
Proceedings of the 29th International Conference on Computational Linguistics, pages 1051–1064
October 12–17, 2022.

1051

Attribute Injection for Pretrained Language Models:
A New Benchmark and An Efficient Method

Reinald Kim Amplayo∗
University of Edinburgh
reinald.kim@ed.ac.uk

Kang Min Yoo Sang-Woo Lee
NAVER AI Lab, NAVER Clova AI

{kangmin.yoo,sang.woo.lee}@navercorp.com

Abstract

Metadata attributes (e.g., user and product IDs
from reviews) can be incorporated as addi-
tional inputs to neural-based NLP models, by
expanding the architecture of the models to im-
prove performance. However, recent models
rely on pretrained language models (PLMs),
in which previously used techniques for at-
tribute injection are either nontrivial or cost-
ineffective. In this paper, we introduce a
benchmark for evaluating attribute injection
models, which comprises eight datasets across
a diverse range of tasks and domains and six
synthetically sparsified ones. We also propose
a lightweight and memory-efficient method
to inject attributes into PLMs. We extend
adapters, i.e. tiny plug-in feed-forward mod-
ules, to include attributes both independently
of or jointly with the text. We use approxi-
mation techniques to parameterize the model
efficiently for domains with large attribute vo-
cabularies, and training mechanisms to han-
dle multi-labeled and sparse attributes. Exten-
sive experiments and analyses show that our
method outperforms previous attribute injec-
tion methods and achieves state-of-the-art per-
formance on all datasets.

1 Introduction

Neural-based NLP models are powered by large-
scale textual datasets, which are mostly crawled
from the web (Denoyer and Gallinari, 2006; Sand-
haus, 2008; Zhu et al., 2015; Ni et al., 2019; Raffel
et al., 2020). Web texts usually are attached with
metadata, i.e. attributes that describe the texts.
For example, product reviews have user and prod-
uct IDs, as well as their ratings, while research
papers on arXiv have author lists and research ar-
eas as metadata attributes (see Figure 1). While
most of the recent models disregard them and fo-
cus more on ungrounded language understanding

∗ Work done while Reinald was at NAVER AI Lab. He
is now at Google Research.

Yelp Review
Text: My boyfriend’s fav. place and the stein of beers are
priced pretty good. Game nights get super packed so go early
to save a seat. Kitchen closes at midnight which is too early
when your buzz kicks in around 1am.
Attributes:
– User: n6LeAoIuDR3NfIBEsmL_zg
– Product: 7TMf1NuuAdvhG7IojZSKnw

Paper Abstract
Text: We present new and improved fixed-parameter algo-
rithms for computing maximum agreement forests (MAFs) of
pairs of rooted binary phylogenetic trees. The size of such
a forest for two trees corresponds to their subtree prune-and-
regraft distance and, if the agreement forest is acyclic, to their
hybridization number ...
Attributes:
– Authors: Chris Whidden, Robert G. Beiko, Norbert Zeh
– Research Areas: q-bio.PE, cs.DS

Figure 1: Examples of a Yelp review and an arXiv pa-
per abstract and their corresponding attributes. Texts in
typewriter font are attribute labels.

(understanding language on its own, e.g., GLUE;
Wang et al., 2018, inter alia), prior work has shown
that incorporating these attributes into our model
increases not just its performance but also its inter-
pretability and customizability (Tang et al., 2015;
Chen et al., 2016; Kim et al., 2019). This work
explores the task of attribute injection (Amplayo,
2019), which aims to use attributes to improve the
performance of NLP models effectively.

Previous methods for attribute injection (Tang
et al., 2015; Zhu et al., 2015; Chen et al., 2016; Ma
et al., 2017; Dou, 2017; Amplayo et al., 2018; Wu
et al., 2018; Long et al., 2018; Kim et al., 2019;
Amplayo, 2019) involve two steps: (1) designing
an architecture that accepts both texts and attributes,
and (2) training the model from scratch using task-
specific datasets. However, these methods of modi-
fying different modules of the model can be non-
trivial when applied to pretrained language models
(PLMs; Devlin et al., 2019; Liu et al., 2019; Qiu
et al., 2020). The use of PLMs disallows design-
ing new and specialized architectures. Zhang et al.

reinald.kim@ed.ac.uk
{kangmin.yoo, sang.woo.lee}@navercorp.com


1052

(2021b) append large and deep layers of attribute-
specific Transformers to the end of PLMs, which
cannot leverage the potential of attributes in the
intermediate layers of PLMs and also scales poorly
to multiple tasks and domains. Finally, more recent
work on language model customization and con-
trollability makes use of textual prompts (Brown
et al., 2020; Schick and Schütze, 2021), special-
ized tokens (Fan et al., 2018; Keskar et al., 2019),
and additional neural modules (Perez et al., 2018;
Wang et al., 2019; Lauscher et al., 2020; Liu et al.,
2021) to introduce additional contexts, such as
style, topic, and end task. Unfortunately, these tech-
niques do not generalize to all kinds of attributes,
such as those that are non-textual (e.g., user IDs
that are not text-translatable), multi-labeled (e.g.,
multiple authors of a paper), and with large vocab-
ularies (e.g., thousands of products available).

Our contribution in this paper is two-fold. Firstly,
we introduce a new benchmark to evaluate models
for attribute injection. The benchmark consists of
eight datasets which include three newly collated
ones from different tasks and domains, and six syn-
thetically sparsified datasets which are specifically
created to evaluate models in sparse settings. These
datasets span from diverse tasks, such as sentiment
classification, spoiler detection, and message type
classification, and contain attributes that have dif-
ferent properties (sparse vs. non-sparse, single-
labeled vs. multi-labeled, etc.). Experiments on
the benchmark show that our method outperforms
previous approaches, as well as competitive base-
lines that fully fine-tune the pretrained language
model. We also conduct extensive analyses to show
that our method is robust to sparse and cold-start at-
tributes and that it is modular with attribute-specific
modules transferrable to other tasks using the same
attributes.

Secondly, we propose a lightweight and memory-
efficient method that is specifically suited to inject
attributes into PLMs, which can be non-textual,
multi-labeled, and have large vocabularies. We
make use of adapters (Houlsby et al., 2019), i.e.
feed-forward modules inserted between layers of
PLMs that are tiny in size, and extend them such
that attributes are injected as additional inputs to
the model. We introduce two kinds of injection
methods, which either incorporate attributes inde-
pendently of or jointly with the text representation.
A naive implementation of the latter would sub-
stantially increase the parameters, especially when

the attribute vocabulary is large, thus we use ideas
from low-rank matrix approximations as well as pa-
rameterized hypercomplex multiplications (Zhang
et al., 2021a; Mahabadi et al., 2021) to signifi-
cantly decrease the fine-tuned parameters by up
to 192× for a default base-sized BERT (Devlin
et al., 2019) setting. We also use two mechanisms,
attribute dropout and post-aggregation, to handle at-
tribute sparsity and multi-labeled attributes, respec-
tively. Our use of adapters enables us to parameter-
efficiently train our model, i.e. by freezing pre-
trained weights and only updating new parameters
at training time. We make our code and datasets
publicly available.1

2 Related Work

Prior to the neural network and deep learning era,
traditional methods for NLP have relied on feature
sets as input to machine learning models. These
feature sets include metadata attributes such as
author lists and publication venue of research pa-
pers (Rosen-Zvi et al., 2004; Joorabchi and Mahdi,
2011; Kim et al., 2017), topics of sentences (Ra-
mage et al., 2009; Liu and Forss, 2014; Zhao and
Mao, 2017), as well as spatial (Yang et al., 2017)
and temporal (Fukuhara et al., 2007) metadata at-
tributes found in tweets. Attributes are mostly used
in the area of sentiment classification (Gao et al.,
2013), where most of the time textual data includes
freely available user and product attributes. These
methods rely on manually curated features that
would represent the semantics of user and product
information.

Deep neural networks gave rise to better repre-
sentation learning (Bengio et al., 2013; Mikolov
et al., 2013), which allows us to learn from scratch
semantic representation of attributes in the form
of dense vectors (Tang et al., 2015). The design
of how to represent attributes has evolved from
using attribute-specific word and document em-
beddings (Tang et al., 2015) and attention pooling
weights (Chen et al., 2016; Ma et al., 2017; Am-
playo et al., 2018; Wu et al., 2018), to more compli-
cated architectures such as memory networks (Dou,
2017; Long et al., 2018) and importance matrices
(Amplayo, 2019). These designs are model- and
domain-dependent and can be non-trivial to apply
to other models and datasets. Our proposed method,
on the other hand, works well on any pretrained
language model which are mostly based on Trans-

1https://github.com/rktamplayo/Injector

https://github.com/rktamplayo/Injector


1053

former (Vaswani et al., 2017; Devlin et al., 2019).
Zhang et al. (2021b) used six layers of attribute-
injected Transformers where attributes are used as
input to the self-attention module, which is costly
in terms of memory, i.e., equivalent to adding 50%
of the original BERT-base parameters. Attributes
are useful in the intermediate layers when learning
the semantics of the input text, which this model
cannot leverage.

Our work is closely related to recent literature
on controlled text generation, where most of the
work use either specialized control tokens concate-
nated with the input text (Sennrich et al., 2016;
Kikuchi et al., 2016; Ficler and Goldberg, 2017;
Fan et al., 2018; Keskar et al., 2019), or textual
prompts that instruct the model on what to generate
(Brown et al., 2020; Schick and Schütze, 2021; Gao
et al., 2021; Zhao et al., 2021). While these meth-
ods have been successfully applied to pretrained
language models, the attributes used to control the
text are limited to those that are text-translatable
(e.g., topics such as “technology”) and those with
limited vocabulary (e.g., “positive” or “negative”
sentiment).

Methods to efficiently fine-tune pretrained mod-
els have been explored since their inception
(Dathathri et al., 2019; Li and Liang, 2021; He
et al., 2022). One of the more popular methods is
the use of adapters (Houlsby et al., 2019), where
tiny trainable feed-forward modules are inserted
and pretrained weights are frozen during training.
Most of the prior work on adapters focuses on ei-
ther improving their effectiveness and efficiency
(Mao et al., 2021; Mahabadi et al., 2021; He et al.,
2022) or applying it to domain adaptation and trans-
fer learning tasks (Pfeiffer et al., 2021; He et al.,
2021; Cooper Stickland et al., 2021). Our work
extends the use of adapters to additionally accept
attributes as input, which is closely related to Perez
et al. (2018) and Lauscher et al. (2020), where
the adapter accepts textual questions and common-
sense knowledge as input, respectively. However,
unlike previous work where the additional input
can be transformed into natural language tokens,
attributes are usually not the case (e.g., see user
and product IDs in Figure 1), which poses new
challenges in efficiency when applied to adapters.

3 Attribute Injection Benchmark

Problem Setting Let x = {xi}Ni=1 denote the in-
put text of N tokens, y is a task-specific output,

and p(y|x) is a discriminative model that predicts
y given x. Suppose there exists a set of non-textual
and categorical attributes z = {zj}Mj=1 that de-
scribe text x (e.g., user and product IDs of product
reviews). These attributes can be multi-labeled, i.e.
zj = [z

(k)
j ] (e.g., multiple authors of a research pa-

per) and use a finite yet possibly large vocabulary
Zj , i.e. zj ⊆ Zj . The task of attribute injection
aims to build a model q(y|x, z) that additionally
incorporates z as input such that the gain in task
performance between p and q is maximized. In our
setting, p is a pretrained language model (PLM)
fine-tuned to the task, while q is a PLM that also
takes z as additional input.

The Datasets To evaluate attribute injection
models on a wide variety of tasks and datasets from
different domains, we introduce ATTRIB, a collec-
tion of benchmark datasets to evaluate attribute
injection methods. ATTRIB consists of a total of
14 datasets. The first eight datasets are collected
from different domains with a diverse set of tasks
spanning from sentiment classification to spoiler
detection. Three of the eight datasets are newly
introduced in this paper. Table 1 reports the dataset
statistics, which shows the different characteris-
tics (i.e., size of training data, input text length,
number of attributes, sparsity, and multi-labelity of
attributes) of each dataset.

The first three datasets (Y2013, Y2014, and
IMDB; Tang et al., 2015) are sentiment classifica-
tion datasets with user and product attributes from
two different sources (Yelp and IMDB). AAPR
(Yang et al., 2018) is a dataset for classifying
whether an arXiv paper is accepted to a confer-
ence or not, with two attributes, lists of authors
and research areas. POLMED (Kim et al., 2019)
is a classification dataset in the political domain,
where the goal is to classify the message type of a
tweet, with four attributes, politician, media source,
audience, and political bias.

We also introduce three new attribute injection
datasets (see Appendix for details on dataset col-
lection). FOOD is a dataset in which given a recipe
from Food.com and three attributes, user and lists
of ingredients and tags, we are tasked to predict
the estimated number of minutes it takes to make
the food, rounded down to the tens. GOOD is a
spoiler detection dataset where we classify whether
a book review from Goodreads contains a spoiler
or not, with three attributes: user, book, and rating.
And finally, BEER is a multi-aspect rating predic-



1054

Dataset Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER

#Train 62.5K 183.0K 67.4K 33.5K 4.5K 162.4K 714.7K 1.5M
#Dev 7.8K 22.7K 8.4K 2.0K – 20.3K 10.0K 10.0K
#Test 8.7K 25.4K 9.1K 2.0K 0.5K 20.3K 10.0K 10.0K
#Words/Input 210(166) 218(175) 425(278) 97(36) 38(62) 101(65) 132(72) 133(56)
#Classes 5 5 10 2 9 16 2 4×9
#Attributes 2 2 2 2 4 3 3 3
#Attr. Vocab 3.3K 9.0K 2.9K 51.6K 0.5K 40.5K 43.8K 98.0K
%Sparse 0.0% 0.0% 0.0% 97.8% 63.8% 80.0% 34.4% 75.3%
Multi-label? X X

Table 1: ATTRIB datasets statistics. The second block reports new datasets introduced in this paper. BEER is a
multi-task dataset, with nine classes for each of four given aspects. %Sparse is the percentage of attributes with
less than 10 training examples. Multi-label attributes include lists of authors and research areas for AAPR, and
lists of ingredients and tags for FOOD. The kinds of attributes available and further analyses can be found in the
Appendix.

tion dataset in which given a review and three at-
tributes, user, beer, and overall rating, we are tasked
to predict the ratings of four aspects, i.e. properties
that influence user satisfaction: appearance, aroma,
palate, and taste.

Additionally, we collated six synthetically sparsi-
fied datasets that were created specifically to evalu-
ate attribute injection methods in cold-start environ-
ments2. Specifically, Amplayo et al. (2018) down-
sampled the Y2013 and IMDB training datasets
such that the attributes are sparser than the origi-
nal. There are three levels of sparsity: 20%, 50%,
and 80%, where x% means that x% of attributes
are cold-start and thus are unseen in the training
examples. Statistics of these datasets are shown in
the Appendix.

4 Modeling Approach

Our proposed method, which we call INJECTORS,
can be summarized as follows. We extend adapters
(Houlsby et al., 2019), which are tiny feed-forward
neural networks plugged into pretrained language
models, such that they also accept attributes z as
input. Attributes z can be represented as additional
bias parameters or as perturbations to the weight
matrix parameter of the adapter, motivated by how
attributes are used to classify texts. We decrease
the number of parameters exponentially using low-
rank matrix approximations and parameterized hy-
percomplex multiplications (Zhang et al., 2021a).
Finally, we introduce two training mechanisms, at-
tribute dropout and post-aggregation, to mitigate
problems regarding attribute sparsity and multi-

2In this paper, we distinguish the definition of sparsity and
cold-start attributes as the former referring to attributes with
few training examples, and the latter referring to those with
zero training examples.

Multi-head
Attention

Injector

Layer Norm

+

+

Feed-forward

Injector

Layer Norm

Task Adapter

+

+

Feed-forward
down project

𝑀×

Attribute
𝑧!

Feed-forward
up project

Figure 2: Architecture of the INJECTOR module when
integrated into one block of a Transformer model (see
left of figure). INJECTOR starts with a task-specific
adapter, followed by M attribute-specific adapters, one
for each attribute given in the task (see right of fig-
ure). Green-colored modules are trained and fine-tuned,
while gray-colored modules are fixed.

label properties. Figure 2 illustrates an overview of
INJECTORS.

Preliminary: Adapters We first briefly describe
adapters. Let h ∈ Rdh be the output hidden vector
from a multi-head attention or feed-forward layer
in a Transformer block. An adapter layer is basi-
cally two feed-forward networks that projects h
into vector h′ ∈ Rdh with a much smaller dimen-
sion da � dh:

h′ = Adapt(h)

= FFNetup(f(FFNetdown(h))) + h (1)

where FFNet(x) = Wx+b, W and b are learned
weight and bias parameters of FFNet, f(·) is a
non-linear function, and the addition represents a
residual layer.



1055

Task-specific Adapter INJECTORS start with a
task-specific adapter that uses Equation 1 to trans-
form the previous hidden vector h to h′. The use of
a separate task-specific adapter is essential to make
our method modularizable and learned attributes
on one task transferrable to another. We show ex-
tensive analyses of the modularity of our method
in the later sections.

Attribute-specific Adapters Attributes z are in-
jected through attribute-specific adapters, where
they are used in two different ways. Firstly, they
are used as bias parameters independent of the text
representation. This is motivated by the fact that
attributes can have a prior disposition regardless
of what is written in the text. For example, a user
may tend to give lower review ratings than average.
Secondly, they are also used as weight parameters.
This allows our method to jointly model attributes
with the text representation. This is motivated by
how attributes can change the semantics of the text.
For example, one user may like very sweet food
while another user may dislike it, thus the use of
the word sweet in the text may mean differently to
them.

More formally, for each attribute zj ∈ z, we
obtain its embedding zj from a learned embedding
matrix and sequentially transform the previously
attribute-injected vector hzj−1 to attribute-injected
vector hzj using the following equation:

hzj = AttrAdapt(hzj−1 , zj) (2)

= FFNetup(f(Wzjhzj−1 + bzj ))

+ hzj−1 (3)

where hz0 = h′ from the output of task-specific
adapter. Unlike standard adapters, the attribute-
specific weight matrix Wzj ∈ Rdh×da and bias
parameter bzj ∈ Rda of the down-project feed-
forward network are not learned from scratch, but
instead are calculated as follows.

The calculation of the bias parameter bzj is triv-
ial; we perform a linear transformation of the at-
tribute embedding zj :

bzj = gbias(zj) + cbias (4)

where gbias ∈ Rdz 7→ Rda is a linear projection,
cbias ∈ Rda is a learned vector, and dz is the at-
tribute embedding size.

We also define Wzj as:

Wzj = gweight(zj) +Cweight (5)

where Cweight ∈ Rdh×da is a learned matrix. The
function gweight, however, cannot be defined sim-
ilarly as a linear projection. This would require a
tensor parameter of size dz × dh × da to linearly
project zj to Wj . Considering the fact that we may
have multiple attributes for each domain, the num-
ber of parameters would not scale well and makes
the model very large and difficult to train. Inspired
by Mahabadi et al. (2021), we use ideas from low-
rank matrix decomposition and parameterized hy-
percomplex multiplications (PHMs; Zhang et al.,
2021a) to substantially decrease the number of pa-
rameters. Figure 3 shows an illustrative overview.

More specifically, we first transform attribute
embedding zj into vectors in hypercomplex space
with O dimensions, i.e.:

ẑj = [σ1(zj), ..., σO(zj)] ∈ Hdz (6)

where σo(·) ∈ Rdz 7→ Rda is a linear projection in
the oth dimension. A hypercomplex vector with O
dimensions is basically a set of vectors with one
real vector and O − 1 “imaginary” vectors.3

For each dimension o, we first define a small
rank-one matrix So ∈ Rda×dh/O2

as an outer prod-
uct between ẑj,o and a learned vector so ∈ Rdh/O

2
:

So = ẑj,os
>
o (7)

and then define a large matrix Ŵj,o ∈ Rdh×da as
the Kronecker product, denoted by ⊗ between two
matrices So and a learned matrix Ao ∈ RO×O,
followed by a reshape and the hyperbolic tangent
function:

Ŵo = Reshape(tanh(So ⊗Ao)) (8)

Finally, we add the large matrices Ŵo of each
dimension. To sum up, we define gweight(zj) as:

gweight(zj) =∑O

o=0
Reshape(tanh(σo(zj)s>o ⊗Ao)) (9)

Low-rank (Eq. 7) and PHMs (Eqs. 8-9) are both
necessary to achieve a high performance with de-
creased parameters. While the low-rank method in
itself reduces the most parameters, it also reduces
the expressive power of the model since it outputs
rank-one matrices. PHMs mitigate this by perform-
ing a sum of Kronecker products, increasing the

3Following Tay et al. (2019) and Zhang et al. (2021a), we
remove the imaginary units of these vectors to easily perform
operations on them, thus these vectors are also in the real
space.



1056

𝜎!(⋅) 𝜎"(⋅)

⊗ ⊗+
𝐀! 𝐀"

𝐬! 𝐬"
reshape 
+ tanh

+ = 𝐖#!

𝐂$%&'()

𝐳*
!

𝜎!(⋅) 𝜎"(⋅)

⊗ ⊗+
𝐀! 𝐀"

𝐬! 𝐬"
reshape 
+ tanh

𝐳*
"

+

𝑔$%&'()(𝐳*)

Figure 3: An illustration of how attribute embedding zj is transformed into weight matrix Wzj . The colored
tensors are learned parameters, while the gray ones are derived. By using a set of tiny parameters Ao and so, we
are able to obtain large matrices. When there are multiple labels for attribute zj , we process them separately and
aggregate the resulting large matrices.

rank of the matrix to potentially at most O2. Fi-
nally, this process effectively reduces the number
of parameters from O(dz ∗ dh ∗ da) to O(dz ∗ da),
since the parameters in σo dominate the other pa-
rameters (see Appendix for a detailed parameter
analysis).

Attribute Dropout and Post-Aggregation For
cases where attributes are sparse and multi-labeled,
we use the following mechanisms. Firstly, we add
a dropout mechanism that randomly masks out at-
tributes from training instances with a rate rdrop.
This replicates how instances at test time would
look, where some attributes are not found in the
vocabulary.

Secondly, when there are more than one labels of
an attribute, instead of aggregating them first before
processing, as in Kim et al. (2019), we perform
aggregation post hoc for Wzj ), i.e.:

bzj =
∑

k
gbias(z

(k)
j ) + cbias (10)

Wzj =
∑

k
gweight(z

(k)
j ) +Cweight (11)

Aggregating attribute embeddings reduces their
individual representation power, while our post-
aggregation mechanism preserves this since a sum
of non-linear transformations is injective (Xu et al.,
2019).

5 Experimental Setup

Training Configuration For the PLMs, we used
weights and settings of bert-base-uncased (De-
vlin et al., 2019), available in the HuggingFace
library (Wolf et al., 2020). We set the dimensions
of all parameters as follows: dz = dh = 768,
da = 64, and O = 4. Using this setting and our
parameter-saving method, we are able to decrease
the parameters by 192× the naive method. To han-
dle long input texts and fit them into the 512 token
limit of PLMs, we truncate them by concatenat-
ing the first and last 250 tokens, following Zhang
et al. (2021b). We set both the general and attribute
dropout rates to 0.2 and the batch size to 8. We
used Adam with weight decay (Loshchilov and
Hutter, 2019) to optimize our models with a learn-
ing rate of 3e− 5 and 200K training steps, with the
first 20K steps used to warm-up training linearly.

To train our models, we added a logistic clas-
sifier that transforms the [CLS] token into logits.
The weights here are updated during training. We
then used a cross-entropy loss to train the models
on all datasets except for Goodreads and Beerad-
vocate. The Goodreads dataset is very imbalanced
towards the negative class (i.e., not a spoiler). We
thus put more importance on detecting the spoiler
class and used a weighted cross-entropy loss with



1057

0.5 weight on the negative class and 1.0 weight on
the positive class. For Beeradvocate, we treat the
task as a multi-task problem, where each aspect
rating prediction is a separate task. Thus, we used
multiple classifiers, one for each aspect, and ag-
gregate the losses from all classifiers by averaging.
For PolMed where there is no available develop-
ment set, we performed a 10-fold cross-validation,
following Kim et al. (2019).

Comparison Systems We compared our method
with several approaches, including the following
no-attribute baselines: (1) BERT-base (B): The
base model used in our experiments; and (2) B +
ADAPTERS: Extra tiny parameters are added to
the base model and are used for training instead of
the full model.

Baselines with attributes injected include the
following, where we use the same base model B
for all baselines for ease of comparison: (3) B +
TOKENS: the attributes are used as special con-
trol tokens prepended in front of the input. The
[CLS] token is then passed to the logistic classifier;
(4) B + UPA (Chen et al., 2016): attributes are
used as additional bias vectors when calculating
the weights of the attention pooling module; (5) B
+ CHIM (Amplayo, 2019): attributes are used as
importance matrices multiplied to the weight ma-
trix of the logistic classifier; and (6) B + MAA and
B + TINYMAA (Zhang et al., 2021b): attributes
are used to modify the parameters used for calculat-
ing query/key/value in the self-attention. To match
the parameters of other baselines, we implemented
a tiny version with a single Transformer layer and
smaller dimensions; and (7-8) B. All models were
trained on a single GeForce GTX 1080Ti GPU,
except for B + MAA, in which four GPUs were
required to train on the same setting for all datasets.

Finally, we also included in our comparisons a
version of our model using the RoBERTa-base (R;
Liu et al., 2019) configuration (R + INJECTORS).

6 Results

We evaluated system outputs with accuracy for all
datasets except GOOD, where we used F1-score.
For brevity in BEER, we took the average of the ac-
curacy of all sub-tasks. Our results are summarized
in Table 2. Token-based injection performs worse
than the base model on four datasets, which shows
that the method is not effective for attribute injec-
tion. Overall, among the attribute injected systems,
INJECTORS outperforms the other baselines on all

datasets, even when BERT parameters are frozen4.
The difference in performance is especially signif-
icant in GOOD, where INJECTORS performs 9.68
points better than the second model. Finally, We
also see an increase in performance when applying
INJECTORS to RoBERTa, showing that our method
can be applied effectively to better-pretrained mod-
els. We also conducted ablation studies, detailed
in the Appendix, showing the contributions of the
different components in the proposed model.

Ablation Studies We present in Table 3 various
ablation studies, which assess the contribution of
different model components. Our experiments con-
firm that the use of both bias and weight injection
as well as the addition of task adapter improve
performance. Interestingly, some datasets prefer
one injection type over the other. GOOD dataset,
for example, prefers bias injection, i.e., using at-
tributes as prior and independent of the text (e.g.,
the tendency of the user to write spoilers). More-
over, our training mechanisms also increase the
performance of the model. This is especially true
for post-aggregation on the FOOD dataset since
two of its attributes are multi-labeled (ingredients
and tags). Finally, we show that the model variant
without one of the parameter-saving methods either
performs worse or does not run at all.

On Cold-Start Attributes We checked the per-
formance of the models when trained with synthetic
cold-start attributes using the Y2013-COLD and
IMDB-COLD datasets. We compared the perfor-
mance of BERT-base, CHIM, TINYMAA, MAA,
and INJECTORS. Table 4 shows their performance
along with HCSC (Amplayo et al., 2018), which is
a hybrid of BiLSTM and CNN with a UPA-style
attribute injection method (Chen et al., 2016) and
is extended to perform well on cold-start scenarios.
As can be seen, our method still performs the best
on these datasets, while TINYMAA is consistently
worse than the base model when attributes are
80% sparse. MAA improves over TINYMAA with
the cost of significant increase in parameters. All
BERT-based methods perform better than HCSC
on both datasets. Overall, the improvements are
the smallest when the dataset is the sparsest (80%
sparsified data). This is expected since datasets are
smaller and include cold-start attributes.

4We did not see an improvement over our final model when
fine-tuning all parameters of B + INJECTORS.



1058

Model Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER TP
BERT-base (B) 67.97 68.07 52.45 63.70 41.82 41.89 41.98 50.48 1.00×
B + ADAPTERS 66.47 67.44 52.69 62.85 44.24 42.02 48.92 50.71 0.02×
B + TOKENS 67.87 67.98 52.68 64.85 42.63 41.23 44.79 50.25 1.00×
B + UPA 68.38 68.82 55.76 64.40 42.83 43.97 43.96 51.98 1.01×
B + CHIM 68.71 68.56 54.31 65.30 43.64 43.35 43.58 52.29 1.01×
B + TINYMAA 68.03 68.57 55.76 65.00 44.65 43.63 44.65 54.58 1.01×
B + MAA (our impl.) 70.15 70.51 56.98 65.15 43.43 43.33 48.10 55.04 1.50×
B + MAA (original) 70.3 71.4 57.3 – – – – – 1.50×
B + INJECTORS 70.86 71.69∗ 58.90∗ 67.10∗ 47.27∗ 45.01 57.78∗ 57.87∗ 0.10×
RoBERTa-base (R) 68.01 69.11 53.31 61.50 42.42 41.82 44.12 52.86 1.12×
R + INJECTORS 73.00 73.50 60.32 67.30 46.26 44.19 60.73 58.20 0.10×

Table 2: Performance (F1-score on GOOD, Accuracy otherwise) of competing methods on eight datasets, along
with the percentage of trained parameters (TP; excluding embeddings). Attribute injected PLMs that perform
worse than the base model B are italicized. Among B-based models, best systems are in bold and the second-best
are underlined. Asterisk (*) signifies a significant difference between our model and the second-best model (paired
bootstrap resampling; p < 0.05).

Model Y2013 Y2014 IMDB AAPR POLMED FOOD GOOD BEER

B + INJECTORS 70.86 71.69 58.90 67.10 47.27 45.01 57.78 57.87
– bias injection 70.33 71.24 58.54 66.45 46.67 44.86 57.06 57.67
– weight injection 70.51 71.27 58.55 66.85 45.66 44.74 57.61 57.29
– task adapter 69.21 69.68 57.25 65.55 46.89 44.30 56.57 57.28
– attribute drop 69.29 70.94 57.69 65.55 46.33 44.48 56.62 57.41
– post-aggregation 70.76 71.35 58.63 64.42 47.27 43.30 57.78 57.69
– low-rank OOM OOM OOM OOM OOM OOM OOM OOM
– PHM 68.27 69.05 56.74 65.15 46.16 43.89 55.99 56.51

Table 3: Performance of INJECTORS and versions thereof without some of our proposed components (second
block), training mechanisms (third block), and parameter-saving methods (fourth block). OOM denotes the model
does not run on our experimental setup due to out of memory error.

Y2013-COLD
Model 20% 50% 80%

BERT-base (B) 65.24 63.88 58.23
B + CHIM 65.85 64.12 58.56
B + TINYMAA 66.26 64.20 57.68
B + MAA 67.03 64.22 58.48
B + INJECTORS 67.89 64.32 59.23
HCSC 63.6 60.8 53.8

IMDB-COLD
Model 20% 50% 80%

BERT-base (B) 50.24 47.77 41.37
B + CHIM 51.08 47.81 41.22
B + TINYMAA 52.45 48.27 40.78
B + MAA 53.52 49.25 41.61
B + INJECTORS 55.62 49.87 41.78
HCSC 50.5 45.6 36.8

Table 4: Performance on the Y2013-COLD and IMDB-
COLD. Best systems are shown in bold. Models per-
form worse than B are colored red.

On Model Modularity Adapters allow us to
compose multiple modules with different function-
alities, possibly trained from different models. For
example, when predicting the review rating of a
specific user on a new aspect of a product, we may
want to use the learned representation of a user on
a previous model (i.e., a review rating prediction

Model A RPT→A
B + MAA 53.65 51.27 (−4.43%)
B + INJECTORS 55.58 56.23 (+1.17%)

Model R APT→R
B + MAA 51.79 50.57 (−2.36%)
B + INJECTORS 53.62 55.48 (+3.47%)

Model P ART→P
B + MAA 52.73 50.84 (−3.57%)
B + INJECTORS 55.44 55.63 (+0.34%)

Model T ARP→T
B + MAA 58.25 56.08 (−3.73%)
B + INJECTORS 59.39 60.27 (+1.48%)

Table 5: Performance of models on single-task BEER
(A: appearance, R: aroma, P: palette, T: taste). The
arrow (→) indicates that the attribute-specific adapters
of the model in the right-hand side (e.g., A) are initial-
ized using parameters of the left-hand side model (e.g.,
RPT) and are frozen during training.

model focused on previously known aspects of the
product). This is especially crucial when there is
fewer data for such new tasks5. Since INJECTORS

are basically a sequence of adapters, we expect
that modular composition across different models

5We leave the exploration of attribute transfer to com-
pletely new tasks in future work due to the absence of multi-
task datasets with common attributes.



1059

is also effective in our setting. In this section, we
verify this using the following experiment.

We use the BEER dataset, which is a multi-task
aspect rating prediction dataset with four different
aspects. We divide the dataset into two subsets:
(1) a single-task target dataset and (2) a 3-task
source dataset. We train the model using the source
dataset, obtaining attribute-specific parameters. We
then transfer these parameters when training the
model using the target dataset, and only fine-tune
the parameters of the task adapter and the classifier.

We split the training dataset into four parts, one
for each aspect, to ensure that there are no overlap-
ping training examples between source and target
datasets. For each aspect, we treated it as the tar-
get and combined the three non-target datasets as
the source dataset. We experimented with MAA
and INJECTORS, and report the results in Table 5.
When compared to the same model trained directly
on the target task (second column), our model is
able to achieve a small improvement even when the
attribute-specific parameters are fixed and learned
from a different task (third column). On the other
hand, MAA shows a decrease in performance in
all cases.

7 Conclusions

We considered the use of attributes as additional
contexts when fine-tuning pretrained language
models. We proposed the INJECTOR module, an
extension of adapters that also accepts attributes as
input. Our method considers two kinds of injection
strategies, uses parameter-saving techniques and in-
troduces training mechanisms to account for sparse
and multi-labeled attributes. We also introduced
ATTRIB, a collection of 14 datasets to evaluate
attribute injection methods. Experiments on this
benchmark of various classification tasks showed
that our method improves substantially over pre-
vious methods. Finally, we conducted extensive
analyses on how INJECTORS handle attribute spar-
sity and verify their modularity. In the future,
we plan to apply our methods to real-world data
where there are millions of attributes. We also plan
to explore the use of attribute injection methods
for text generation tasks, i.e. injecting attributes
when generating texts. Our code and the ATTRIB
benchmark will be publicly available online at
https://github.com/rktamplayo/Injector.

Acknowledgments

We would like to thank Jaewook Kang and other
members of the NAVER AI Lab for their insightful
comments. Reinald is supported by a Google PhD
Fellowship.

References
Reinald Kim Amplayo. 2019. Rethinking attribute rep-

resentation and injection for sentiment classification.
In EMNLP-IJCNLP, pages 5602–5613.

Reinald Kim Amplayo, Jihyeok Kim, Sua Sung, and
Seung-won Hwang. 2018. Cold-start aware user
and product attention for sentiment classification. In
ACL, pages 2535–2544.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35:1798–1828.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, T. Henighan, R. Child,
A. Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurIPS.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin,
and Zhiyuan Liu. 2016. Neural sentiment classifi-
cation with user and product attention. In EMNLP,
pages 1650–1659.

Asa Cooper Stickland, Alexandre Berard, and Vassilina
Nikoulina. 2021. Multilingual domain adaptation
for NMT: Decoupling language and domain infor-
mation with adapters. In Proceedings of the Sixth
Conference on Machine Translation, pages 578–598,
Online. Association for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: A simple approach to controlled text generation.
arXiv preprint arXiv:1912.02164.

Ludovic Denoyer and P. Gallinari. 2006. The
wikipedia xml corpus. In INEX.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Zi-Yi Dou. 2017. Capturing user and product informa-
tion for document level sentiment analysis with deep
memory network. In EMNLP, pages 521–526.

https://github.com/rktamplayo/Injector
https://aclanthology.org/2021.wmt-1.64
https://aclanthology.org/2021.wmt-1.64
https://aclanthology.org/2021.wmt-1.64


1060

Angela Fan, David Grangier, and Michael Auli.
2018. Controllable abstractive summarization. In
NMT@ACL.

Jessica Ficler and Y. Goldberg. 2017. Controlling lin-
guistic style aspects in neural language generation.
ArXiv, abs/1707.02633.

T. Fukuhara, H. Nakagawa, and T. Nishida. 2007. Un-
derstanding sentiment of people from news articles:
Temporal sentiment analysis of social events. In
ICWSM.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL-IJCNLP.

W. Gao, Naoki Yoshinaga, Nobuhiro Kaji, and M. Kit-
suregawa. 2013. Modeling user leniency and prod-
uct popularity for sentiment classification. In IJC-
NLP.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Represen-
tations.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adap-
tation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2208–2222, Online. Association for Computa-
tional Linguistics.

N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and S. Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML.

Arash Joorabchi and A. Mahdi. 2011. An unsupervised
approach to automatic classification of scientific lit-
erature utilizing bibliographic metadata. Journal of
Information Science, 37:499 – 514.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and M. Okumura. 2016. Controlling out-
put length in neural encoder-decoders. In EMNLP.

Jihyeok Kim, Reinald Kim Amplayo, Kyungjae Lee,
Sua Sung, Minji Seo, and Seung-won Hwang. 2019.
Categorical metadata representation for customized
text classification. TACL, 7:201–215.

Jooyeon Kim, Dongwoo Kim, and Alice H. Oh. 2017.
Joint modeling of topics, citations, and topical au-
thority in academic corpora. Transactions of the As-
sociation for Computational Linguistics, 5:191–204.

Anne Lauscher, Olga Majewska, Leonardo F. R.
Ribeiro, Iryna Gurevych, Nikolai Rozanov, and
Goran Glavaš. 2020. Common sense or world
knowledge? investigating adapter-based knowledge
injection into pretrained transformers. In Proceed-
ings of Deep Learning Inside Out (DeeLIO): The
First Workshop on Knowledge Extraction and Inte-
gration for Deep Learning Architectures, pages 43–
49, Online. Association for Computational Linguis-
tics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4582–4597, Online. Association for Computational
Linguistics.

Shuhua Liu and Thomas Forss. 2014. Web content clas-
sification based on topic and sentiment analysis of
text. In KDIR.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Yunfei Long, Mingyu Ma, Qin Lu, Rong Xiang, and
Chu-Ren Huang. 2018. Dual memory network
model for biased product review classification. In
WASSA@EMNLP, pages 140–148.

I. Loshchilov and F. Hutter. 2019. Decoupled weight
decay regularization. In ICLR.

Dehong Ma, Sujian Li, Xiaodong Zhang, Houfeng
Wang, and Xu Sun. 2017. Cascading multiway at-
tentions for document-level sentiment classification.
In IJCNLP, pages 634–643.

Rabeeh Karimi Mahabadi, James Henderson, and
Sebastian Ruder. 2021. Compacter: Efficient
low-rank hypercomplex adapter layers. ArXiv,
abs/2106.04647.

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo
Ni, and Julian McAuley. 2019. Generating person-
alized recipes from historical user preferences. In
EMNLP/IJCNLP.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Ma-
dian Khabsa. 2021. Unipelt: A unified frame-
work for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577.

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


1061

Julian McAuley, J. Leskovec, and Dan Jurafsky. 2012.
Learning attitudes and attributes from multi-aspect
reviews. In ICDM.

Tomas Mikolov, Kai Chen, G. Corrado, and J. Dean.
2013. Efficient estimation of word representations
in vector space. In ICLR.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In EMNLP-
IJCNLP, pages 188–197.

Ethan Perez, Florian Strub, Harm de Vries, Vin-
cent Dumoulin, and Aaron Courville. 2018. Film:
Visual reasoning with a general conditioning
layer. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirti-
eth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 487–503, Online. Association for Computa-
tional Linguistics.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, pages 1–26.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:1–67.

D. Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled lda: A su-
pervised topic model for credit attribution in multi-
labeled corpora. In EMNLP.

M. Rosen-Zvi, T. Griffiths, M. Steyvers, and Padhraic
Smyth. 2004. The author-topic model for authors
and documents. In UAI.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Timo Schick and Hinrich Schütze. 2021. It’s not just
size that matters: Small language models are also
few-shot learners. In NAACL.

Rico Sennrich, B. Haddow, and Alexandra Birch. 2016.
Controlling politeness in neural machine translation
via side constraints. In NAACL.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Learn-
ing semantic representations of users and products
for document level sentiment classification. In ACL-
IJCNLP, pages 1014–1023.

Yi Tay, A. Zhang, Anh Tuan Luu, J. Rao, Shuai
Zhang, Shuohang Wang, Jie Fu, and S. C. Hui. 2019.
Lightweight and efficient neural natural language
processing with quaternion networks. In ACL.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In NIPS.

Mengting Wan and Julian McAuley. 2018. Item recom-
mendation on monotonic behavior chains. In Rec-
Sys.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wen-
Han Chao. 2019. Harnessing pre-trained neural net-
works with rules for formality style transfer. In
EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2020. Transformers: State-of-
the-art natural language processing. In EMNLP.

Zhen Wu, Xin-Yu Dai, Cunyan Yin, Shujian Huang,
and Jiajun Chen. 2018. Improving review represen-
tations with user attention and product attention for
sentiment classification. In AAAI.

Keyulu Xu, Weihua Hu, J. Leskovec, and S. Jegelka.
2019. How powerful are graph neural networks? In
ICLR.

Min Yang, Jincheng Mei, Heng Ji, Wei Zhao, Zhou
Zhao, and Xiaojun Chen. 2017. Identifying and
tracking sentiments and topics from social media
texts during natural disasters. In EMNLP.

Pengcheng Yang, Xu Sun, Wei Li, and Shuming Ma.
2018. Automatic academic paper rating based on
modularized hierarchical convolutional neural net-
work. In ACL.

A. Zhang, Yi Tay, Shuai Zhang, Alvin Chan, A. Luu,
S. C. Hui, and Jie Fu. 2021a. Beyond fully-
connected layers with quaternions: Parameterization
of hypercomplex multiplications with 1/n parame-
ters. In ICLR.

Youjia Zhang, Jin Wang, Liang-Chih Yu, and Xuejie
Zhang. 2021b. Ma-bert: Learning representation
by incorporating multi-attribute knowledge in trans-
formers. In FINDINGS.

https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39


1062

Rui Zhao and K. Mao. 2017. Topic-aware deep
compositional models for sentence classification.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 25:248–260.

Tony Zhao, Eric Wallace, Shi Feng, D. Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In ICCV, pages 19–27.

A Appendix

A.1 Descriptions of Newly Introduced
Datasets

This section describes how we procured the three
datasets we introduce in this paper:

1. FOOD: We used the dataset gathered in Ma-
jumder et al. (2019), which was used as a
personalized recipe generation dataset. We
repurposed the dataset for a new classifi-
cation task and used the recipes as input
text and the duration (in minutes) as out-
put class. We removed instances with out-
liers: (1) recipes that took less than 5 minutes
and more than 150 minutes; (2) recipes with
more than 500 tokens or less than 10 tokens;
and (3) tags with more than 50 labels. We
also removed from the attribute vocabulary
tags that explicitly indicate the recipe dura-
tion (e.g., 60-minutes-or-less) and those
that are used on almost all instances (e.g.,
time-to-make). We shuffled the data and
used 10% each for the development and test
sets, and the remaining 80% for the training
set.

2. GOOD: We used the review corpus gathered
in Wan and McAuley (2018), which was also
used for spoiler detection. Since the split is
unfortunately not publicly shared, we created
our own split. We first removed very short
(less than 32 tokens) and very long (more than
256) reviews as they were outliers. We then
divided the data into three splits, with two 10K
splits as the development and test sets, and the
remaining split as the training set.

3. BEER: We used the review corpus gathered in
McAuley et al. (2012). We removed outliers
and split the dataset into three using the same
method we did with Goodreads.

A.2 AttrIB Attribute Analysis

We conducted an attribute analysis to check
whether the attributes in these datasets are indeed
useful for the tasks. Specifically, using the training
set, we create attribute-specific distribution over
classes qz(y) for each attribute z to represent at-
tribute bias, i.e.:

qz(y) =
∑
x∈Dz

1(x, y)/|Dz| (12)



1063

where Dz is the subset of the training set where
attribute z exists and 1(x, y) is the indicator func-
tion that returns 1 if class y is the class of train-
ing example x. We then create the same attribute-
specific class distribution pz(y) for the dev set and
compare the similarity of both distributions using
KL-divergence. Finally, we compare with the KL-
divergence of random (i.e., uniform distribution)
and majority (i.e., overall class distribution) base-
lines to see whether attributes provide better biases
than when selecting at random or the majority class.

Table 6 shows the KL-divergence of random,
majority, and attributes, both when z is a single
attribute and all attributes combined. We can ob-
serve two things in the table. Firstly, using a single
attribute usually does not perform better than the
majority baseline. This is in contrast to experiments
in some of the previous work (Chen et al., 2016),
where text classification models based on neural
networks improved when incorporated with just
one out of all attributes. This means that these mod-
els can potentially learn beyond providing attribute-
specific biases, such as jointly modeling attributes
and texts. Secondly, combining all attributes pro-
vides the best bias on most datasets, with the ex-
ception of POLMED. In this dataset, the audience
attribute is worse than the random baseline, but it
might be useful in some cases. In fact, the best
configuration is actually combining both the me-
dia source and the audience attributes, which has
a KL-divergence of 1.726. Therefore, attributes
may either be helpful or detrimental depending on
multiple factors, e.g., other attributes and (possi-
bly) textual input. Models thus need to effectively
determine if the attribute is useful for each of the
examples.

A.3 Cold-Start Dataset Statistics

Table 7 reports the statistics of the cold-start
datasets in ATTRIB.

A.4 Parameter Analysis of Weight-based
Injection

Recall that we define Wzj ∈ Rdh×da as follows:

Wzj = gweight(zj) +Cweight (13)

In a naive setting, we can trivially use a projec-
tion function as our gweight, which would linearly
transform zj ∈ Rdz into the shape dh × da. This
would need a weight tensor of size dz × dh × da,
which can be prohibitively large. This parameter

Y2013 Y2014
random 1.608 random 1.608
majority 1.358 majority 1.379
user 1.406 user 1.425
product 1.419 product 1.415
all 1.265 all 1.279

IMDB AAPR
random 2.300 random 0.693
majority 2.087 majority 0.693
user 2.132 author 1.357
product 2.314 research area 0.665
all 1.873 all 0.664

POLMED FOOD
random 2.195 random 2.769
majority 1.851 majority 2.352
politician 1.790 user 2.306
media source 1.728 ingredient 3.708
audience 3.640 tag 2.277
political bias 1.844
all 1.770 all 2.275

GOOD BEER
random 0.693 random 2.195
majority 0.216 majority 1.656
user 0.246 user 1.754
book 0.326 beer 1.769
rating 0.215 rating 1.363
all 0.215 all 1.362

Table 6: KL-divergence of baseline and attribute-
specific distributions over classes to the dev set distri-
butions. Best values are in bold.

dominates all the other parameters in the module,
thus the overall parameter of the naive method is
O(dz ∗ dh ∗ da).

Our parameter-saving methods remove this large
tensor, but instead use three smaller parameters in
hypercomplex space: the transform function σo(·)
that is basically a linear transformation with a pro-
jection matrix of size dz × da (Eq. 6), the vector so
of size dh/O2, and the matrix Ao of size O × O.
Since we have O dimensions in our hypercomplex
space, we have a total ofO∗(dz∗da+dh/O2+O2),
which we can reduce as follows:

O ∗ (dz ∗ da + dh/O
2 +O2)

= O ∗ dz ∗ da + dh/O +O3

≈ O ∗ dz ∗ da
≈ dz ∗ da (14)

given thatO3 � O∗dz ∗da and that we can treatO
as a constant (O = 4 in our experiment). Thus the
overall parameter when using our parameter-saving
method is O(dz ∗ da). We emphasize that this is a
huge improvement since the PLM hidden size dh
is usually the largest dimension.

The output weight Wzj has a rank r of at most
O2+1, i.e., (1) the low-rank method (Eq. 7) outputs



1064

Y2013-COLD
Dataset 20% 50% 80%
#Train 38.7K 16.1K 2.4K
#Attr. Vocab 2.6K 1.6K 0.7K
%Cold-start 20.5% 49.4% 79.6%

IMDB-COLD
Dataset 20% 50% 80%
#Train 44.3K 18.0K 2.5K
#Attr. Vocab 2.4K 1.5K 0.6K
%Cold-start 19.3% 48.7% 80.7%

Table 7: Cold-start dataset statistics. %Cold-start is
the percentage of attributes with zero training examples.
These datasets use the dev and test sets of the original
datasets.

a matrix of rank r = 1; (2) the Kronecker product
(Eq. 8) returns a matrix of rank r = O; and finally,
(3) the sum of multiple matrices (Eq. 9) has a rank
r ≤ O2.


