kass et al., 1988; Fischer
et al., 1990; Lei et al., 2016; Yu et al., 2019). How-
ever, the existing datasets are designed for different
research aims with different metrics, and their ratio-
nales do not satisfy all properties needed, as shown
in Table 2, which makes it difficult to track and
facilitate the research progress of interpretability.
In addition, all existing datasets are in English.

Meanwhile, many studies focus on designing
guidelines and metrics for interpretability evalua-
tion, where plausibility and faithfulness are pro-
posed to measure interpretability from different
perspectives (Herman, 2017; Alvarez Melis and
Jaakkola, 2018; Yang et al., 2019; Wiegreffe and
Pinter, 2019; Jacovi and Goldberg, 2020). Plausi-
bility measures how well the rationales provided
by models align with human-annotated rationales.
With different annotation granularities, token-level
and span-level F1-scores are proposed to measure
plausibility (DeYoung et al., 2020; Mathew et al.,
2021). Faithfulness measures to what extent the
provided rationales influence the corresponding
predictions. Some studies (Yu et al., 2019; DeY-
oung et al., 2020) propose to compare the model’s
prediction on the full input to its prediction on
input masked according to the rationale and its
complement (i.e., non-rationale). However, it is
difficult to apply this evaluation method to non-
classification tasks, such as machine reading com-
prehension. Furthermore, the model prediction on
the non-rationale has gone beyond the standard
output scope, e.g., the prediction label on the non-
rationale should be neither positive nor negative in
the sentiment classification task. Thus the metric
provided by this method can not generally and may
not precisely evaluate the interpretability.

In order to address the above problems, we re-
lease a new interpretability evaluation benchmark
which provides fine-grained rationales for three
tasks and a new evaluation metric for interpretabil-
ity. Our contributions include:

• Our benchmark contains three representative
tasks in both English and Chinese, i.e., senti-
ment analysis, semantic textual similarity and
machine reading comprehension. Importantly,
all annotated rationales meet the requirements of
sufficiency, compactness and comprehensiveness
by being organized in the set form.

• To precisely and uniformly evaluate the inter-
pretability of all tasks, we propose a new eval-

uation metric, i.e., the consistency between the
rationales provided on examples before and af-
ter perturbation. The perturbations are crafted in
a way that will not change the model decision
mechanism. This metric measures model fidelity
under perturbations and could help to find the
relationship between interpretability and other
metrics, such as robustness.

• We give an in-depth analysis based on three typi-
cal models with three popular saliency methods,
as well as a comparison between our proposed
metrics and the existing metrics. The results
show that our benchmark can be used to evaluate
the interpretability of DL models and saliency
methods. Meanwhile, the results strongly indi-
cate that the research on interpretability of NLP
models has much further to go, and we hope our
benchmark will do its bit along the way.

2 Related Work

As our work provides a new interpretability evalua-
tion benchmark with human-annotated rationales,
in this section, we mainly introduce saliency meth-
ods for the rationale extraction, interpretability eval-
uation datasets and metrics.

Saliency Methods In the post-hoc interpretation
research field, saliency methods are widely used
to interpret model decisions by assigning a distri-
bution of importance scores over the input tokens
to represent their impacts on model predictions
(Simonyan et al., 2014; Ribeiro et al., 2016; Mur-
doch et al., 2018). They are mainly divided into
four categories: gradient-based, attention-based,
erasure-based and linear-based. In gradient-based
methods, the magnitudes of the gradients serve as
token importance scores (Simonyan et al., 2014;
Smilkov et al., 2017; Sundararajan et al., 2017).
Attention-based methods use attention weights as
token importance scores (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). In erasure-based meth-
ods, the token importance score is measured by the
change of output when the token is removed (Li
et al., 2016; Feng et al., 2018). Linear-based meth-
ods use a simple and explainable linear model to ap-
proximate the evaluated model behavior locally and
use the learned token weights as importance scores
(Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,
2017). These methods have their own advantages
and limitations from aspects of computational effi-
ciency, interpretability performance and so on (Nie
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Datasets Granularity Properties
Sufficiency Compactness Comprehensiveness

e-SNLI⋆ (Camburu et al., 2018) word % ! %

HUMMINGBIRD (Hayati et al., 2021) word !− % –
HateXplain (Mathew et al., 2021) word !− – !

Movie Reviews⋆ (Zaidan and Eisner, 2008) snippet ! % %

CoS-E⋆ (Rajani et al., 2019) snippet !− % !

Evidence Inference⋆ (Lehman et al., 2019) snippet ! % %

BoolQ⋆ (DeYoung et al., 2020) snippet ! % !

WikiQA (Yang et al., 2015) sentence ! % –
MultiRC⋆ (Khashabi et al., 2018) sentence ! % !

HotpotQA (Yang et al., 2018) sentence ! % !

FEVER⋆ (Thorne et al., 2018) sentence ! % –
SciFact (Wadden et al., 2020) sentence ! % –
Ours word ! ! !

Table 2: Statistics of existing datasets with highlight-based rationales. The datasets marked with ⋆ are collected and
modified by ERASER (DeYoung et al., 2020). ERASER manually reviews and constructs snippet-level rationales to
make them satisfy sufficiency and comprehensiveness. !− represents the rationale contains key words, but does not
contain enough information for the prediction. The value ‘-’ represents the property is not mentioned in the paper.

et al., 2018; Jain and Wallace, 2019; De Cao et al.,
2020; Sixt et al., 2020).

Interpretability Datasets Many datasets with
human-annotated rationales have been published
for interpretability evaluation, e.g., highlight-based
rationales (DeYoung et al., 2020; Mathew et al.,
2021), free-text rationales (Camburu et al., 2018;
Rajani et al., 2019) and structured rationales (Ye
et al., 2020; Geva et al., 2021). To create high-
quality highlight-based rationales, many studies
give their views on the properties that a rationale
should satisfy. Kass et al. (1988) propose that a ra-
tionale should be understood by humans. Lei et al.
(2016) point that a rationale should be compact
and sufficient, i.e., it is short and contains enough
information for a prediction. Yu et al. (2019) intro-
duce comprehensiveness as a criterion, requiring
all rationales to be selected, not just a sufficient set.
Although the above criteria have been proposed for
highlight rationales, the existing datasets in Table
2 are built with part of them, as they are conducted
on different tasks with individual aims.

Interpretability Metrics For highlight-based ra-
tionales, plausibility and faithfulness are often
used to measure interpretability from the aspects
of human cognition and model fidelity (Arras
et al., 2017; Mohseni et al., 2018; Weerts et al.,
2019). DeYoung et al. (2020) propose to use IOU
(Intersection-Over-Union) F1-score and AUPRC
(Area Under the Precision-Recall curve) score to
measure plausibility of snippet-level rationales.
Mathew et al. (2021) use token F1-score to evaluate

plausibility of token-level rationales. Jacovi and
Goldberg (2020) provide concrete guidelines for
the definition and evaluation of faithfulness. DeY-
oung et al. (2020) propose to evaluate faithfulness
from the perspectives of sufficiency and compre-
hensiveness of rationales (Equation 4). However,
this evaluation manner is only applicable to classi-
fication tasks and brings uncontrollable factors to
interpretability evaluation. Thus Yin et al. (2022)
propose sensitivity and stability as complementary
metrics for faithfulness. Ding and Koehn (2021)
evaluate faithfulness of saliency methods on natu-
ral language models by measuring how consistent
the rationales are regarding perturbations.

In this work, we provide a new interpretability
evaluation benchmark, containing fine-grained an-
notated rationales, a new evaluation metric and the
corresponding perturbed examples.

3 Evaluation Data Construction

As illustrated in Figure 1, the construction of our
datasets mainly consists of three steps: 1) data
collection for each task; 2) perturbed data construc-
tion; 3) iterative rationale annotation and checking.
We first introduce the annotation process, includ-
ing the annotation criteria for perturbations and
rationales. Then we describe our data statistics.
In addition, we show other annotation details in
Appendix A.

3.1 Data Collection
In order to provide a general and unified inter-
pretability evaluation benchmark, we construct
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Figure 1: The construction workflow of our datasets.

evaluation datasets for three representative tasks,
i.e., sentiment analysis, semantic textual similar-
ity, and machine reading comprehension. Mean-
while, we create both English and Chinese evalua-
tion datasets for each task.

Sentiment Analysis (SA), a single-sentence
classification task, aims to predict a sentiment label
for the given instance. For English, we randomly
select 1,500 instances from Stanford Sentiment
Treebank (SST) (Socher et al., 2013) dev/test sets,
and 400 instances from Movie Reviews (Zaidan
and Eisner, 2008) test set. For Chinese, we ran-
domly sample 60,000 instances from the logs of an
open SA API4 with the permission of users. The
annotators select instances for annotation (see Ap-
pendix A for details) and label a sentiment polarity
for each unlabeled instance. Then 2,000 labeled
instances are chosen for building evaluation set.

Semantic Textual Similarity (STS), a sentence-
pair similarity task, is to predict the similarity be-
tween two instances. We randomly select 2,000
pairs from Quora Question Pairs (QQP) (Wang
et al., 2018) and LCQMC (Liu et al., 2018) to build
English and Chinese evaluation data respectively.

Machine Reading Comprehension (MRC), a
long-text comprehension task, aims to extract an
answer based on the question and the correspond-
ing passage. We randomly select 1,500 triples
with answers and 500 triples without answers from
SQUAD2.0 (Rajpurkar et al., 2018) and DuReader
(He et al., 2018) for building English and Chinese
evaluation set respectively.

3.2 Perturbed Data Creation

Recent studies (Jacovi and Goldberg, 2020; Ding
and Koehn, 2021) claim that a saliency method is
faithful if it provides similar rationales for similar
inputs and outputs. Inspired by them, we propose
to evaluate the model faithfulness via measuring
how consistent its rationales are regarding perturba-

4https://ai.baidu.com/tech/nlp_apply/
sentiment_classify. Due to the diversity of these
logs, we choose instances from these logs for annotation.

tions that are supposed to preserve the same model
decision mechanism. In other words, under per-
turbations, a model is considered to be faithful if
the change of its rationales is consistent with the
change of its prediction. Consequently, we con-
struct perturbed examples for each original input.

Perturbation Criteria Perturbations should not
change the model internal decision mechanism. We
create perturbed examples from two aspects: 1) per-
turbations do not influence model rationales and
predictions; 2) perturbations cause the alterations
of rationales and may change predictions. Please
note that the influence of perturbations comes
from human’s basic intuition on model’s decision-
making mechanism. Based on the literature (Jia
and Liang, 2017; McCoy et al., 2019; Ribeiro et al.,
2020), we define three perturbation types.

• Alteration of dispensable words. Insert, delete
and replace words that should have no effect on
model predictions and rationales, e.g., the sen-
tence “what are some reasons to travel alone” is
changed to “list some reasons to travel alone”.

• Alteration of important words. Replace im-
portant words which have an impact on model
predictions with their synonyms or related words,
such as “i dislike you” instead of “i hate you”. In
this situation, the model prediction and rationale
should change with perturbations.

• Syntax transformation. Transform the syntax
structure of an instance without changing its se-
mantics, e.g., “the customer commented the hotel”
is transformed into “the hotel is commented by
the customer”. In this case, the model prediction
and rationale should not be affected.

For each original input, the annotator first se-
lects a perturbation type, then creates a perturbed
example according to the definition of this pertur-
bation type. Please note that the annotators can
select more than one perturbation type for an orig-
inal input. We ask the annotator to create at least
one perturbed example for each original input. And
they need to create at least 100 perturbed examples
for each perturbation type. For each task, we have
two annotators to create perturbed examples and
label golden results for these examples, i.e., sen-
timent label for SA, similarity label for STS and
answer for MRC. According to the perturbation cri-
teria, most of the perturbed examples have the same
results as their original ones. Then we ask the other
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two annotators to review and modify the created
examples and their corresponding results. Since
the annotation task in this step is relatively easy,
the accuracy of created examples after checking is
more than 95%.

3.3 Iterative Rationale Annotation Process
Given an input and the corresponding golden result,
the annotators highlight important input tokens that
support the prediction of golden result as the ratio-
nale. Then we introduce the rationale criteria and
the annotation process used in our work.

Rationale Criteria As discussed in recent stud-
ies (Lei et al., 2016; Yu et al., 2019), a rationale
should satisfy the following properties.

• Sufficiency. A rationale is sufficient if it con-
tains enough information for people to make the
correct prediction. In other words, people can
make the correct prediction only based on tokens
in the rationale.

• Compactness. A rationale is compact if all of its
tokens are indeed required in making a correct
prediction. That is to say, when any token is
removed from the rationale, the prediction will
change or become difficult to make.

• Comprehensiveness. A rationale is comprehen-
sive if its complements in the input can not imply
the prediction, that is, all evidence that supports
the output should be labeled as rationales.

Annotation Process To ensure the data quality,
we adopt an iterative annotation workflow, consist-
ing of three steps, as described in Figure 1.

Step 1: rationale annotation. Based on hu-
man’s intuitions on the model decision mechanism,
given the input and the corresponding golden result,
the ordinary annotators who are college students
majoring in languages label all critical tokens to
guarantee the rationale’s comprehensiveness. Then
they organize these tokens into several sets, each
of which should be sufficient and compact. That is
to say, each set can support the prediction indepen-
dently. As described in Table 1, the first example
contains three rationale sets, and tokens in the same
color belong to the same set. Based on this set form,
the rationale satisfies the above three criteria.

Step 2: rationale scoring. Our senior annota-
tors5 double-check the annotations by scoring the

5They are full-time employees, and have lots of experience
in annotating data for NLP tasks.

Tasks English Chinese
Size RLR RSN Size RLR RSN

SA 1,999 20.1% 2.1 2,160 27.6% 1.4
STS 2,248 50.4% 1.0 2,146 66.6% 1.0
MRC 1,969 10.4% 1.0 2,315 9.8% 1.0

Table 3: Overview of our datasets. “Size” shows the
number of original/perturbed pairs. “RLR” represents
the ratio of rationale length to its input length. “RSN”
represents the number of rationale sets in an input. We
report the average RLR and RSN over all data.

given rationales according to the annotation cri-
teria. For each rationale set, the annotators rate
their confidences for sufficiency and compactness.
The confidences for sufficiency consist of three
classes: can not support result (1), not sure (2)
and can support result (3). And the confidences
for compactness compose of four classes: include
redundant tokens (1), include disturbances (2), not
sure (3) and conciseness (4). Then based on all ra-
tionale sets for each input, the annotators rate their
confidences for comprehensiveness on a 3-point
scale including not be comprehensive (1), not sure
(2), be comprehensive (3).

A rationale is considered to be of high-quality if
its average score on sufficiency, compactness and
comprehensiveness is equal to or greater than 3.0,
3.6, 2.6. That is to say, at least two-thirds of the an-
notators give the highest confidence, and less than
one-third of the annotators give the confidence of
“not sure”. Then all unqualified data whose average
score on a property is lower than the corresponding
threshold goes to the next step.

Step 3: rationale modification. Low-quality ra-
tionales are shown to the ordinary annotators again.
The annotators correct the rationales to meet the
properties with scores below the threshold.

Then the corrected rationales are scored by se-
nior annotators again. The unqualified data after
three loops is discarded. This iterative annotation-
scoring process can ensure the data quality.

Other annotation details, such as annotator infor-
mation, annotation training and data usage instruc-
tions, are described in Appendix A.

3.4 Data Statistics

We give a comparison between our benchmark and
other existing datasets, as shown in Table 2. Com-
pared with existing datasets, our benchmark con-
tains three NLP tasks with both English and Chi-
nese annotated data. Compared with ERASER
which collects seven existing English datasets in
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Models SA STS MRC
Accf Accr Accf Accr F1f F1r

English
LSTM 78.2 86.2 74.6 69.8 54.4 53.4
RoBERTa-base 93.8 92.4 92.7 89.3 71.7 80.8
RoBERTa-large 95.4 91.5 93.2 88.8 76.0 76.7

Chinese
LSTM 60.0 70.4 75.2 80.7 66.4 82.2
RoBERTa-base 59.8 77.0 85.5 88.1 65.8 89.3
RoBERTa-large 62.6 80.6 86.0 87.4 67.8 83.3

Table 4: Model performance on the original full input
(Accf ) and human-annotated rationale (Accr).

its benchmark and provides snippet-level rationales
to satisfy sufficiency and comprehensiveness, our
benchmark provides token-level rationales and sat-
isfies all three primary properties of rationales.

Table 3 shows the detailed statistics of our bench-
mark. We can see that the length ratio and the
number of rationales vary with datasets and tasks,
where the length ratio affects the interpretability
performance on plausibility, as shown in Table 6.

Meanwhile, we evaluate the sufficiency of
human-annotated rationales by evaluating model
performance on rationales, as shown in Table 4.
Despite the input construction based on rationales
has destroyed the distribution of original inputs,
model performance on human-annotated rationales
is competitive with that on full inputs, especially
on MRC task and Chinese datasets. We can con-
clude that human-annotated rationales are suffi-
cient. Meanwhile, we give more data analysis in Ta-
ble 7, such as model performance on non-rationales,
sufficiency and comprehensiveness scores.

4 Metrics

Following existing studies (DeYoung et al., 2020;
Ding and Koehn, 2021; Mathew et al., 2021), we
evaluate interpretability from the perspectives of
plausibility and faithfulness. Plausibility measures
how well the rationales provided by the model
agree with human-annotated ones. And faithful-
ness measures the degree to which the provided
rationales influence the corresponding predictions.

Different from existing work, we adopt token-
F1 score for plausibility and propose a new metric
MAP for faithfulness.

Token F1-score is defined in Equation 1, which
is computed by overlapped rationale tokens. Since
an instance may contain multiple golden rationale
sets, for the sake of fairness, we take the set that
has the largest F1-score with the predicted rationale

as the ground truth for the current prediction.

Token-F1 =
1

N

N∑

i=1

(2× Pi ×Ri

Pi +Ri
)

where Pi =
|Sp

i ∩ Sg
i |

|Sp
i |

and Ri =
|Sp

i ∩ Sg
i |

|Sg
i |

(1)

where Sp
i and Sg

i represent the rationale set of i-th
instance provided by models and human respec-
tively; N is the number of instances.

MAP (Mean Average Precision) measures the
consistency of rationales under perturbations and is
used to evaluate faithfulness. According to the orig-
inal/perturbed input pair, MAP aims to calculate
the consistency of two token lists sorted by token
importance score, as defined in Equation 2. The
high MAP indicates the high consistency.

MAP =

∑|Xp|
i=1 (

∑i
j=1 G(xp

j , X
o
1:i))/i

|Xp| (2)

where Xo and Xp represent the sorted rationale
token list of the original and perturbed inputs, ac-
cording to the token important scores assigned by
a specific saliency method. |Xp| represents the
number of tokens in Xp. Xo

1:i consists of top-i im-
portant tokens of Xo. The function G(x, Y ) is to
determine whether the token x belongs to the list
Y , where G(x, Y ) = 1 iffx ∈ Y .

Meanwhile, we also report results of metrics
proposed in DeYoung et al. (2020), i.e., IOU F1-
score for plausibility, and the joint of sufficiency
and comprehensiveness for faithfulness.

IOU F1-score is proposed on span-level ratio-
nales, which is the size of token overlap in two sets
divided by the size of their union, as shown by Si

in Equation 3. A rationale is considered as a match
if its Si is equal to or greater than 0.5, as illustrated
by the Greater function.

IOU-F1 =
1

N

N∑

i=1

Greater(Si, 0.5)

where Si =
|Sp

i ∩ Sg
i |

|Sp
i ∪ Sg

i |

(3)

The joint of sufficiency (Score-Suf) and com-
prehensiveness (Score-Com) is shown in Equation
4. A lower sufficiency score implies the rationale
is more sufficient and a higher comprehensiveness
score means the rationale is more influential in the
prediction. A faithful rationale should have a low
sufficiency score and a high comprehensiveness
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Models SA (Acc) STS (Acc) MRC (F1)
Ori Ours Ori Ours Ori Ours

English
LSTM 78.6 78.2 78.6 74.6 58.6 54.4
RoBERTa-base 92.1 93.8 91.5 92.7 78.4 71.7
RoBERTa-large 91.3 95.4 91.4 93.2 83.8 76.0

Chinese
LSTM 86.7 60.0 77.4 75.2 75.0 66.4
RoBERTa-base 95.1 59.8 88.1 85.5 74.4 65.8
RoBERTa-large 95.0 62.6 88.1 86.0 77.8 67.8

Table 5: Conventional performance of base models on
three tasks, where “Acc” is short for accuracy. The “Ori”
dev/test set comes from the same dataset as training set.
“Ours” represents our evaluation datasets.

score.

Score-Suf =
1

N

N∑

i=1

(F (xi)j − F (ri)j)

Score-Com =
1

N

N∑

i=1

(F (xi)j − F (xi \ ri)j)
(4)

where F (xi)j represents the prediction probability
provided by the model F for class j on the input
xi; ri represents the rationale of xi, and xi \ ri
represents its non-rationale.

5 Experiments

5.1 Experiment Settings
We implement three widely-used models and three
saliency methods. We give brief descriptions of
them and leave the implementation details to Ap-
pendix B. The source code will be released with
our evaluation datasets.

Saliency Methods We adopt integrated gradient
(IG) method (Sundararajan et al., 2017), attention-
based (ATT) method (Jain and Wallace, 2019) and
linear-based (LIME) (Ribeiro et al., 2016) method
in our experiments. IG assigns importance score
for each token by integrating the gradient along the
path from a defined input baseline to the original
input. ATT uses attention weights as importance
scores, and the acquisition of attention weights
depends on the specific model architecture. LIME
uses the token weights learned by the linear model
as importance scores.

For each saliency method, we take the top-kd

important tokens to compose the rationale for an
input, where kd is the product of the current input
length and the average rationale length ratio of a
dataset d, as shown by RLR in Table 3.

Comparison Models For each task, we re-
implement three typical models with different net-

work architectures and parameter sizes, namely
LSTM (Hochreiter and Schmidhuber, 1997),
RoBERTa-base and RoBERTa-large (Liu et al.,
2019). Based on these backbone models, we then
fine-tune them with commonly-used datasets of
three specific tasks. For SA, we select training sets
of SST and ChnSentiCorp6 to train models for En-
glish and Chinese respectively. For STS, training
sets of QQP and LCQMC are used to train English
and Chinese models. For MRC, SQUAD2.0 and
DuReader are used as training sets for English and
Chinese respectively. For each task, we select the
best model on the original dev set.

In order to confirm the correctness of our imple-
mentation, Table 5 shows model performances on
both original dev/test and our evaluation datasets.
We can see that our re-implemented models output
close results reported in related works (Liu et al.,
2018; WANG and JIANG; Liu et al., 2019). Mean-
while, the results of Chinese SA and MRC tasks
decrease significantly on our evaluation sets. This
may be caused by the poor generalization and ro-
bustness of the model, as our evaluation datasets
contain perturbed examples and Chinese data for
SA is not from the ChnSentiCorp dataset.

5.2 Evaluation Results

Table 6 shows the evaluation results of inter-
pretability from the plausibility and faithfulness
perspectives. Within the scope of baseline mod-
els and saliency methods used in our experiments,
there are three main findings. First, based on all
models and saliency methods used in our experi-
ments, our metrics for interpretability evaluation,
namely token-F1 score and MAP, are more fine
and generic, especially MAP, which applies to
all three tasks. Second, IG method performs
better on plausibility and ATT method performs
better on faithfulness. Meanwhile, ATT method
achieves best performance in sentence-pair tasks.
Third, with all three saliency methods, in these
three tasks, LSTM model is comparable with
transformer model (i.e., RoBERTa based model
in our experiments) on interpretability, though
LSTM performs worse than transformer in term of
accuracy. We think that the generalization ability
of LSTM model is weak, leading to low accuracy,
even with relatively reasonable rationales.

In the following paragraphs, we first give a com-
parison between our proposed metrics and those

6
https://github.com/pengming617/bert_classification
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Models + Methods
SA STS MRC

Plausibility Faithfulness Plausibility Faithfulness Plausibility Faithfulness
Token-F1↑ IOU-F1↑ MAP↑ Suf↓ Com↑ Token-F1 IOU-F1 MAP Suf Com Token-F1 IOU-F1 MAP

LSTM + IG 36.9 12.1 67.2 -0.025 0.708 54.1 17.3 69.0 0.048 0.441 40.7 11.0 72.3
RoBERTa-base + IG 37.4 10.4 64.1 0.059 0.392 52.9 24.2 65.3 0.153 0.478 42.1 11.0 66.9
RoBERTa-large + IG 35.0 7.9 40.6 0.130 0.260 52.7 35.9 49.7 0.224 0.400 18.0 0.1 18.0
LSTM + ATT 36.6 12.4 67.8 0.123 0.298 49.6 11.8 76.0 0.221 0.313 19.9 0.4 88.3
RoBERTa-base + ATT 33.2 9.4 69.2 0.267 0.128 66.5 54.2 73.6 0.185 0.337 22.6 2.6 55.0
RoBERTa-large + ATT 23.3 3.1 75.9 0.301 0.095 56.8 35.9 75.4 0.136 0.399 26.6 1.3 76.0
LSTM + LIME 36.6 11.3 63.2 -0.040 0.762 54.5 19.2 60.0 0.134 0.311 - - -
RoBERTa-base + LIME 41.5 13.8 61.0 0.032 0.568 58.7 34.9 70.5 0.064 0.509 - - -
RoBERTa-large + LIME 41.4 14.3 62.9 0.053 0.505 61.2 42.3 71.8 0.019 0.524 - - -

Table 6: Interpretability evaluation results on English datasets of three tasks. The metric with ↑ means the higher
the score, the better the performance. Conversely, ↓ means a low score represents a good performance. As LIME is
specially designed for classification tasks, we have not applied it to MRC. Meanwhile, the sufficiency score (Suf)
and the comprehensiveness score (Com) are also only suitable for classification tasks, as shown in Equation 4. Thus
we do not report these two scores on MRC.

used in related studies. Then we give a detailed
analysis about the interpretability results of three
saliency methods and three evaluated models.

Comparison between Evaluation Metrics We
report results of token-F1 and IOU-F1 scores for
plausibility. The higher the scores, the more plau-
sible the rationales. It can be seen that the two
metrics have the similar trends in all three tasks
with all three saliency methods. But token-F1 is
much precise than IOU-F1, as the IOU-F1 score
of a rationale is 1 only if its overlap with ground
truth is no less than 0.5 (Equation 3). However,
in all three tasks, overlaps of most instances are
less than 0.5, especially in the task with a low RLR.
Thus IOU-F1 is too coarse to evaluate token-level
rationales. Instead, token-F1 focuses on evaluat-
ing token impact on model predictions, so as to be
more suitable for evaluating compact rationales.

For faithfulness evaluation, we report results of
MAP, sufficiency and comprehensiveness scores.
We can see that our proposed MAP is an efficient
metric for faithfulness evaluation. Specifically, it
applies to most tasks, especially non-classification
tasks. Moreover, in the two classification tasks
(i.e., SA and STS), with IG and LIME methods,
MAP has the same trend as the other two metrics
over all three models, which further indicates that
MAP can well evaluate the faithfulness of ratio-
nales. With ATT method, there is no consistent
relationship between these three metrics. We think
this is because the calculations of sufficiency and
comprehensiveness scores with ATT method are
not accurate and consistent enough. For exam-
ple, in the SA task, from the comparison of three
saliency methods with LSTM model, we can see
that the rationales extracted by these methods have

similar plausibility scores, but the sufficiency score
with ATT method is much higher than that with
the other two methods. Please note that a low suffi-
ciency score means a sufficient rationale. Similarly,
in the STS task with RoBERTa-base model, the
rationales extracted by ATT method have a higher
plausibility score, as well as a higher sufficiency
score. Finally, we believe that other metrics can be
proposed based on our benchmark.

Evaluation of Saliency Methods LIME, which
uses a linear model to approximate a DL classifica-
tion model, is model-agnostic and task-agnostic. It
obtains the highest performance on token-F1 and
sufficiency scores in SA and STS tasks, as the ratio-
nales extracted by it more accurately approximate
the decision process of DL models. But how to
better apply LIME to more NLP tasks is very chal-
lenging and as the future work.

When comparing IG and ATT, we find ATT per-
forms better on faithfulness and sentence-pair tasks.
In SA and MRC, IG performs better on plausibility
and ATT method achieves better results on faith-
fulness, which is consistent with prior works (Jain
and Wallace, 2019; DeYoung et al., 2020). In STS,
ATT method achieves higher results both on plau-
sibility and faithfulness than IG method. We think
this is because the cross-sentence interaction atten-
tions are more important for sentence-pair tasks.
Interestingly, on all three tasks, there is a positive
correlation between MAP (faithfulness) and token-
F1 (plausibility) with IG method.

Evaluation of Models While analyzing inter-
pretability of model architectures, we mainly fo-
cus on IG and ATT methods, as LIME is model-
agnostic. We find that interpretability of model
architectures vary with saliency methods and tasks.
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Compared with transformer models, based on IG
method, LSTM is competitive on plausibility and
performs better on faithfulness in all three tasks.
On the contrary, based on ATT method, transformer
models outperform LSTM on plausibility and are
competitive on faithfulness in STS and MRC tasks.
As discussed above, the interaction between inputs
is more important in these two tasks.

From the comparison between two trans-
former models with different parameter sizes, i.e.,
RoBERTa-base and RoBERTa-large, we find that
RoBERTa-base outperforms RoBERTa-large on
plausibility with these two saliency methods. In-
terestingly, for faithfulness evaluation, RoBERTa-
base performs better than RoBERTa-large with IG
method, and RoBERTa-large performs better than
RoBERTa-base with ATT method.

We believe these findings are helpful to the fu-
ture work on interpretability.

6 Limitation Discussion

We provide a new interpretability evaluation bench-
mark which contains three tasks with both English
and Chinese annotated data. There are three limita-
tions in our work.

• How to evaluate the quality of human-annotated
rationales is still open. We have several annota-
tors to perform quality control based on human
intuitions and experiences. Meanwhile, we com-
pare model behaviors on full inputs and human-
annotated rationales to evaluate the sufficiency
and comprehensiveness of rationales, as shown
in Table 4 and Table 7. However, this manner
has damaged the original input distribution and
brings uncontrollable factors on model behaviors.
Therefore, how to automatically and effectively
evaluate the quality of human-annotated ratio-
nales should be studied in the future.

• We find that the interpretability of model archi-
tectures and saliency methods vary with tasks, es-
pecially with the input form of the task. Thus our
benchmark should contain more datasets of each
task type ( e.g., single-sentence task, sentence-
pair similarity task and sentence-pair inference
task) to further verify these findings. And we
will build evaluation datasets for more tasks in
the future.

• Due to space limitation, there is no analysis of
the relationships between metrics, e.g., the rela-
tionship between plausibility and accuracy, and

the relationship between faithfulness and robust-
ness. We will take these analyses in our future
work.

Finally, we hope more evaluation metrics and
analyses are proposed based on our benchmark.
And we hope our benchmark can facilitate the re-
search progress of interpertability.

7 Conclusion

We propose a new fine-grained interpretability eval-
uation benchmark, containing token-level ratio-
nales, a new evaluation metric and corresponding
perturbed examples for three typical NLP tasks,
i.e., sentiment analysis, textual similarity and ma-
chine reading comprehension. The rationales in
this benchmark meet primary properties that a ra-
tionale should satisfy, i.e., sufficiency, compactness
and comprehensiveness. The experimental results
on three models and three saliency methods prove
that our benchmark can be used to evaluate inter-
pretability of both models and saliency methods.
We will release this benchmark and hope it can
facilitate progress on several directions, such as
better interpretability evaluation metrics and causal
analysis of NLP models.
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A Other Details of Our Datasets

Other Annotation Details We give more details
about data collection, annotator information, anno-
tation training and payment, and instructions for
data usage.

Data collection. Except for Chinese data of SA,
the annotated instances for other datasets are col-
lected from the existing datasets, as described in
Section 3.1. In the process of collection, we ask an-
notators to discard instances that contain: 1) offen-
sive content, 2) information that names or uniquely
identifies individual people, 3) discussions about
politics, guns, drug abuse, violence or pornography.

Annotator information. We have two ordinary
annotators for each task, and three senior annota-
tors for all tasks. The ordinary annotators annotate
the rationales and modify the rationales according
to the scores from the senior annotators. They are
college students majoring in languages. Our senior
annotators are full-time employees, and perform
quality control. Before this work, they have lots of
experience in annotating data for NLP tasks.

Annotation training and payment. Before real
annotation, we train all annotators for several times
so that they understand the specific task, rationale
criteria, etc. During real annotation, we have also
held several meetings to discuss common mistakes
and settle disputes. Our annotation project for each
task lasts for about 1.5 month. And we cost about
15.5 RMB for the annotation of each instance.

Instructions of data annotation and usage. Be-
fore annotation, we provide a full instruction to all
annotators, including the responsibility for leaking
data, disclaimers of any risks, and screenshots of
annotation discussions. Meanwhile, our datasets
are only used for interpretability evaluation. And
we will release a license with the release of our
benchmark.

Data Analysis We report sufficiency and compre-
hensiveness scores of human-annotated rationales,
as shown in Table 7. The sufficiency scores of
human-annotated rationales are lower than those
of rationales provided by transformer models or
extracted by IG and ATT methods. We can con-
clude that our human-annotated rationales are suf-
ficient. However, with IG and LIME methods, the
comprehensiveness scores of human-annotated ra-
tionales are lower than those of rationales provided
by models. As discussed before, the model perfor-
mance on non-rationales is not accurate enough,

as shown by Accnr, which achieves about 50%
on non-rationales. How to effectively evaluate the
quality of human-annotated rationales should be
studied in the future.

B Implementations Details

B.1 Implementations of Evaluated Models

We utilize HuggingFace’s Transformer (Wolf et al.,
2019) to implement RoBERTa based models for
three tasks. Please refer to their source codes7 for
more details. The LSTM model architectures for
three tasks are shown in Figure 2.

B.2 Implementations of Saliency Methods

We first describe experimental setups for three
saliency methods. Then we introduce implementa-
tion details of attention-based method. Finally, we
illustrate the limitations of LIME in STS and MRC
tasks.

Experimental setup. In IG-based method, to-
ken importance is determined by integrating the
gradient along the path from a defined baseline x0
to the original input. In the experiments, a sequence
of all zero embeddings is used as the baseline x0.
And the step size is set to 300.

LIME uses the token weight learned by the linear
model as the token’s importance score. For each
original input, N perturbed samples which contains
K tokens of it are created. Then the weighted
square loss is used to optimize the selection of
tokens that are useful for the model prediction. In
the experiments, we set N to 5, 000 and K to 10.
In the STS task, an input is a pair of two instances.
Each perturbed sample for an input consists of a
perturbed example for one instance and the original
input for the other instance.

ATT method on LSTM models. Figure 2 shows
the architectures of LSTM models in three tasks.
In the SA task, given the input instance Q, an
LSTM encoder is used to get the representation for
each token, denoted as hQi . And a full connected
layer (FC) is used to get the instance representa-
tion based on the last hidden representation. We
use hfc to represent the representation after the FC
layer. Then the instance representation hfc is fed
into the softmax layer to get the predicted label.
The attention weight for token i in Q is calculated

by hfc·hQ
i∑|Q|

j=1 h
fc·hQ

j

, where |Q| represents the number

of tokens in Q. Then the attention weight of the
7https://huggingface.co/transformers/
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Models SA STS MRC
Accf Accr Accnr Suf Com Accf Accr Accnr Suf Com F1f F1r

English
LSTM 78.2 86.2 60.7 0.151 0.217 74.6 69.8 61.3 0.152 0.291 54.4 53.4
RoBERTa-base 93.8 92.4 70.6 0.084 0.251 92.7 89.3 54.8 0.075 0.418 71.7 80.8
RoBERTa-large 95.4 91.5 74.4 0.086 0.234 93.2 88.8 53.9 0.085 0.420 76.0 76.7

Chinese
LSTM 60.0 70.4 48.7 0.172 0.135 75.2 80.7 51.2 0.083 0.339 66.4 82.2
RoBERTa-base 59.8 77.0 50.2 0.252 0.207 85.5 88.1 48.8 0.048 0.399 65.8 89.3
RoBERTa-large 62.6 80.6 47.6 0.212 0.147 86.0 87.4 48.9 0.051 0.433 67.8 83.3

Table 7: Model performance on the original full input (Accf ), human-annotated rationale (Accr), and non-rationale
(Accnr) by removing human-annotated rationale from the original full input. Suf and Com represent the sufficiency
score and comprehensiveness score of the human-annotated rationales, as shown in Equation 4. We do not report
F1nr on the MRC task, as the golden answer is not from the non-rationale.

Figure 2: LSTM model architectures for three tasks.

token is used as its importance score for the model
prediction.

Similarly, in the STS task, the model architec-
ture is mostly the same as that of SA. The main
difference is that the input of STS consists of two
instances, denoted as Q and P , and the concatena-
tion of their last hidden representations is fed into
an FC layer. Then, referring to the attention weight
calculation of Q, the attention weight for the token
in P is calculated by hfc·hP

i∑|P |
j=1 h

fc·hP
j

, where |P | repre-

sents the number of tokens in P . For each instance
in a pair, we select top-kd important tokens as the
rationale.

In the MRC task, the input also consists of two
sequences: the question Q and the passage P .
We adopt the match-LSTM model (WANG and
JIANG) as our baseline model. The match-LSTM
model uses two LSTMs to encode the question
and passage respectively. Then it uses the standard
word-by-word attention mechanism to obtain the
attention weight for each token in the passage. And
the final representation of each token in the passage
is obtained by combining a weighted version of the
question. We use h̄Pi to represent the representation
of i-th token in the passage. Then the importance

score of j-th token is calculated by Equation 5.

aj =

∑|Q|
i=1 eij

|Q| eij =
hQ
i · h̄P

j∑|Q|
k=1 h

Q
i · h̄P

k

(5)

where aj is used as the importance score of token
j.

ATT method on pre-trained models. Fol-
lowing related studies (Jain and Wallace, 2019;
DeYoung et al., 2020), on transformer-based pre-
trained models, attention scores are taken as the
self-attention weights induced from the [CLS] to-
ken index to all other indices in the last layer. As
the pre-trained model uses wordpiece tokeniza-
tion, we sum the self-attention weights assigned to
its constituent pieces to compute a token’s score.
Meanwhile, as the pre-trained model has multi-
heads, we average scores over heads to derive a
final score. In the MRC task, for each token in
the passage, importance score is taken as the aver-
age self-attention weights induced from this token
index to all indices of the question in the last layer.

Limitations of LIME. Given an input, LIME
constructs a token vocabulary for it and aims to
assign an important score for each token in this
vocabulary. That is to say, for the token that ap-
pears multiple times, LIME neglects its position

83



Models + Methods
SA STS MRC

Plausibility Faithfulness Plausibility Faithfulness Plausibility Faithfulness
Token-F1↑ IOU-F1↑ MAP↑ Suf↓ Com↑ Token-F1 IOU-F1 MAP Suf Com Token-F1 IOU-F1 MAP

LSTM + IG 38.2 9.8 60.6 -0.131 0.707 68.2 61.5 58.6 0.336 0.419 19.9 0.6 87.1
RoBERTa-base + IG 35.2 12.5 51.5 0.118 0.489 71.9 71.4 62.1 0.139 0.470 34.0 9.1 67.9
RoBERTa-large + IG 37.9 12.9 43.6 0.123 0.381 71.8 72.0 58.1 0.251 0.547 25.2 1.7 61.9
LSTM + ATT 24.0 9.8 72.6 0.171 0.225 72.7 72.1 77.3 0.110 0.359 2.7 0.0 79.6
RoBERTa-base + ATT 25.7 6.0 69.5 0.191 0.320 67.2 55.4 71.3 0.201 0.399 28.5 5.3 61.4
RoBERTa-large + ATT 30.7 8.2 67.9 0.173 0.248 68.0 59.8 67.0 0.251 0.547 28.5 5.5 48.8
LSTM + LIME 38.6 10.1 59.4 -0.130 0.701 74.8 79.0 65.9 -0.015 0.411 - - -
RoBERTa-base + LIME 37.3 14.3 56.6 0.051 0.660 77.3 83.2 74.8 -0.041 0.494 - - -
RoBERTa-large + LIME 39.0 14.5 53.0 -0.013 0.653 76.8 82.9 74.3 -0.024 0.562 - - -

Table 8: Interpretability evaluation results on Chinese datasets of three tasks.

information and only assigns one score for it. How-
ever, in STS and MRC, the position of a token is
very important. Therefore, It can not guarantee
the effectiveness of evaluation on these two tasks
with LIME. In addition, as LIME is designed for
classification models, it is difficult to apply it to the
MRC task.

C Interpretability Evaluation on Chinese
Datasets

We report interpretability results of three baseline
models with three saliency methods on Chinese
evaluation datasets in Table 8. It can be seen that
interpretability results on Chinese datasets have the
similar trends as those on English datasets. Differ-
ent from the conclusions on English datasets, on
all three tasks, IG-based method outperforms ATT-
based method on plausibility. And ATT method
performs better than IG on faithfulness in SA and
STS tasks.
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