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Abstract

Many archival recordings of speech from en-
dangered languages remain unannotated and
inaccessible to community members and lan-
guage learning programs. One bottleneck is
the time-intensive nature of annotation. An
even narrower bottleneck occurs for record-
ings with access constraints, such as language
that must be vetted or filtered by authorised
community members before annotation can
begin. We propose a privacy-preserving work-
flow to widen both bottlenecks for recordings
where speech in the endangered language is
intermixed with a more widely-used language
such as English for meta-linguistic commen-
tary and questions (e.g. What is the word for
‘tree’?). We integrate voice activity detection
(VAD), spoken language identification (SLI),
and automatic speech recognition (ASR) to
transcribe the metalinguistic content, which an
authorised person can quickly scan to triage
recordings that can be annotated by people
with lower levels of access. We report work-
in-progress processing 136 hours archival au-
dio containing a mix of English and Muruwari.
Our collaborative work with the Muruwari
custodian of the archival materials show that
this workflow reduces metalanguage transcrip-
tion time by 20% even with minimal amounts
of annotated training data: 10 utterances per
language for SLI and for ASR at most 39 min-
utes, and possibly as little as 39 seconds.

1 Introduction

In speech recorded for language documentation
work, it is common to find not only the tar-
get language that is being documented but also
a language of wider communication, such as En-
glish. This is especially so in early-stage field-
work when the elicitation may centre around ba-
sic words and phrases from a standard word list
(e.g. the Swadesh List: Swadesh, 1955). In these

mixed-language recordings, utterances in the lan-
guage of wider communication are largely meta-
linguistic questions and commentary (e.g. What
is the word for ‘tree’?, This word means ‘soft’),
which appear inter-mixed with the utterances of
interest in the target language. In this paper, we
propose a workflow to help process hundreds of
hours of unannotated speech of this genre.

We describe a use case where the language
of wider communication is English (ISO 639-3:
eng), and the documented language is Muruwari
(ISO 639-3: zmu), an Aboriginal language tra-
ditionally spoken in north western New South
Wales, Australia. As illustrated in Figure 1, we
leverage voice activity detection (VAD) to detect
speech regions, then spoken language identifica-
tion (SLI) to distinguish between Muruwari and
English regions, and then automatic speech recog-
nition (ASR) to transcribe the English. The un-
corrected transcriptions offer a rough but workable
estimate of the contents in a given recording.

zmu eng zmu

This word

means soft
ASR

VAD

S L I

Figure 1: Deriving transcriptions of English in mixed-
language speech using voice activity detection (VAD)
and spoken language identification (SLI) to identify
speech regions and the language spoken (zmu: Mu-
ruwari or eng: English) and automatic speech recog-
nition (ASR) to transcribe English speech.

We use this workflow to help process 136
hours of predominantly single-speaker recordings
made in the 1970s by the last first language
(L1) speaker of Muruwari, James ‘Jimmie’ Barker
(1900-1972). The generated transcriptions can
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be used by the data custodian and Muruwari el-
der, Roy Barker (author RB; grandson of Jimmie
Barker), to triage the recordings and make initial
decisions on which recordings can be listened to
by people with lower levels of access who can then
correct the transcriptions. The corrected transcrip-
tions provide approximate locations where certain
Muruwari words and phrases are being discussed,
providing an index of the corpus from which lan-
guage learning materials can be produced. In this
way, we are able to support ongoing language re-
vival initiatives through a strategic deployment of
machine and human efforts in a manner that ad-
heres to the level of privacy required.

For the benefit of other projects, we also con-
ducted SLI and ASR experiments to determine the
minimum amounts of annotated data required to
implement this workflow. Through our SLI exper-
iments we show that 1) only 10 example utterances
per language are needed to achieve reliable single-
speaker SLI performance, and 2) speech represen-
tations for SLI such as those from SpeechBrain
(Ravanelli et al., 2021) can be used as-is as input
to a simple logistic regression classifier without
needing compute-intensive adaptation methods re-
quiring a graphics processing unit (GPU).

Through our ASR experiments we show that
transcriptions for 39 seconds of Jimmie’s Aus-
tralian English was sufficient to increase the ac-
curacy of an ASR system trained for American
English (Robust wav2vec 2.0: Hsu et al., 2021).
To our surprise, timed transcription tasks revealed
that the fine-tuned models offered no meaningful
reduction in transcription correction time over an
off-the-shelf model. Nevertheless, the machine-
assisted workflow integrating the VAD, SLI, and
ASR systems offers a 20% reduction in annota-
tion time, requiring 2.36 hours of correction time
per 30-minute recording compared to 2.95 hours
of work to produce the same annotations manu-
ally, with ASR-assisted transcription responsible
for the majority of the time savings.

With the exception of the archival audio and
transcriptions, which we do not have permission
to openly release, all experiment artefacts, model
training/deployment scripts, and data preparation
instructions developed for this project are publicly
available on GitHub.1

The remainder of this paper is organised as fol-
lows. We first provide the project background in

1https://github.com/CoEDL/vad-sli-asr

§2. Subsequently, in §3, we formulate the re-
search questions we sought to address with our
experiments and then describe the data we used
for them in §4. The following three sections de-
tail the methods and results of our SLI (§5) and
ASR (§6) experiments, and the timed annotation
tasks (§7). In §8, we discuss how this workflow
assists in the ongoing documentation of the Mu-
ruwari language. Finally, in §9, we summarise
and conclude this work, making clear its limita-
tions and outlining directions for future research.

2 Project background

Muruwari is an Aboriginal language traditionally
spoken in north western New South Wales, Aus-
tralia and belongs to the Pama-Nyungan family of
Australian languages (Oates, 1988). Oates (1988),
which comprises the largest extant single work
on Muruwari, describes it as a relative isolate
compared to the neighbouring Pama-Nyungan lan-
guages, Yuwaaliyaay, Yuwaalaraay, Barranbinya,
Ngiyampaa (Ngemba), Guwamu and Badjiri.

James ‘Jimmie’ Barker (1900–1972), the last
first language (L1) speaker of Muruwari, pro-
duced in the early 1970s a total of 136 hours of
reel-to-reel tape recordings consisting of a mix of
Muruwari and meta-linguistic commentary on the
Muruwari language in English. The now digi-
tised recordings are held at the Australian Institute
of Aboriginal and Torres Strait Islander Studies
and access to these materials depend on permis-
sion from the custodian and Muruwari elder, Roy
Barker (author RB; grandson of Jimmie Barker).

To date, RB has manually auditioned approxi-
mately 40 of the 136 hours over the course of 4
years to determine regions of speech appropriate
for general access and those requiring restricted
access (e.g. for only the Muruwari community, or
only the Barker family). At this rate of roughly
10 hours per year, the remaining 96 hours may re-
quire nearly a decade of manual review by RB.

Parallel to the review of the remaining record-
ings, a subset of the recordings that have already
been cleared by RB is being used to search for
excerpts that may be useful for learning materi-
als and those that can inform the development of
a standardised orthography for Muruwari. To as-
sist these ongoing initiatives, we investigated how
SLI and ASR can be leveraged to allow for the re-
view process and excerpt searches to be done more
strategically and efficiently.
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3 Research questions

There has been growing interest in leveraging
speech processing tools to assist in language doc-
umentation workflows, including the formulation
of shared tasks (e.g. Levow et al., 2021; Salesky
et al., 2021).2 Aimed at making unannotated field-
work recordings more accessible, Levow et al.
(2017) proposed a family of shared tasks, dubbed
the “Grandma’s Hatbox”, which include SLI and
ASR. In our work, we additionally leverage VAD
to make the system fully automatable and, to de-
rive a rough index of the corpus, we transcribe all
speech regions detected as English (in the shared
task formulation, ASR was intended to transcribe
only the metadata preamble in the recordings).

The performance of speech processing systems
can be poor when there are mismatches between
the speech on which they were trained and that on
which they are deployed. Commenting on such
poor deployment-time performance of SLI sys-
tems, Salesky et al. (2021) concluded that what
is necessary for real-world usage are methods for
system adaptation with a few examples from the
target speakers/domains. Accordingly, we sought
to answer the following questions: 1) How many
utterances of English and Muruwari are needed to
adapt an off-the-shelf SLI system? 2) Is it possible
to make use of such a system without compute-
intensive adaptation methods requiring a graphics
processing unit (GPU)?

Regarding this latter question, we were in-
spired by a recent probing study on various
speech representations showing that logistic re-
gression classifiers performed on-par with shal-
low neural networks for two-way classification of
speech, e.g. distinguishing between vowels and
non-vowels (Ma et al., 2021). Hence, we exam-
ined through our SLI experiments whether using
a logistic regression classifier suffices for the two-
way classification of the speech data, i.e. distin-
guishing between English and Muruwari.

Turning now to ASR, the typical use case in lan-
guage documentation work has been to develop
ASR systems to help transcribe the target lan-
guage (e.g. Adams et al., 2018; Shi et al., 2021;
Prud’hommeaux et al., 2021). By contrast, our
use of ASR more closely aligns with recent work
exploring techniques such as spoken term detec-

2Aimed to help drive system development, shared tasks
are competitions in which teams of researchers submit com-
peting systems to solve a pre-defined challenge.

tion to help locate utterances of interest in un-
transcribed speech corpora in the target languages
(Le Ferrand et al., 2020, 2021; San et al., 2021).
In this work, however, we take advantage of the
mixed-language speech in the corpus, and lever-
age SLI and ASR to transcribe the English speech
as a way to derive a rough index.

We opted to use the Robust wav2vec 2.0 model
(Hsu et al., 2021) to reduce the mismatch in au-
dio quality between the training and the deploy-
ment data (i.e. noisy archival recordings). This
model is pre-trained not only on LibriSpeech (960
hours: Panayotov et al., 2015) and Common-
Voice English (700 hours: Ardila et al., 2019),
but also on noisy telephone-quality speech cor-
pora (Fisher, 2k hours: Cieri et al., 2004 and
Switchboard, 300 hours: Godfrey et al., 1992),
and also fine-tuned on 300 hours of transcribed
speech from Switchboard. With our ASR exper-
iments, we sought to answer the following ques-
tions: 1) What amount of transcribed speech is
sufficient to reliably achieve better than off-the-
shelf performance? 2) Using the same amount of
transcribed speech, to what extent can ASR sys-
tem performance be further increased when sup-
plemented with a language model trained on ex-
ternal texts?

4 Data: the Jimmie Barker recordings

To gather training and evaluation data for the two
speech processing tasks, we obtained 6 archival
recordings of Jimmie Barker’s speech cleared by
RB. For each recording, we used the off-the-shelf
Robust wav2vec 2.0 (Hsu et al., 2021),3 to sim-
ply transcribe all speech regions detected by the
Silero VAD system,4 and generated an .eaf file for
ELAN.5 Using ELAN, three annotators (2 record-
ings per annotator) then erased the spurious text
for the Muruwari utterances (i.e. for SLI, we sim-
ply used blank annotations to denote Muruwari re-
gions, given the orthography is still in develop-
ment) and manually corrected the English tran-
scriptions for ASR (i.e. for SLI, any non-blank
region with text was considered English). While
the machine-generated annotations for the train-
ing and evaluation data were human-corrected, we
have yet to establish inter-annotator agreement or
conduct error analyses.

3https://huggingface.co/facebook/
wav2vec2-large-robust-ft-swbd-300h

4https://github.com/snakers4/silero-vad
5https://archive.mpi.nl/tla/elan

43



When correcting the English transcriptions,
speech was transcribed verbatim with no punctu-
ation except for apostrophes, i.e. including false
starts (e.g. we we don’t say) and hesitations
(e.g. and uh it means steal). To facilitate searches,
transcriptions were made in lower-case with the
exception of proper nouns (e.g. uh the Ngiyaamba
has it uh) and words that were spelled out by Jim-
mie (e.g. you’ve got B U at the end of a word).
For ASR training, the transcriptions were automat-
ically converted to all upper-case to normalise the
text to a 27-character vocabulary (26 upper-case
letters + apostrophe) that matches vocabulary with
which the wav2vec 2.0 Robust model was origi-
nally trained. As we report in Appendix A, not
re-using the original vocabulary required signifi-
cantly more fine-tuning data to achieve the same
performance.

Based on the corrected annotations, we ex-
tracted the speech regions into individual 16-bit
16 kHz .wav files and all the transcriptions for
the English utterances into a single tab-delimited
file. A summary of the data used in this paper
is given below in Table 1. Overall, the yielded
speech content contained more English than Mu-
ruwari (78% English by duration or 66% by num-
ber of utterances), reflecting the relatively more
numerous and longer nature of the meta-linguistic
commentary in English compared to the Muruwari
words and phrases being commented upon.

Recording ID
(Running time, mins)

Speech (mins)
eng zmu

33-2162B (65) 23.2 2.06
31-1919A (65) 16.3 6.28
25-1581B (65) 15.5 4.75
25-1581A (65) 12.1 4.34
28-1706B (64) 7.00 2.06
25-1582A (35) 6.92 2.68

Total: 5.98 hours
4864 utts.

81.0 mins
3243 utts.

22.2 mins
1621 utts.

Table 1: Duration and number of utterances (utts.) of
English and Muruwari speech yielded from labelling 6
archival recordings

Notably, only a third of the total running time
of the recordings was found to be speech content
on average, with frequent inter- and intra-phrase
pauses arising from the semi-improvised linguis-
tic self-elicitation being undertaken by Jimmie. A
consequence of these pauses is that the VAD sys-
tem segments Jimmie’s speech into sequences of

sentence fragments, e.g. This word..., This word
means soft..., And also softly. We will return to
these data characteristics in our discussion of the
timed annotation tasks §7.

Finally, we note that having had few prior
experimentally-informed estimates of the mini-
mum amounts of data required, we chose to la-
bel for our initial implementation of this workflow
this specific set of 6 recordings in accordance with
other project priorities. While our deployed mod-
els are those trained on all the data, we opted to run
detailed analyses on how much of the labelled data
was actually necessary for adapting the SLI and
ASR models to help establish estimates regarding
the minimum amounts of labelled data needed to
apply this workflow in other settings, and timed
the annotation tasks using models trained on these
minimum amounts of data.

5 Spoken Language Identification

We are interested in finding the minimum amount
of training utterances required to obtain a perfor-
mant system for same-speaker SLI. As training a
system with very few utterances can lead to a large
variance in its performance on unseen utterances,
we were particularly interested in determining the
training set size at which the variance was func-
tionally equivalent to training on all available data.

5.1 Method

For our SLI experiments, we first extracted speech
representations from each of the 4864 English
and Muruwari utterances using the SpeechBrain
toolkit (Ravanelli et al., 2021), which includes
a state-of-the-art SLI model trained on 107 lan-
guages of the VoxLingua107 dataset (Valk and
Alumäe, 2021).6 We then performed 5000 iter-
ations of training and evaluating logistic regres-
sion classifiers. At each iteration, the dataset was
shuffled and 20% of the data (972 utterances) was
held out as the test set. The remaining 80% of
data (3892 utterances) was designated as the ‘All’
training set and from which we sampled 5 addi-
tional subsets (1, 5, 10, 25, and 50 utterances per
language). We trained separate logistic regression
classifiers using each of the 6 datasets (5 subsets
+ All), and then measured SLI performance of

6While the model was trained to identify English (dialects
unspecified), we found that the included, off-the-shelf classi-
fier could not consistently identify Jimmie’s Australian En-
glish utterances, which were most frequently classified as
Welsh (497/3243: 15.3%) or English (321/3243: 9.8%).
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Figure 2: Two-way spoken language identification per-
formance (English vs. Muruwari) using logistic regres-
sion classifiers trained on SpeechBrain SLI embed-
dings (Ravanelli et al., 2021) using varying dataset
sizes (1, 5, 10, 25, 50 utterances per language, and All
available data: 3892 utterances). Points represent mean
F1 and error bars the 95% bootstrap confidences inter-
vals over 5000 iterations.

each classifier on the same test set using the F1
score.7 Finally, we also calculated the differences
between the F1 scores for the classifier trained on
all the training data and each of those trained on
the smaller datasets (All vs. 1, All vs. 5, All vs.
10, All vs. 25, All vs. 50).

5.2 Results

Figure 2 displays the mean F1 scores for each of
the training dataset sizes. The error bars repre-
sent the 95% bootstrap confidence interval (CI)
for the mean obtained over 5000 iterations. Us-
ing all the training data resulted in the highest
SLI performance of 0.93 [95% CI: 0.91, 0.95].
Of the smaller dataset sizes, the 50-, 25-, and
10-utterance training subsets performed similarly
with mean F1 scores of 0.90 [95% CI: 0.87, 0.93],
0.89 [95% CI: 0.85, 0.92], and 0.87 [95% CI: 0.79,
0.91], respectively. The smallest two dataset sizes
showed yet lower SLI performance with mean F1
scores for 5 utterances at 0.84 [95% CI: 0.69, 0.89]
and 1 utterance at 0.66 [95% CI: 0.20, 0.82].

Table 2 displays the mean differences and the
corresponding confidence intervals for the mean
differences in F1 scores for the classifier trained on
all the training data (All) and each of those trained
on the smaller datasets (1, 5, 10, 25, 50 utterances

7Ranging between 0 (worst) and 1 (best), the F1 score is
a measure of a classification system’s accuracy, taking both
false positives and false negatives into account.

Comparison Difference in F1
Mean, [95% CI]: CI width

a. All vs. 1 0.28, [0.11, 0.74]: 0.63
b. All vs. 5 0.10, [0.05, 0.25]: 0.20
c. All vs. 10 0.07, [0.03, 0.14]: 0.11
d. All vs. 25 0.05, [0.02, 0.09]: 0.07
e. All vs. 50 0.04, [0.01, 0.07]: 0.06

Table 2: Mean difference in F1 and 95% bootstrap
confidence intervals (lower and upper bounds, and
width) for the difference in means for the performance
on a spoken language identification task using logistic
regression classifiers trained of varying dataset sizes (1,
5, 10, 25, 50 utterances per language, and All available
training data: 3892 utterances)

per language). On average, using only 1 utterance
of English and Muruwari results in a system that
is 28 percentage points worse than using all the
data (Table 2 a). While using 5 or 10 utterances
resulted in similar average differences compared
to using all the data (10 vs 7 percentage points, re-
spectively), the difference is nearly twice as vari-
able when only 5 utterances per language are used
(CI width: 20 percentage points).

Answering our SLI-related questions, then: 1)
using 10 utterances per language yields systems
whose average performance is within 10 percent-
age points of using all the data (3892 utterances).
2) a logistic regression classifier suffices for two-
way same-speaker SLI using off-the-shelf speech
embeddings for SLI (Ravanelli et al., 2021).

6 Automatic Speech Recognition

Recall that for ASR, we seek to answer the fol-
lowing questions: 1) What amount of transcribed
speech is sufficient to reliably achieve better than
off-the-shelf performance for transcribing Jim-
mie’s Australian English? 2) Using the same
amount of transcribed speech, to what extent can
ASR system performance be further increased
when supplemented with a language model trained
on external texts? In this section, we report on
experiments conducted in order to answer these
questions.

6.1 Method
In all our fine-tuning experiments, we fine-tuned
the Robust wav2vec 2.0 model over 50 epochs,
evaluating every 5 epochs (with an early-stopping
patience of 3 evaluations). All training runs started
from the same off-the-shelf checkpoint and we
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kept constant the training hyperparameters, all of
which can be inspected in the model training script
on GitHub. We varied as the independent variable
the amount and samples of data used to fine-tune
the model and measured as the dependent variable
the word error rate (WER).8

In all our experiments, we split the total 81 min-
utes of transcribed English speech into an 80%
training set (65 minutes) and a 20% testing set (16
minutes). The training split of 65 minutes was
designated as the 100% training set from which
we sampled smaller subsets consisting of 52 min-
utes (80% of training split), 39 minutes (60% of
training split), 26 minutes (40% of training split),
13 minutes (20% of training split), 6.5 minutes
(10% of training split), 3.25 minutes (5% of train-
ing split), and 0.65 minutes (1% of training split).

We fine-tuned 8 separate models with varying
amounts of data and evaluated their performance
on the same test set to obtain a first estimate of an
amount of data sufficient to achieve better than off-
the-shelf performance. We then created 10 new
80/20 training/testing splits for cross-validation in
order to establish the variability in WER when
only using that minimal amount of data.

We were also interested in whether supplement-
ing the ASR system with a language model further
reduced the WER. Our initial labelling work re-
vealed that many errors made by the off-the-shelf
system were particularly related to domain- and
region-specific English words (e.g. spear, kan-
garoo). With permission from the maintainers of
the Warlpiri-to-English dictionary, we extracted
8359 English translations from example sentences
to obtain in-domain/-region sentences in English,
e.g. The two brothers speared the kangaroo.

We used this data to train a word-level bigram
model using KenLM (Heafield, 2011). While we
opted to extract sentences from the Warlpiri-to-
English dictionary given it is the largest of its kind
for an Australian language, this corpus of sen-
tences still only amounts to 75,425 words (4,377
unique forms), and as such we opted for a bi-
gram model over a more conventional 3- or 4-gram
model. With the only change being the inclusion
of the language model, we then fine-tuned 10 ad-
ditional models using the same training and testing
splits.

8Ranging from 0% (best) to 100% (worst), word error rate
(WER) is a measure of the accuracy of an ASR system, taking
into account substitutions (wrongly predicted words), addi-
tions (erroneous extra words) and deletions (missing words).

Training set size WER CER
a. 65 minutes (100%) 10.1% 4.2%
b. 52 minutes (80%) 10.1% 4.4%
c. 39 minutes (60%) 11.8% 5.2%
d. 26 minutes (40%) 12.3% 5.5%
e. 13 minutes (20%) 13.2% 6.1%
f. 6.5 minutes (10%) 13.4% 6.1%
g. 3.25 minutes (5%) 15.1% 6.7%
h. 0.65 minutes (1%) 19.1% 8.8%
i. Off-the-shelf (0%) 36.3% 21.5%

Table 3: Word error rates (WERs) achieved from fine-
tuning the same wav2vec 2.0 model (large-robust-ft-
swbd-300h) over 50 epochs using various subsets of
data from 65 minutes of Australian English archival au-
dio data.

6.2 Results

Table 3 displays the word error rates (WERs)
achieved by a Robust wav2vec 2.0 model fine-
tuned with various amounts of transcribed speech.
The baseline WER achieved by the off-the-shelf
model with no additional fine-tuning is 36.3%.
Training with all 65 minutes of data yielded a
topline WER of 10.1%. Remarkably, training with
less than 1 minute of speech was sufficient to de-
crease the WER to 19.1%. As a first estimate, the
amount of training data that sufficiently improves
on the off-the-shelf model appears to be 0.65 min-
utes of transcribed speech.

To verify that fine-tuning with only 1% of
our training data does consistently yield a bet-
ter than off-the-shelf WER, we conducted cross-
validation experiments using 10 additional 80/20
training/testing splits, each time using only 1% of
the data from the training split (0.65 minutes or 39
seconds on average).

Figure 3 displays the results of our cross-
validation experiments. First, evaluating the off-
the-shelf model on the 10 test sets, we found the
baseline mean WER to be 35.6% (standard devia-
tion, SD: 1.48%; range: 33.8–37.9%). The mean
WER of the models fine-tuned with only 1% of
data and without a language model was found to
be 18.2% (SD: 0.99%; range: 16.7–19.5%). These
results demonstrate that fine-tuning with less than
1 minute of speech consistently yields better than
off-the-shelf performance.

When a bigram language model was used for
decoding, we found that the mean WER increased
to 20.0% (SD: 1.48%; range: 17.8–21.9%) for
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Figure 3: Variability in word error rates of training
and testing Robust wav2vec 2.0 models over 10 iter-
ations using different samples in the training and test-
ing datasets, holding constant the size of the training
set (1% of training set = 0.65 minutes or 39 seconds,
on average) and testing set (16 minutes). The off-the-
shelf model without fine-tuning was also evaluated on
the same 10 testing sets.

the fine-tuned models. These results are inconsis-
tent with our earlier experiments (reported in Ap-
pendix A), where we fine-tuned the same off-the-
shelf model with 39 minutes of data. In these ex-
periments, decoding with the same bigram model
did lead to WER improvements, suggesting that
more careful calibration and weighting of the lan-
guage model may be required in near-zero shot
adaptation scenarios.

To answer our ASR-related questions, then: 1)
39 seconds on average of speech on average is suf-
ficient to achieve a better than off-the-shelf per-
formance for transcribing Jimmie’s Australian En-

glish speech. 2) the effect on ASR performance
of a language model is inconclusive (cf. Appendix
A).

7 Timed annotation tasks

In addition to helping provide estimates of the con-
tents of recordings for review by an authorised per-
son, another purpose of this workflow is to help re-
duce the time required to annotate speech in such
a way that excerpts from cleared recordings can be
easily extracted for use in relevant initiatives, e.g.
creating language learning materials.

The initial process of annotating speech for
this purpose involves two tasks: segmentation and
transcription, which we illustrate in Figure 4 us-
ing two clips of Jimmie’s speech. In segmentation,
the annotator identifies regions of speech and non-
speech and also which of the speech regions is En-
glish or Muruwari. For a sequence of English sen-
tence fragments such as those in Clip a), the utter-
ances can simply be merged into one. For mixed-
language regions such as those in Clip b), sepa-
rate utterances should be created to allow the Mu-
ruwari speech to be easily extracted for use in lan-
guage learning materials. To create transcriptions
for indexing, the annotator transcribes the English
segments, given regions segmented and identified
as English. We conducted a set of timed annota-
tion tasks to evaluate to what extent the machine-
assisted workflow reduces the time taken to per-
form these two tasks.

As detailed in Table 4, we gathered for our
timed annotation tasks three different recordings

Time taken in minutes (Annotator)

Recording ID
(Running time, mins)

Segmentation only Transcription only

Manual
Assisted

VAD+SLI
Manual

Assisted: ASR systems, A–C
A B C

33-2171A/S1 (31) 88 (A1) 81 (A2) - - 54 (A4) 53 (A3)
33-2163A/S1 (33) 83 (A2) 84 (A1) - - 57 (A3) 66 (A4)

33-2167B/S2 (32) - -
96/87

(A1/A2)
55/71

(A3/A4)
- -

Mean time taken, in minutes 85.5 82.5 91.5 63.0 55.5 59.5

Table 4: Time taken to annotate recordings by four annotators (A1–A4) with and without machine assistance. In
the segmentation task, annotators corrected the segmentations by the voice activity detection (VAD) and spoken
language identification systems (SLI: trained on 10 utterances per language), or they manually annotated speech
regions. In the transcription task, annotators were given intervals of English speech without any accompanying
text (manual transcription), or text generated by one of three ASR (A, B C) systems differing in accuracy. System
A was an off-the-shelf Robust wav2vec 2.0 model (Hsu et al., 2021) with no fine-tuning (word error rate/character
error rate: 36/22). Systems B (19/7) and C (14/6) were Robust wav2vec 2.0 models fine-tuned on 39 minutes of
transcribed English speech, and System C supplemented with a bigram language model trained on external texts.
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approximately 30 minutes in length that were not
part of the training and evaluation recordings in
the previous experiments. For each timed task, an-
notators were asked to perform only segmentation
or only transcription. For segmentation, they ei-
ther manually created all time boundaries or cor-
rected machine-derived ones from the VAD and
SLI systems. For transcription, they either manu-
ally typed in the transcriptions for English speech
or corrected machine-derived ones from an ASR
system. We tested ASR systems developed earlier
in our research (reported in Appendix A), that was
fine-tuned on 39 minutes of Jimmy’s Australian
English speech, and reached a WER/CER of 19/7,
as well as a version of the same system augmented
with a bigram language model which reached a
WER/CER of 14/6. The three recordings and the
four annotators and the six annotation tasks were
counter-balanced such that each annotator listened
to each recording for a given task exactly once.

Clip a)

Clip b)

pain or surprise or fright
zmu zmu zmu

t r e our v

Figure 4: Desired annotations for two excerpts of
speech from the Jimmie Barker recordings. Clip a)
shows a sequence of sentence fragments in English, to
be annotated as a single utterance. Clip b) shows al-
ternating Muruwari (zmu) and English speech, to be
annotated as 6 utterances.

The segmentation task took 85.5 minutes of
work for a 30-minute recording without machine
assistance and 82.5 minutes when assisted. That
is, correcting time boundaries, inserting missing
intervals or removing erroneous ones, and merg-
ing/splitting machine-derived segmentations takes
nearly the same amount of time as placing these
boundaries manually. The waveforms in Fig-
ure 4 illustrate how the acoustics of alternating
Muruwari and English separated by brief pauses
look indistinguishable from English sentence frag-
ments separated by similar amounts of pauses
— leading to sub-optimal segmentations using a
standard, sequential VAD-then-SLI pipeline. The
mixed-language nature of this speech may require
jointly optimising the VAD and SLI steps.

The transcription task took 91.5 minutes of
work for a 30-minute recording without machine
assistance and on average 59.3 minutes when as-
sisted (a 35% reduction). We found no meaningful
difference between the correction times for tran-
scriptions generated by ASR systems with differ-
ent levels of accuracy. For transcriptions produced
by an off-the-shelf system (WER/CER: 36/22),
the correction time was 63 minutes. For systems
fine-tuned with 39 minutes of transcribed speech,
WER/CER: 19/7 and 14/6, the correction times
were 55.5 and 59.5 minutes, respectively.

The closeness in transcription correction times
may relate to how an English ASR system whose
WER is 30% or less produces good enough
transcriptions for editing, according to a crowd-
sourced study (Gaur et al., 2016). Here, our tran-
scribers’ tolerance for the relatively less accu-
rate off-the-shelf system (WER 36%) may be at-
tributable to their familiarity with the speech do-
main and speaker (Sperber et al., 2017), having
collectively spent nearly 40 hours correcting tran-
scriptions of Jimmie’s English by the time we con-
ducted the timed tasks. These results suggest that,
where correction is permissible by L1-speaking
transcribers of the metalanguage, the time savings
over manual transcription could still be gained us-
ing an off-the-shelf system that achieves a WER
of 30–36% or less for the metalanguage in the
recordings.

Nevertheless, we find that the machine-assisted
workflow does offer time savings over a fully man-
ual workflow (in line with previous work, e.g.:
Sperber et al., 2016, 2017). Specifically, we find
that the machine-assisted workflow offers a 20%
reduction in overall time to identify regions in the
target language and metalanguage and also tran-
scribe the latter, requiring 2.36 hours (82.5 + 59.3
mins) of correction time for a 30-minute recording
compared to a fully-manual one which requires
2.95 hours (85.5 + 91.5 mins). Unlike the manual
workflow, the fully-automatable workflow can de-
rive first-pass transcriptions to help an authorised
person triage recordings.

8 Towards a Muruwari orthography

As mentioned above, the Muruwari orthography is
still currently in development. In this section, we
provide a brief overview of how transcriptions of
the English metalanguage are being used to aid in
the development of the Muruwari orthography.
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A key source of information on Muruwari
phonemes and words of interest to the current
Muruwari community are two 1969 recordings
in which Jimmie Barker discusses an early Mu-
ruwari wordlist (Mathews, 1902). This wordlist
was created by linguist R.H. Mathews and con-
sists of Muruwari words in his romanisation along
with English translations. Using this wordlist, the
documentation team is able to shortlist Muruwari
words whose romanisation is suggestive of con-
taining sounds of interest (e.g. dental consonants),
and then quickly locate in these recordings Jim-
mie’s pronunciation of the words and associated
commentary using the time-aligned English tran-
scripts generated for the two recordings. Here,
the English transcripts provide significantly more
streamlined access to untranscribed Muruwari ut-
terances than browsing the recordings in real time.
Once verified of containing the sounds of interest,
the documentation team is able to extract snippets
of these words to be included in the community
consultation process.

9 Conclusion

Many hours of unannotated speech from endan-
gered languages remain in language archives and
inaccessible to community members and language
learning programs. The time-intensive nature of
annotating speech creates one bottleneck, with an
additional one occurring for speech in restricted
access corpora that authorised community mem-
bers must vet before annotation can begin. For a
particular genre of recordings where speech in the
endangered language is intermixed with a meta-
language in a more widely-used language such as
English, we proposed a privacy-preserving work-
flow using automated speech processing systems
to help alleviate these bottlenecks.

The workflow leverages voice activity detection
(VAD) to identify regions of speech in a record-
ing, and then spoken language identification (SLI)
to isolate speech regions in the metalanguage and
transcribes them using automatic speech recogni-
tion (ASR). The uncorrected transcriptions pro-
vide an estimate of the contents of a recording
for an authorised person to make initial decisions
on whether it can be listened to by those with
lower levels of access to correct the transcrip-
tions, which, collectively, help index the corpus.
This workflow can be implemented using a lim-
ited amount of labelled data: 10 utterances per

language for SLI and 39 seconds of transcribed
speech in the metalanguage for ASR. The work-
flow reduces metalanguage transcription time by
20% over manual transcription and similar time
savings may be achievable with an off-the-shelf
ASR system with a word error rate of 36% or less
for the metalanguage in the target recordings.

Given our use case, the present demonstration
of the workflow was limited to the scenario of pro-
cessing single-speaker monologues with a mix of
Muruwari and English, the latter of which made
possible the use of a state-of-the-art model trained
for English ASR (Robust wav2vec 2.0: Hsu et al.,
2021) and also for transcriptions to be corrected
by first language speakers of English. Our work
also revealed that VAD and SLI systems require
further optimisation for mixed-language speech.

We hope our demonstration encourages further
experimentation with model adaptation with lim-
ited data for related use cases. For dialogues be-
tween a linguist and language consultant, for ex-
ample, speaker diarisation could be added via few-
shot classification using speech representations for
speaker recognition (e.g. SpeechBrain SR embed-
dings: Ravanelli et al., 2021). With user-friendly
interfaces like Elpis (Foley et al., 2018), for which
wav2vec 2.0 integration is underway (Foley, pers.
comm.), we hope to see more streamlined access
to pre-trained models for language documenta-
tion workflows and, consequently, more stream-
lined access to the recorded speech for community
members and language learning programs.
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A Fine-tuning with a re-initialised
vocabulary

In this section, we describe an earlier set of ASR
fine-tuning experiments which were analogous to
those reported in §6, except for the manner in
which vocabulary (i.e. character set) was config-
ured. Following recommended fine-tuning prac-
tice,9 we initialised a linear layer whose output
size corresponds to set of characters to be pre-
dicted (e.g. ‘A’, ‘B’, ...) and is derived from the
target training dataset. However, this guidance
presupposes that the pre-trained model being fine-
tuned is one with no prior fine-tuning for ASR on
the same language.

Given the size of our available training data (to-
tal 65 minutes), we chose to continue to train the
Robust wav2vec 2.0 model,10 already fine-tuned
for English ASR on 300 hours of Switchboard
(Godfrey et al., 1992). The results of fine-tuning
this model using various-sized subsets of our train-
ing data is reported below in Table 5. Notably,
fine-tuning with only 13 minutes of data resulted
in a significantly worse than off-the-shelf perfor-
mance (98% vs. 37%, off the shelf). By deriving
labels for the linear layer from our training dataset,
the label mappings were scrambled (e.g. from
Output 4 = ‘E’ to Output 4 = ‘C’), yielding gibber-
ish predictions during initial fine-tuning. Through
this fine-tuning process, 39 minutes of training
data were required for the model to (re-)learn the
appropriate parameters for English ASR.

By contrast, in our experiments reported above
in §6, we adapted our datasets to match the vocab-
ulary of the tokeniser included with the off-the-
shelf model. By doing so, we were able to achieve
better than off-the-shelf ASR performance using
only 39 seconds of training data.

Yet, unlike those experiments reported above,
the addition of a language model to models fine-
tuned with a re-initialised vocabulary yielded bet-
ter performance. As shown in Figure 5, the mean

9https://huggingface.co/blog/
fine-tune-wav2vec2-english

10https://huggingface.co/facebook/
wav2vec2-large-robust-ft-swbd-300h

Training set size WER CER
a. 65 minutes (100%) 11% 5%
b. 52 minutes (80%) 13% 5%
c. 39 minutes (60%) 16% 6%
d. 26 minutes (40%) 37% 14%
e. 13 minutes (20%) 98% 78%
f. Off-the-shelf (0%) 37% 22%

Table 5: Word error rates (WERs) achieved from fine-
tuning the same wav2vec 2.0 model (large-robust-ft-
swbd-300h) over 50 epochs using various subsets of
data from 65 minutes of Australian English archival au-
dio data.

WER of the models fine-tuned with 39 minutes of
data and without a language model was found to
be 19.5% (SD: 2.98%; range: 15–23%). When
a bigram language model was included, we found
that the mean WER decreased to 14% (SD: 2.30%;
range: 11–18%). These findings suggest that
while the addition of a language model can be ben-
eficial more experimentation is needed to inform
best practices for calibrating and/or weighting the
language model in near-zero shot learning scenar-
ios.
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Figure 5: Variability in word error rates of training
and testing Robust wav2vec 2.0 models over 10 itera-
tions using different samples in the training and testing
datasets, holding constant the size of the training set
(39 minutes) and testing set (16 minutes). The off-the-
shelf model without fine-tuning was also evaluated on
the same 10 testing sets.
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