
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 374 - 383
December 7-8, 2022 ©2022 Association for Computational Linguistics

An Alignment-based Approach to Text Segmentation Similarity Scoring

Gerardo Ocampo Diaz and Jessica Ouyang
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083

{godiaz,jessica.ouyang}@utdallas.edu

Abstract

Text segmentation is a natural language pro-
cessing task with popular applications, such as
topic segmentation, element discourse extrac-
tion, and sentence tokenization. Much work
has been done to develop accurate segmenta-
tion similarity metrics, but even the most ad-
vanced metrics used today, B, and WindowDiff,
exhibit incorrect behavior due to their evalua-
tion of boundaries in isolation. In this paper,
we present a new segment-alignment based ap-
proach to segmentation similarity scoring and
a new similarity metric A. We show that A
does not exhibit the erratic behavior of B and
WindowDiff, quantify the likelihood of B and
WindowDiff misbehaving through simulation,
and discuss the versatility of alignment-based
approaches for segmentation similarity scor-
ing. We make our implementation of A pub-
licly available and encourage the community to
explore more sophisticated approaches to text
segmentation similarity scoring.

1 Introduction

Text segmentation is a natural language processing
(NLP) task that consists of dividing a sequence of
text elements into segments.

Let T = e1, e2, e3...en be a sequence of text el-
ements (e.g. words, sentences, paragraphs, etc...).
A segmentation S of T is given by a binary string
Q = [0|1]n−1 that encodes boundaries between
the elements of T . The ith character of Q codi-
fies the presence of a boundary (1) or lack thereof
(0) between ei and ei+1 in S. S contains m − 1
boundaries and partitions T into m segments1.

Measuring similarity between segmentations is
not simple. The most straightforward approach is
to frame a segmentation as a series of decisions
made at every potential boundary position (PBP),

1This definition corresponds to single-type segmentation.
A multi-type version also exists where different boundary
types are considered, enabling the encoding of different types
of segments and even hierarchical relations between them.

S Dogs are cute Very fast cars

0 0 1 0 0

Figure 1: Example segmentation with Q = 00100.

which exist between every pair of elements in T ,
and to calculate the average PBP agreement, but
this does not match human intuition well.

Consider how S in Figure 1 compares with h1
and h2 in Figure 2: h1 agrees with S in 4 out of 5
positions (one missing boundary), while h2 agrees
with S in only 3 out of 5 positions (one missing and
one “extra" boundary). Yet it is easy to agree that
h2 is actually closer to S, as it has simply “shifted"
the boundary in S one unit to the right.

h1 Dogs are cute Very fast cars

h2 Dogs are cute Very fast cars

Figure 2: Alternate segmentations to S from Figure 1.

To address this, researchers have proposed a vari-
ety of similarity metrics that distinguish “soft" and
“hard" errors (shifted versus missing/extra bound-
aries). However, existing metrics look at boundary
errors in isolation; they do not consider the impact
that errors have on segments around them.

r

h3

h4

Figure 3: Three similar segmentations.

Consider how hypothesis segmentations h3 and
h4 compare to a reference segmentation r in Figure
3. Both have a boundary that is shifted one PBP
to the right, which results in an“extra" element in
the segment to the left of the PBP and a missing
element in the segment to the right. However, the

374

resulting segment distortion is not the same. In h3,
only 1/2 of the elements in the the first segment
are correct, while 1/2 of the reference elements are
missing from the second segment; in h4, the third
segment has 4/5 correct elements, and the fourth
segment has 1/4 missing elements. It is easy to
argue then that h4 is closer to r than h3, but current
metrics are unable to distinguish between them.

We propose a new similarity metric based on
segment alignment, which scores segmentations
based on how well their segments match, rather
than their boundaries (Section 3). We show
that our metric aligns more closely with human
intuition than existing metrics (Section 4) and
quantify the errors encountered by those metrics
(Section 5). Code for our new metric and rel-
evant materials are made publicly available at
https://github.com/sierra98x/resources.

2 Existing Metrics

Current segmentation similarity metrics fall into
two categories: window-based metrics try to cap-
ture errors by sliding a window across the element
sequence T and comparing the boundaries in both
segmentations; in contrast, edit-based metrics try
to find a sequence of boundary edit operations that
would make both segmentations equal.

2.1 Window-Based Metrics

WindowDiff (Pevzner and Hearst, 2002) and Pk

(Beeferman et al., 1999) are the most popular simi-
larity metrics currently used.
Pk is defined as “the probability that a random

pair of elements, k elements apart, will be classi-
fied inconsistently by two segmentations as belong-
ing/not belonging in the same segment.” Given
an element sequence T of length n, a reference
segmentation r, and an alternate segmentation h,
a window of size k + 1 is slid across the elements
(k is recommended by the authors to be half the
average segment size in r); at every window po-
sition, the segmentations are compared based on
the elements at the edges of the window, ei and
ei+k; if the segmentations disagree on whether the
elements belong in the same segment, a penalty of
1 is added; finally, the penalty sum is divided by
the number of windows:

Pk(r, h) =
1

n− k

i=n−k∑

i=1,j=i+k

δ(ri,j) ̸= δ(hi,j)

Figure 4: Illustration of Pk and WindowDiff with k = 4
(Pevzner and Hearst, 2002). Penalized windows indi-
cated by dashed lines.

where δ(xi,j) is true iff ei, ej are in the same seg-
ment in segmentation x.

There are a variety of situations where Pk pe-
nalizes errors inconsistently (Pevzner and Hearst,
2002): it penalizes missing boundaries more than
extra boundaries, fails to penalize extra boundaries
that are in close proximity to correct boundaries,
and is also quite sensitive to the window size k.

WindowDiff improves on Pk by using a dif-
ferent penalty criteria. Instead of comparing the
elements at the window edges, WindowDiff counts
the number of boundaries between the edge ele-
ments and assigns a penalty of 1 if the number is
inconsistent between segmentations:

WD(r, h) =
1

n− k

i=n−k∑

i=1,j=i+k

b(ri,j) ̸= b(hi,j)

where b(xi,j) is the boundary count between ei and
ej in segmentation x.

WindowDiff solves some of Pk’s inconsistency
problems, but still produces unintuitive scores and
penalizes errors at the edges of the element se-
quence less than those towards the middle (a weak-
ness shared with Pk). WindowDiff is usually re-
ported along with Pk rather than instead of it.

Lamprier et al. (2007) present a simple correc-
tion to WindowDiff: adding k − 1 extra elements
at the beginning and end of the sequence T ensures
that errors at every PBP are penalized an equal num-
ber of times. Further, they argue that WindowDiff
is unfair because the expected score of a random
segmenter depends on the number of boundaries
in the reference r. To address this, they present
two normalized versions of WindowDiff, NWin
and TNWin, which take into account the expected
WindowDiff scores of two random segmentations
with the same cardinality as the reference and hy-
pothesis segmentations being evaluated.

375

https://github.com/sierra98x/resources

Finally, Scaiano and Inkpen (2012) propose
WinPR, which uses the element padding correction
from (Lamprier et al., 2007) and categorizes the
errors at each window into true positives (correct
boundaries), false positives (extra boundaries), true
negatives (correct empty PBPs), and false negatives
(missing boundaries), allowing for finer-grained er-
ror analysis and the calculation of F1 scores.

Although WinPR is an improvement on Win-
dowDiff, it has not been widely adopted by the
community and, like NWin, depends on the cor-
rectness of WindowDiff; the improvements pre-
sented in WinPR and NWin do not offset the core
theoretical issues with WindowDiff. The th Thus,
throughout the rest of this paper, we will limit our
discussion of window-based metrics to WindowD-
iff and Pk.

2.2 Edit-Based Metrics
Edit-based segmentation similarity metrics
are based on ideas introduced by Damerau-
Levenshtein string edit distance (Damerau, 1964;
Levenshtein, 1966) and partially replicated by
Generalized Hamming Distance (Bookstein et al.,
2002). The general idea is that every segmentation
can be framed as a sequence of boundaries, each
placed at a specific position. If we define a set of
edit operations (with costs) that can modify any
sequence of boundaries, the distance between two
segmentations can be measured as the cost of the
optimal sequence of edit operations required to
make the two segmentations equal. The optimal
sequence of edit operations is equivalent to a
boundary alignment between the segmentations.

Segmentation Similarity (Fournier and Inkpen,
2012) and Boundary Similarity (Fournier and
Inkpen, 2012) are both based on the same set of
boundary edit operations:

• Match: Mark a boundary as correct (no cost).
• Addition/Deletion: Insert or delete a boundary.
• K-Transposition: Shift a boundary to the left or

right by a max of k units2. Default k = 13.
• Substitution: Replace a boundary with one of a

different type4.

Segmentation Similarity (S) (Fournier and
Inkpen, 2012) assigns a constant cost to all edit

2If a boundary can not be transposed, it must be deleted
and a boundary must be inserted at the corresponding location.

3When k > 1, Segmentation Similarity and Boundary
Similarity allow transpositions across existing boundaries.

4Only required for multi-type segmentation.

Figure 5: Example segmentation alignment with bound-
ary edit operations (Fournier, 2013).

operations and normalizes the resulting distance
based on the total number of possible boundaries
for the given element sequence. The idea behind
this normalization is to scale the cost based on the
potential complexity of the segmentation in ques-
tion; the intuition is that a constant cost is less
impactful on a longer/more complex sequence than
it is on a shorter/simpler one.

Let Ae, Te Se be the sets of the optimal boundary
addition/deletion, transposition, and substitution
operations required to align a pair of segmentations,
h1 and h2, over a sequence of elements T . Further,
let b be the number of boundary types (in the case
of multi-type segmentation) available.

S(h1, h2, T) = 1− |Ae|+ |Te|+ |Se|
b(|T | − 1)

Fournier and Inkpen argue that S a) produces
scores that align favorably with human intuition
compared to WindowDiff in three key examples,
b) has reduced sensitivity to variations in segment
sizes compared to WindowDiff, and c) produces
more accurate inter-annotator agreement scores
than WindowDiff in one dataset. It is also noted
that S can be used for multi-type segmentation,
where traditional window-based methods can not.

Boundary Similarity (B) (Fournier, 2013) im-
proves S by introducing weighted-costs transposi-
tions/substitutions, improving the edit distance nor-
malization factor, and producing a confusion matrix
from the edit operations to calculate F1 scores.

B(h1, h2, T) = 1− |Ae|+ t(Te, k) + s(Se, Bt)

|Ae|+ |Te|+ |Se|+ |M |
where k is the maximum transposition distance,
|M | is the number of matching boundary pairs
between the two segmentations, Bt is the set of
boundary types, and t and s are functions that re-
turn the weighted sums of Te (transpositions) and
Se (substitutions). The normalization factor in B
produces behavior that aligns more closely with
human judgement than in S.

376

When comparing scores generated by WindowD-
iff, Pk, S, and B on a handful of key examples,
Fournier argues that B produces behavior that falls
more in line with human intuition. B is further
shown on one dataset to produce more reliable inter-
annotator agreement scores when compared to S,
as S-based inter-annotator agreement scores are
shown to be inflated, and also to overcome Win-
dowDiff’s bias towards segmentations with few or
tightly-clustered boundaries when evaluating three
segmenters.

As we will demonstrate Section 4, however, B
(and WindowDiff) disregards the impact of individ-
ual mistakes on the surrounding segments, which
leads to scores that do not align well with human
judgement in key scenarios.

3 An Alignment-Based Approach to
Segmentation Similarity Scoring

In Section 1, Figure 2, we presented an example
that showcased the importance of weighing bound-
ary differences in terms of the impact they have
on their corresponding segments. None of the cur-
rent metrics attempt to do this, and they can not be
easily modified to do so.

We propose to measure similarity between a pair
of segmentations by comparing the segments de-
fined in them. The intuition is straightforward:
two segmentations are similar iff the segments de-
fined by them are similar. Inspired by alignments
from machine translation and string comparison,
our approach measures segmentation similarity by
finding the maximum likelihood segment alignment
and scoring its correctness.

The concept of the most likely alignment is
based on two key observations. First, it only makes
sense to align overlapping segments. Second, the
overlap between two segments is a good indicator
for their “closeness”, which tells us if they should
be aligned. Thus, the maximum likelihood align-
ment (MLA) is one where every segment is aligned
to its closest other segment.

h1

h2

Figure 6: Sample maximum likelihood alignment.

Consider the example alignment in Figure 6: h2
has fuzzily merged the first two segments in h1 into

a single segment, which results in the third segment
from h1 having a slightly shifted boundary in h2.
Here, it does not make sense to align the third
segment in h1 with the first segment in h2; even
if they overlap, the third segment in h1 overlaps
mainly with the second segment in h2.

The MLA can be found greedily in O(m1+m2)
time, where m1 and m2 are the number of segments
in h1 and h2, respectively. We only need to find
the closest segment for any given segment5. Figure
7 shows pseudocode for generating the MLA6.

MLA(h1,h2,fn: c):

for each segment p in h1
| for each p-overlapping segment q in h2
| | closeness = c(p,q)
| r = max c(p,x) segment in h2
| align p (source) to r (target)

repeat for h2
return list of alignment edges

Figure 7: Maximum likelihood alignment algorithm.

The MLA depends on the closeness function c.
For a generic alignment, where all elements in the
element sequence are considered equal, we recom-
mend a simple intersect ratio function i between
two segments, x and y:

i(x, y) =
intersect(x, y)

|x|
The MLA explains the differences between a

pair of segmentations in terms of boundaries: in
Figure 8, missing/extra boundaries are indicated
by the existence of segments with more than one
aligned segment. The first segment in h3 is aligned
to two segments in h4 because h4 contains an ex-
tra boundary; similarly, the third segment in h4 is
aligned to two segments in h3 because the third
segment in h4 is missing a boundary present in h3.
Furthermore, the existence of pairs of aligned seg-
ments with no alignments to any other segments
are indicators of matches or transpositions, such as
the last segments in h3 and h4.

5We resolve max closeness ties with Jaccard index scores
(see next page); if the tie can not be broken, the left-most
segment is chosen to align. Other tie-breaking strategies may
be used.

6Pseudocode is not O(m1 +m2); presented for brevity.

377

h3

h4

Figure 8: Maximum likelihood alignment.

Once the MLA has been generated, a function
should be chosen to map the MLA to a similarity
score. A simple approach is to assign a weight
to every alignment edge, using a function g, and
normalize by the number of edges in the MLA.
This generic similarity score A is defined as:

A(h1, h2, c, g) =

∑
edge∈MLA(h1,h2,c)

g(edge)

edges in MLA(h1, h2, c)

A variety of edge weighting functions can be
used: clustering similarity functions such as the
rand index, or set similarity metrics such as the
overlap coefficient, the Sørensen–Dice coefficient,
or the Jaccard index. Both symmetric and asymmet-
ric weighting functions can be used, as the edges
generated by the MLA function are directed; we
recommend the Jaccard index, since it guarantees a
symmetrical segmentation similarity score. Further,
the Jaccard version of A can be easily modified to
distinguish between “soft” and “hard” mistakes by
penalizing edges with weights under some thresh-
old t. The Jaccard index, J ∈ [0, 1], between two
sets S and T is defined as:

J(S, T) =
|intersect(S, T)|
|union(S, T)|

The MLA approach with similarity score func-
tion A compares favorably to WindowDiff, B, and
similar metrics in terms of error analysis, as the
MLA structure and edge weights provide informa-
tion about segmentation differences in terms of
both boundaries and segments.

Further, the separation between the MLA algo-
rithm and the similarity score function A makes our
approach quite versatile, as the MLA may instead
be scored with a different, task-specific similarity
scoring function. Consider the reference segmen-
tation r and candidate segmentations h1 and h2 in
Figure 9: h1 and h2 are equidistant to r under A
with Jaccard (0.58), B, and WindowDiff. However,
for a task like topic segmentation, h2 may be pre-
ferred, as it contains “meta” topics that consistently
match two topics each in r, whereas h1 contains
two correct topics, but one really bad third topic,

which is a mixture of four topics in r. Conversely,
for a task like sentence segmentation, h1 may be
preferred, as it correctly identifies two sentences,
where h2 contains only incorrect sentences. The
MLA could be used in conjunction with a simi-
larity scoring function that imposes exponentially
increasing penalties on segments with many align-
ments to favor h2, while a scoring function that
considers only the highest weighted edge for any
given segment would favor h1.

r

h1

h2

Figure 9: Reference segmentation and two candidates.

Finally, as we will show in the following section,
a straightforward implementation of A, using the
intersect ratio i as the closeness function and the
Jaccard index J as the edge weight function, be-
haves favorably compared to current metrics in a
key set of examples.

4 Similarity Metric Behavior

In this section, we outline three erratic behaviors
from B and WindowDiff, and compare these met-
rics against A in a series of example segmentations.

4.1 Cross-Boundary Transpositions

Since B and WindowDiff look at each boundary
in isolation, they consider all boundary shifts with
the same distance to be equally bad, resulting in
pseudo-transpositions, where one boundary crosses
over another, being penalized the same as standard
transpositions. It is easy to argue against this, as
a boundary shift that crosses another boundary is
not a true transposition, but rather a pair of over-
and under-segmentations. This is illustrated in Fig-
ure 10, where h1 is clearly closer to the reference
segmentation r than is h2. h1 transposes the left-
most boundary of r two units to the right, while
h2 pseudo-transposes the rightmost boundary two
units to the left, crossing over the middle boundary.
h2 results in an oversegmentation of the second
segment and undersegmentation of the third and
fourth segments of r. A correctly identifies this
behavior because it works on segment alignments;
B and WindowDiff, however, incorrectly score h1
and h2 as being equally close to r.

378

r

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h1) 0.83 0.50 0.67
(r, h2) 0.60 0.50 0.67

Figure 10: Cross-boundary pseudo-transposition.

r

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h1) 0.91 0.83 0.83
(r, h2) 0.79 0.83 0.83

Figure 11: Constant cost transpositions.

4.2 Constant Cost Transpositions
B and WindowDiff measure the cost of a transposi-
tion based on its absolute distance, without consid-
ering the impact it has on the surrounding segments.
This quickly leads to problematic behavior, as any
given pair of segmentations that contain transpo-
sitions with the same distance will get the same
score (assuming all other boundary operations are
the same). Figure 11 illustrates this problem: B
and WindowDiff score both segmentations equally,
even though the impact of the transposed bound-
aries is not the same. Both h1 and h2 transpose
a boundary by one unit, but in h1 this results in a
single extra/missing token in segments originally
of size five, while in h2, the extra/missing token
affects segments originally of size two, impacting
them more significantly. A produces proper behav-
ior here, weighing the distance of the transposition
in relation to the corresponding segment sizes.

4.3 Vanishing Transpositions
Unlike A, the sensitivity of B and WindowDiff
to “near-misses” (transpositions) is regulated by
constants. B defines a maximum transposition
distance, while WindowDiff utilizes a fixed win-
dow size. This causes problematic behavior, as
boundary shifts beyond the maximum transposi-
tion distance for each metric look the same, which
is compounded with the disregard for segment sizes
mentioned in the previous subsection.

h1a

h1b

h2a

h2b

h3a

h3b

h4a

h4b

h5a

h5b

Pair A B (k=1) 1− WD (k=2)
(h1a, h1b) 0.70 0.33 0.69
(h2a, h2b) 0.76 0.33 0.69
(h3a, h3b) 0.83 0.33 0.69
(h4a, h4b) 0.91 0.75 0.85
(h5a, h5b) 1 1 1

Figure 12: Vanishing Transpositions

The five segmentation pairs in Figure 12 illus-
trate this behavior. Although the pairs are ordered
by increasing similarity, B and WindowDiff score
three out of five pairs equally using their default
maximum transposition distance values of 1. The
behavior of B is particularly concerning, as it
jumps from a relatively high score of 0.75 for the
fourth pair, to a very low score of 0.33 for the
third pair. In contrast, A correctly matches the first
segments and second segments in each pair and
considers the relative impact of the transposition
given the size of the segments involved.

4.4 Alignment with Human Intuition

We perform a simple experiment to verify whether
human judgement of segmentation similarity is sen-
sitive to the kind of errors previously described. We
hand-craft 3 reference segmentations r, each with
a pair of alternate segmentations, h1 and h2, that
exemplify each of the problems described in this
section (cross-boundary transpositions, constant
cost transpositions, and vanishing transpositions).
We present each of these 3 instances to 6 NLP grad-
uate students and ask them to indicate whether the
alternate segmentations, h1 and h2 are equally sim-
ilar to their reference segmentation r, or whether

379

one is more similar than the other. For all 3 refer-
ence segmentations, all 6 students agree that h1 and
h2 are not equally similar to r; in fact, they prefer
the candidate segmentation that has the smallest
relative impact on the segments being transposed.
The document presented to students and the tally
of their responses is available in Appendix A.

5 Error Quantification

We quantify the likelihood of WindowDiff and B
behaving erroneously through simulation7. For the
three main error types described in Section 4, we
first instantiate every possible reference segmen-
tation r for sequences of length n ∈ [5, 20]. We
then try to find two alternate segmentations h1 and
h2 that B or WindowDiff score as equally simi-
lar to r, but in fact are not. Finally, for both B
and WindowDiff, we present the ratio of reference
segmentations r of length n for which such error-
producing pairs h1 and h2 exist. We also include A
in our simulations and verify that it does not behave
erroneously in any of the tested scenarios, so it is
not included in our discussion.

To simplify our analysis, we use the Lamprier-
corrected version of WindowDiff (Lamprier et al.,
2007), which pads the beginning and end of the
sequence with k − 1 elements. The number of er-
rors produced by this version is a lower bound on
the number of errors produced by the original Win-
dowDiff, which penalizes boundary mismatches at
the edges less than those at the center.

5.1 Cross-Boundary Transpositions

We consider B and WindowDiff (WD) to behave
erroneously if a pair of segmentations h1 and h2
are judged equally similar to r, where h2 pseudo-
transposes a boundary by x units, crossing an exist-
ing boundary from r, and h1 performs a standard
transposition on any boundary, i.e., does not trans-
pose across boundaries, also by x units. We only
consider h1 where the two segments on either side
of the transposed boundary have Jaccard > 0.5
with their corresponding original segments in r, i.e.
the transposition can reasonably be considered a
“soft" mistake where the affected segments are still
more similar to the originals than not, in contrast to
the pseudo-transposition in h2, where, by crossing

7We use the implementation of B from the segeval Python
3 package (Fournier, 2013) and WindowDiff from the Python
3 NLTK package (Bird et al., 2009). Simulation code is avail-
able at https://github.com/sierra98x/resources.

a boundary, h2 effectively oversegments one refer-
ence segment and undersegments another (Figure
10).

Figure 13: Ratio of potential cross-transposition errors
for B and WindowDiff.

Figure 13 shows the percentage of the reference
segmentation space for which such erroneous pairs
h1, h2 exist, for both B and WD with various se-
quence lengths n. First, note that B and WD be-
have similarly; both B and WD penalize transposi-
tions based solely on distance, so it is expected that
they would judge any erroneous pair h1, h2 to be
equidistant to r if both h1, h2 transpose one bound-
ary by the same distance. Second, the relationship
between the number of segments m and the total
number of elements in the sequence n reveals an
interesting trend: when the number of segments is
too low or too high, it is impossible to construct
erroneous pairs. For example, erroneous pairs can-
not be constructed for m = 2 because there is
no “second" boundary to transpose across; simi-
larly, when m approaches n, the segments become
unit-sized and can no longer be involved in either
normal or cross-boundary transpositions. Thirdly,
the increasing-decreasing behavior of the curves
stems from the “soft" transposition constraint that
we impose on h1. It can be shown that the smallest
possible sizes for two adjacent segments containing
a “soft" transposition are 5 and 3; this is because
the minimum (pseudo-)transposition distance re-
quired to cross a boundary is 2 units. Once m is
large enough that the average segment size is less
than 3, it becomes increasingly hard to find such
adjacent segments of sizes 5 and 3, so the number
of erroneous h1, h2 pairs decreases steadily.

380

https://github.com/sierra98x/resources

5.2 Constant Cost Transpositions

Here, B and WD behave erroneously if a pair of
segmentations h1 and h2 are judged equally similar
to r, where h1 “soft” transposes a boundary by x
units, and h2 “hard” transposes any boundary by
x units, i.e., the segments on either side of the
transposition in h2 have Jaccard < 0.5 with their
corresponding original segments in r.

Figure 14: Ratio of potential constant cost transposition
errors for B and WindowDiff.

The trend in Figure 14 can be explained as fol-
lows: if the ratio between the number of segments
m and the sequence length n is too low, the seg-
ments are so large that it is rare to find a pair of
segments such that transposing their boundary re-
sults in a “hard” error; conversely, when the ratio
is too high, all segments are small, so it becomes
increasingly hard to find “soft" transpositions. Like
in Figure 10, B and WD follow the same trend be-
cause h1, h2 transpose by the same number of units;
in addition, we see once again that the number of
erroneous pairs starts decreasing once the average
segment size (m/n ratio) drops below 3.

5.3 Vanishing Transpositions

Here, B and WD behave erroneously if a pair of seg-
mentations h1 and h2 are judged equally similar to
r, where h1 transposes a boundary by x units and
h2 transposes the same boundary by y > x units.
Again, we only consider h1 with “soft” transposi-
tions, where the two segments on either side of the
transposed boundary have Jaccard > 0.5 with the
corresponding original segments from r; h2 may
have a “soft" or “hard" transposition.

Figure 15 differs from Figures 13 and 14 in that
B and WD behave differently for this error type,
which makes sense, given that this is the only ex-

Figure 15: Ratio of potential vanishing transposition
errors for B and WindowDiff.

periment where h1, h2 do not transpose by the
same number of units: recall that B has a fixed
maximum transposition size (default value of 1) be-
yond which transpositions can not be distinguished,
while WD’s maximum transposition size depends
on the window size k, which is equal to half the av-
erage segment size, and thus a function of m and n.
The global peak in error rate for WD occurs when
k is so small that no transpositions are allowed; B
makes fewer mistakes than WD because B always
allows transpositions of size 1. The local minimum
between the first and second maxima for WD is
caused by the step-wise nature of the k function,
since the window size must be a whole number.

6 Limitations

While we have seen that A performs favorably
when compared to B and WindowDiff, further in-
vestigation may be warranted on the general MLA
approach. First, the space of potential alignments
for a given pair of segmentations can be quite large,
and while a simple greedy intersection ratio ap-
proach generates sensible alignments, edge cases
may exhibit undesirable behavior.

Consider Figure 16: h0 deletes a boundary from
r, while h1 and h2 transpose it different distances.
However, A gives h2 a worse score than h0; this
behavior is explained by the MLA between r and
h2 containing a diagonal alignment between the
first segment in h2 and the second segment in r,
due to the first segment in r being very small — so
small that transposing its boundary by two units
is considered worse than deleting it. The intersect
ratio closeness function in A uses segment size to
distinguish “soft” and “hard” transpositions; as we

381

r

h0

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h0) 0.67 0.50 0.88
(r, h1) 0.79 0.75 0.88
(r, h2) 0.58 0.33 0.62

Figure 16: Intricate behavior of A.

saw in Figure 12, when the segments are longer,
A will match the left and right segments of a two-
unit transposition with the original segments in r,
resulting in a similarity score greater than h0.

However, specific applications may lean towards
favoring “soft" transpositions over deletions regard-
less of segment size, which would require a) a dif-
ferent segment-to-segment closeness function c, or
b) maximizing some global MLA function, such as
Maximum Spanning Tree.

Second, in Figure 9, we presented a reference
segmentation r and two different candidate seg-
mentations h1 and h2 that are scored equally by
A, B, and WD. Here, the fact that A can not dis-
tinguish between them is not due to the MLA, as
there is only one possible alignment between each
candidate and r. Thus, it may be of interest to de-
velop more sophisticated MLA scoring functions,
in order to distinguish between h1 and h2.

7 Conclusion

In this paper, we present a new alignment-based ap-
proach to text segmentation similarity scoring and
present a new similarity metric A. We show that,
unlike A, the most advanced segmentation similar-
ity metrics, B and WindowDiff, behave erratically
in three key scenarios. We discuss the versatility of
alignment-based approaches when paired with dif-
ferent alignment and scoring functions, and show
that A, B, and WindowDiff exhibit intricate be-
haviors that should be explored in the future. We
make our implementation of A publicly available8

in hope that it encourages the NLP community to
explore more sophisticated approaches to text seg-
mentation similarity scoring.

8Our implementation of A, along with relevant materials,
can be found at https://github.com/sierra98x/resources.

References
Doug Beeferman, Adam Berger, and John Lafferty.

1999. Statistical models for text segmentation. Ma-
chine learning, 34(1):177–210.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Abraham Bookstein, Vladimir A. Kulyukin, and Timo
Raita. 2002. Generalized hamming distance. Inf.
Retr., 5(4):353–375.

Fred J. Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Commun.
ACM, 7(3):171–176.

Chris Fournier. 2013. Evaluating text segmentation us-
ing boundary edit distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Chris Fournier and Diana Inkpen. 2012. Segmentation
similarity and agreement. In Proceedings of the 2012
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 152–161, Montréal,
Canada. Association for Computational Linguistics.

Sylvain Lamprier, Tassadit Amghar, Bernard Levrat,
and Frederic Saubion. 2007. On evaluation method-
ologies for text segmentation algorithms. In 19th
IEEE International Conference on Tools with Artifi-
cial Intelligence(ICTAI 2007), volume 2, pages 19–
26.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions and reversals. In
Soviet Physics Doklady, volume 10, page 707.

Lev Pevzner and Marti A. Hearst. 2002. A critique
and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–
36.

Martin Scaiano and Diana Inkpen. 2012. Getting more
from segmentation evaluation. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 362–366,
Montréal, Canada. Association for Computational
Linguistics.

A Human Judgement Test

The following text was presented to 6 graduate
NLP students to verify their sensibility to cross-
boundary transposition, constant cost transposition,
and vanishing transposition errors. For clarity, we
have added error type labels to the questions, but
the students were not shown these labels during the
evaluation.

382

https://github.com/sierra98x/resources
https://doi.org/10.1023/A:1020499411651
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://aclanthology.org/P13-1167
https://aclanthology.org/P13-1167
https://aclanthology.org/N12-1016
https://aclanthology.org/N12-1016
https://doi.org/10.1109/ICTAI.2007.22
https://doi.org/10.1109/ICTAI.2007.22
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://aclanthology.org/N12-1038
https://aclanthology.org/N12-1038

Intro====

A segmentation splits a sequence of elements
into meaningful, non-overlapping segments.

Ex. Split a transcript into utterances:

I did not go to work yesterday, did you? |
No, Johnathan filled in for me.

Note: For simplicity, the elements in every
segmentation example are masked.

The previous example would look like this:
A.A.A.A.A.A.A.A.A|B.B.B.B.B.B

Questions===

For each of the following instances, 3 segmentations
are presented: Gold, H1, and H2.

Determine whether H1 or H2 is closer to gold, or if
they are the same, according to your interpretation.

-AT [Cross-Boundary Transposition (LABEL NOT SHOWN)]

A|B|C.C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - Gold
A.B|C|C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - H1

A|B|C.C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - Gold
A|B|C.C.C.C.C.C.C.C.C.C.D.D|D.D.D.D.D.D.D.D - H2

-RTC [Constant Cost Transposition (LABEL NOT SHOWN)]

A|B.B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - Gold
A|B.B|C.C.C.C.C.C.C.C.D|D.D.D.D.D.D.D - H1

A|B.B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - Gold
A.B|B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - H2

-VT [Vanishing Transposition (LABEL NOT SHOWN)]

A.A.A.A.A.A.A.A|B.B.B.B.B.B.B.B - Gold
A.A.A.A.A.A.A.A.B.B|B.B.B.B.B.B - H1

A.A.A.A.A.A.A.A|B.B.B.B.B.B.B.B - Gold
A.A.A.A.A.A.A.A.B.B.B|B.B.B.B.B - H2

The students achieved perfect agreement on the
evaluation and judged as more similar the candidate
segmentation with the smallest impact on the gold
segments.

Instance H1 Votes H2 Votes Same Votes
AT 0 6 0
RTC 6 0 0
VT 6 0 0

Table 1: Human evaluation results

383

