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Abstract

Enhancing the interpretability of text classifi-
cation models can help increase the reliabil-
ity of these models in real-world applications.
Currently, most researchers focus on extracting
task-specific words from inputs to improve the
interpretability of the model. The competitive
approaches exploit the Variational Information
Bottleneck (VIB) to improve the performance
of word masking at the word embedding layer
to obtain task-specific words. However, these
approaches ignore the multi-level semantics of
the text, which can impair the interpretability of
the model, and do not consider the risk of rep-
resentation overlap caused by the VIB, which
can impair the classification performance. In
this paper, we propose an enhanced variational
word masks approach, named E-VarM, to solve
these two issues effectively. The E-VarM com-
bines multi-level semantics from all hidden lay-
ers of the model to mask out task-irrelevant
words and uses contrastive learning to readjust
the distances between representations. Empiri-
cal studies on ten benchmark text classification
datasets demonstrate that our approach outper-
forms the SOTA methods in simultaneously
improving the interpretability and accuracy of
the model.

1 Introduction

With the widespread adoption of neural networks
in text classification tasks (Bastings and Filippova,
2020; Halder et al., 2020; Schick et al., 2020; Lv
et al., 2021), the classification models are expected
to provide not only highly accurate classification
results but also reasonable prediction rationales
(Peake and Wang, 2018; Sun et al., 2021). These
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prediction rationales, which are short yet informa-
tive parts of the input for classification predictions
(Bastings et al., 2019), manifest the interpretability
of the model. The better the interpretability of the
model, the more reasonable rationales the model
provides (Lin et al., 2021). Therefore, improving
the interpretability of the model helps to boost the
reliability of these classifiers in real-world applica-
tions (Jacovi and Goldberg, 2020).

To improve the interpretability of the classifiers,
many methods have been proposed (Chrysostomou
and Aletras, 2021; Bastings et al., 2019). Some
studies rely on additional inputs at the training time,
such as pre-defined information and human anno-
tations (Erion et al., 2019; Plumb et al., 2020), all
of which involve high human costs. Other works
resort to assigning a binary Bernoulli variable to
each input word with promising results, among
which the competitive approaches are the Sparse-
VIB (Paranjape et al., 2020) and Vmask (Chen and
Ji, 2020) models . They all employ the Variational
Information Bottleneck (VIB) (Alemi et al., 2017)
to train stochastic masks to automatically learn
task-specific words, namely prediction rationales,
for prediction and interpretability simultaneously.

However, these methods only utilize the infor-
mation from the word embedding layer , which
holds little task-specific information (Van Aken
et al., 2019), ignoring the multi-level information
of the text, such as syntactic and semantic infor-
mation. That is, this initial layer results in poor
interpretability performance and reaches low accu-
racy on related semantic tasks . Additionally, these
approaches do not consider the risk of representa-
tion overlap arising from VIB (Alemi et al., 2017),
resulting in the model failing to learn discrimina-
tive class representations, thus further impairing
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the classification performance.

To address the above issues, we propose an
Enhanced Variational Word Masks approach,
(named E-VarM), which combines multi-level in-
formation to learn task-specific words in an unsu-
pervised manner and uses contrastive learning to
alleviate the representation overlap problem caused
by VIB. As a result, both the interpretability and
accuracy of the model are improved.

Specifically, as the data flow from the input to the
output layer, each hidden layer of the text encoder
can capture different information (Geirhos et al.,
2019). For example, the BERT (Devlin et al., 2018)
can encode the captured information to a rich hier-
archy of linguistic information (Hewitt and Man-
ning, 2019; Li et al., 2022) with surface features
at the bottom, syntactic features in the middle, and
semantic features at the top (Jawahar et al., 2019;
van Aken et al., 2019; Kim et al., 2020; Gupta
et al., 2022). Inspired by the feature extraction
mechanism of the text encoder, we fuse multilevel
information from all hidden layers of the model to
generate a task-specific binary Bernoulli distribu-
tion to extract reasonable interpretations for various
text classification tasks, such as sentiment analysis,
syntactic judgments, and semantic inference.

Furthermore, the VIB-based methods rely on
the Lagrangian factor to perform the compression-
prediction trade-off (Tishby et al., 2000; Mahabadi
et al., 2021). A larger Lagrangian factor means
masking out more task-irrelevant information (Pan
et al., 2021; Kolchinsky et al., 2019; Gálvez et al.,
2020) for a special class and obtaining better inter-
pretability. However, along with this larger value
is the potential risk of representation overlap or
even collapse (Alemi et al., 2017; Goldfeld and
Polyanskiy, 2020; Wu et al., 2020) since it may
hinder the model from learning the discriminative
representation and lead to loss of class informa-
tion. Therefore, we leverage supervised contrastive
learning (Khosla et al., 2020) to adjust the classi-
fication representation by pulling in samples from
the same class and pushing away samples from dif-
ferent classes, thus mitigating the representations
overlap problem. Additionally, we resort to task-
specific words to construct diverse positive samples
to enhance the efficiency of contrastive learning.

In a nutshell, we make the following major con-
tributions: (1) We introduce an enhanced varia-
tional word masks method to improve classifica-
tion performance and interpretability simultane-

ously. (2) Our method produces token-level inter-
pretations that consider the multi-level information
from all model layers and are adaptable to various
classification tasks. (3) To the best of our knowl-
edge, our approach is the first attempt to use con-
trastive learning to alleviate the representation over-
lap caused by VIB. (4) The experimental results on
ten benchmark datasets validate the effectiveness
of our method.

2 Related Works

2.1 Model Interpretability

Various approaches have been proposed to improve
the interpretability of neural networks, such as ex-
ploiting attention distribution on tokens (Sun et al.,
2020), extracting subsets of input text (Swanson
et al., 2020), or relying on language models to
generate explanations from scratch (Rajani et al.,
2019). The underlying techniques in this paper are
closely related to the extracted interpretation meth-
ods. Some of these works leverage pre-collected
annotations (Erion et al., 2019; Plumb et al., 2020),
which can be labor-intensive. Other works use
random masks on the input to automatically learn
interpretable models, for example, Bastings et al.
(2019) and Cao et al. (2020) adopt L0 constraints
to make the masks sparse.

The L0 regularisation overemphasizes the spar-
sity, which can damage the accuracy of model.
Therefore, some researchers introduce VIB to con-
trol the level of mask sparsity through a tunable
sparse prior (Paranjape et al., 2020). Among these,
the competitive methods are the SparseVIB (Paran-
jape et al., 2020), VIBI (Bang et al., 2021), and
Vmask (Chen and Ji, 2020). However, these meth-
ods only consider the information of word embed-
dings to extract task-specific tokens and ignore the
risk of representation overlap, which affects the
models’ interpretability and classification perfor-
mance. This paper aims to address the above issues.

2.2 Supervised Contrastive Learning

Supervised contrastive learning performs represen-
tation learning by expanding the embedding dif-
ferences of instances from different classes in the
hidden space (Khosla et al., 2020), which is widely
used in sentiment recognition (Liang et al., 2021)
, semantic inference (Zhang et al., 2021) and text
classification (Gunel et al., 2021) with good re-
sults. Previous works (Wu et al., 2021; Robinson
et al., 2021) indicate that constructing diverse posi-
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tive and negative samples facilitates discriminative
feature learning. The reason is that high-quality
contrastive samples encourage the model to mine
both intra-class and inter-class features, forcing
the model to perform fine-grained representation
learning (Khosla et al., 2020). Therefore, we use
contrastive learning to adjust representations to mit-
igate the risk of overlap and create high-quality
positive samples based on task-specific words to
enhance the model’s classification performance.
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Figure 1: An illustration of our proposed method. The
x, z, and x′ are contrastive samples in the form of word
embeddings. We use tokens to replace embeddings to
better indicate the diversity among samples. In this case,
the input sentence is from the sentiment analysis dataset
and labeled as positive.

3 Methodology

3.1 Overview

This paper aims to simultaneously improve the in-
terpretability and accuracy of the text classifier.
Our model consists of two stages shown in Fig
1. The first one is 1) the multi-layer variational
words extraction, which automatically extracts task-
specific words as rationales. Another is 2) the con-
trastive text representation optimization, which mit-
igates the feature overlap of different classes and
learns discriminative representations.

To optimize these two stages, we adopt an itera-

tive training mechanism at the batch level for the
whole model. With this mechanism, the model can
be corrected in time if the representation overlap
occurs in the extraction stage.

3.2 Multi-level Variational Words Extraction

The core idea of this stage is that if a subset of
an input text can be removed without affecting
the prediction, this subset text is considered task-
irrelevant, while the remaining subset text is task-
specific. Generally, this stage aims to learn a sparse
random gate gϕ(a.k.a., masks) for a neural text clas-
sifier fθ(·) to obtain task-specific words. In this
paper, we use BERT as the text classifier.

Specifically, given an input x = {x1, x2, ..., xn},
where xt ∈ Rd indicates the word embedding, we
feed it into the encoder to obtain the hidden states
{h(0), ..., h(L)} of different layers of BERT. In this
hierarchy of linguistic information structure en-
coded by BERT, surface features are at the bottom,
syntactic features are in the middle, and semantic
features are at the top. Herein, we stack the hidden
states up to h(L) as input to the gate network , a
two-hidden-layer MLP, to predict the binary output
r,

r = g(h(0) ⊕ h(1)...⊕ h(L)) (1)

where ⊕ denotes concatenate operation. We rely
on r ∈ R2n to perform word masks, so that the
model has multi-level information and is adaptable
to various tasks. The ri associated with xi follows
the Bernoulli distribution,

ri ∼ Bernoulli(αi) (2)

where αi is the probability of the word embedding
xi being selected as the task-specific word. Pre-
cisely, the binary r produced by the gate can be
expressed as the corresponding two-element one-
hot vector ri = [ri,j ]j=0,1 , where ri,j = 1 means
ri = j. Similarly, αi,j is the probability that ri = j
(Xue et al., 2020),

ri =one_hot(argmax
j

αi,j, j = 0, 1)

αi,0 = 1− αi, αi,1 = αi

(3)

However, sampling from the Bernoulli distribu-
tion (Equation 2) causes the non-differentiability
problem (Xue et al., 2020). We adopt the Gumbel-
Softmax distribution (Xue et al., 2020; Jang et al.,
2017) to approximate ri differentiably,
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r̂i = [α̂i,j ]j=0,1

α̂i,j =
exp((log(αi,j) + ϵj)/τ)∑1

k=0 exp((log(αi,k) + ϵk)/τ)

(4)

where ϵj is sampled randomly from Gumbel(0,
1), and the temperature τ controls how closely
the Gumbel-Softmax distribution approximates the
one-hot. By replacing Equation 2 with ri = r̂i,0,
we can train the model in an end-to-end manner.

Finally, we obtain the task-specific word embed-
dings z as the final input for prediction, i.e.,

z = r ⊙ x (5)

where ⊙ is an element-wise multiplication and z is
a subset of x.

Since there is no direct supervision signal to esti-
mate the gate parameters ϕ, we follow the standard
practice in the Information Bottleneck(IB) (Tishby
et al., 2000) theory to optimize the parameters. For
the input x and its label y, the IB principle aims to
learn the minimal sufficient representation z that
preserves enough information about the output y
(prediction) while containing the least redundant
information from input x (compression) (Alemi
et al., 2017; Mahabadi et al., 2021),

LIB = −I(z, y) + β · I(x, z) (6)

where β is the Lagrangian factor to balance the
compression and prediction, and I(., .) is the mu-
tual information.

To compute the two mutual information items
above, the Deep VIB(Alemi et al., 2017) perform a
variational approximation for the IB objective via
a neural network. Thus, we obtain LV IB , which
is the approximation of LIB ,

LV IB =−
n∑

i=0

p(z|x(i)) log q(y(i)|z)

+ β ·KL[p(z|x(i)||m(z))]

(7)

where q(y(i)|z) is a parametric approximation of
p(y(i)|z), m(z) is a variational estimate of the prior
probability p(z) of z, and p(z|x(i)) is an estimate
of the posterior probability of z. The KL[·||·]
denotes Kullback-Leibler divergence, and the β is
inherited from the IB theory.

Since the compressed features z is determined
by the random variable r that follows the Bernoulli

distribution (Equation 5), we can rewrite Equa-
tion 7 with r. Motivated by VMask (Chen and
Ji, 2020) and mean-field approximation (Tanaka,
1998), we obtain m(r) = Πn

i=1m(ri). As m(ri) =
Bernoulli(0.5) means that each word has an equal
probability to be masked or selected (Chen and Ji,
2020), we get the uniform distribution m(r) and
Equation 7 can be further simplified as,

LV IB =−
n∑

i=0

p(r|x(i)) log q(y(i)|r, x(i))

+ β ·
n∑

i=0

p(r|x(i)) log p(r|x(i))
(8)

The first term in LV IB is a cross-entropy aiming
to make sure the information in p(r|x) for predict-
ing is sufficient. The second term in LV IB is to
regularize p(r|x) to make masks sparse, enabling
the r vector to contain more zeros. To compute
the compressed posterior pθ,ϕ(r|x(i)), we first feed
input embedding x to BERT model fθ(·) and then
resort to the amortization network (Rezende and
Mohamed, 2015; Chen and Ji, 2020) , which is our
gate network gϕ, to output binary value r. Then the
BERT takes r along with x(i) as input and produces
a probability of output y(i) , qθ(y(i)|r, x(i)).

In actual training, we use the LV IB to simul-
taneously optimize the gate parameter ϕ and the
classifier parameters θ.

3.3 Contrastive Text Representation
Optimisation

In this stage, we leverage supervised contrastive
learning to mitigate the risk of representation over-
lap.

Specifically, for a given input x, we obtain a
compressed sample z that contains only the task-
specific embeddings through the first stage. To
perform supervised contrastive learning, we treat
the samples belonging to the same class in a batch
as positive samples and the rest within the batch
as negative samples. Additionally, to increase the
diversity of the contrastive samples, we introduce
additional positive samples x′,

x′ = x−R(x− z) (9)

where R(x− z) denotes a random mask operation
on task-irrelevant embeddings, and the number of
masks ranges from 1 to m, with m being the num-
ber of class-irrelevant words of input x. Since we
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Table 1: Statistics of the datasets. "Class" is the number
of labels. "Ave.Len" represents the average length of a
sentence. "Train", "Dev" and "Test" denote the size of
the training set, validation set and test set, respectively.

Num Dataset Class Ave.Len Train Dev Test
1 QNLI 2 40 104K 5463 -
2 QQP 2 23 363K 40k -
3 COLA 2 8 8551 1043 -
4 IMDB 2 268 25K - 25K
5 AGNews 4 32 120K - 7.6K
6 Yelp 2 138 560K - 38K
7 Subj 2 23 10K - -
8 RT 2 23 10K - -
9 SST-1 5 18 8540 1101 2208
10 SST-2 2 19 6920 872 1821

deliberately avoid a mask on task-specific features
when perturbing the input x, the label of x′ is not
changed. These diverse contrastive samples, x, x′ ,
and z, can force the model to focus on task-specific
words and increase contrastive learning efficiency.

Then, we freeze the gate network and use the
above samples to optimize text representations.
Given a sample representation hi , its positive rep-
resentation hj and negative representation hk , the
supervised contrastive learning loss is presented as,

LCON =

3N∑
i=1

−1

3Nỹi − 1

3N∑
j=1

Ii ̸=j · Iỹi ̸=ỹj

· log exp(hi · hj/τ)∑3N
k=1 Ii ̸=k · exp((hi · hk/τ))

(10)

where i, j, k ∈ {1, 2, · · · , 3N} and these 3N
samples consist of N x samples, N x′ samples, and
N z samples. The τ is a temperature controlling
the concentration level of the distribution (Hinton
et al., 2015).

Finally, we obtain the contrastive loss LCON for
the second stage to fine-tune the BERT encoder.

4 Experimental Settings

4.1 Dataset
We adopt ten benchmark datasets to evaluate our
model, ranging from sentiment classification, and
syntactic judgment to semantic inference, etc.,
which includes five sentiment analysis datasets: RT
(Pang and Lee, 2005a), IMDB (Maas et al., 2011),
SST-2 (Socher et al., 2013), Yelp (Zhang et al.,
2015), SST-1 (Socher et al., 2013); two seman-
tic inference datasets: QQP (Wang et al., 2018),

QNLI (Wang et al., 2018); one topic categorization
dataset:AG’s News (Zhang et al., 2015); one gram-
matical judgment dataset: COLA (Wang et al.,
2018); and one subjective / objective classification
dataset: Subj (Pang and Lee, 2005b). The statistics
of the datasets are displayed in Table 1.

Since QNLI, QQP, and COLA datasets have no
test set, we randomly select 20% of the training
set from each of them as their respective test set.
Similarly, for IMDB, AGNews, and Yelp datasets,
we randomly selecte 20% of the training data as
their respective validation set. For Subj and RT
datasets, which have no both validation and test set,
we randomly select 10% of their respective training
data as their validation and test set, respectively.
More details about the datasets can be found in the
Appendix A.

4.2 Baseline and SOTAs

We conduct experiments with seven competitive
models, one baseline model: BERTBase (Devlin
et al., 2018), three SOTA models, and three variants
of our model.

AGN (Li et al., 2021): An adaptive gate-based
SOTA model that improves performance by com-
puting corpus-specific features such as word fre-
quency and label distribution.

SCL (Gunel et al., 2021): A contrastive learning-
based SOTA model that utilizes supervised con-
trastive learning to obtain promising features and
enhance performance.

Vmask (Chen and Ji, 2020): An interpretation-
based SOTA model that improves accuracy and
interpretation by masking task-irrelevant words at
the word embedding layer with the VIB.

E-VarMMASK : A variant of E-VarM that re-
moves the representation optimization stage and
contains only the variational word extraction stage.

E-VarMPPL: A variant of E-VarM that uses a
two-stage pipeline training method instead of the
iterative one. We first train the gate and the Bert
jointly for 50 epochs to extract class-specific words.
Then we fix the gate parameters and tune the Bert
for 50 epochs via contrastive learning.

E-VarMETE: The third variant of E-VarM that
uses an end-to-end training method to update both
the gate and the BERT model. The corresponding
loss function LETE can be expressed formally as,

LETE = LV IB + LCON (11)

where LV IB is the VIB loss shown in Equation



1041

Table 2: The prediction accuracy (%) comparison of different methods. The best results are marked in bold.

Methods QNLI QQP COLA IMDB AGNews Yelp Subj RT SST-1 SST-2
BERTBase 87.07 90.17 82.45 91.75 93.09 96.30 96.40 86.59 50.81 90.44

AGN 86.95 90.23 81.20 92.66 93.59 97.00 95.61 85.56 50.70 90.57
SCL 86.57 89.26 82.46 91.78 93.61 96.40 95.33 86.65 50.59 90.72

Vmask 85.03 86.04 79.41 92.06 93.52 96.30 96.68 87.82 51.99 91.21
E-VarM 87.94 91.08 83.99 92.73 94.00 97.28 97.30 88.67 53.44 92.37

Variants
E-VarMMASK 86.00 87.21 80.19 92.67 93.58 96.32 96.90 88.00 51.96 92.04
E-VarMETE 71.44 79.54 69.70 85.72 90.78 93.92 93.80 82.94 46.87 87.04
E-VarMPPL 87.59 89.89 82.64 92.76 94.00 96.64 96.80 88.19 52.67 91.76

8 and LCON is the contrastive loss shown in Equa-
tion 10.

4.3 Evaluation Metrics

In our experiments, we chose accuracy as eval-
uation metric for the classification performance.
To assess the interpretability of different models,
we follow the previous work (Chen and Ji, 2020)
and choose Area of Perturbation Curve (AOPC)
(Nguyen, 2018) and post-hoc accuracy (Chen et al.,
2018) as the local interpretability and the global
interpretability metrics, respectively.

The Local Interpretability (AOPC) : The
AOPC metric calculates the average change in pre-
diction probability over all classes by removing the
top K most important words from the input. To pro-
vide a fair assessment for all compared methods,
we utilize LIME (Ribeiro et al., 2016) to extract
the nine most important words. Specifically, the
LIME is a local interpretable algorithm that can
extract local explanations for a classifier by fitting
the local decision boundary of an instance under
test (Ribeiro et al., 2016).

The AOPE metric is then calculated as follows,

AOPC =
1

K + 1
⟨

K∑
k=1

(p(ŷ|x)− p(ŷ|x\1···k))⟩p(x)

(12)
where p(ŷ|x\1···k) is the probability for the pre-
dicted class with words 1..K removed and ⟨·⟩p(x)
denotes the average over all examples.

The Global Interpretability (the post-hoc Ac-
curacy ) : The post-hoc accuracy assesses the suf-
ficiency of important words selected from the input

for model prediction and is calculated as follows,

ACCpost−hoc(k) =
1

N

∑
i=1

(I[ŷ(x(k)i ) = ŷ(xi)])

(13)
where I[·] is an indicator function. ŷ(xi) repre-
sents the prediction label of sample xi and ŷ(x

(k)
i )

means the prediction label obtained using the most
important k words from xi.

4.4 Implementation Details

We use the pre-trained BERT (Wolf et al., 2019)
as the classifier and adopt a batch-level iterative
mechanism to train the model, with each iteration
consisting of two stages. In the first stage, we
train the gate and BERT model jointly, and for the
second stage, we freeze the gate and train only
the BERT model. Both stages are performed us-
ing the Adam optimizer(Kingma and Ba, 2015)
with learning rate = 1e-5, batch size = 64, and the
dropout=0.2 empirically.

We utilize the grid search technology to obtain
the optimal super-parameters, including the La-
grangian multiplier β and the contrastive learning
temperature τ . The β is selected from {0.1,0.5, 1,
10, 50},while the τ is chosen from 0.1 to 0.9.

In order to compare the performance of the dif-
ferent models, We evaluate the AGN and Vmask
using the open-source code 1 and 2 respectively.
Since the source code for SCL is not provided, we
implement and evaluate this method as described
in the original paper. Additionally, our approach is
implemented using PyTorch, and all calculations
are done on NVIDIA Tesla V100 GPU, with per
experiment taking approximately 1∼3 hours.

1https://github.com/4AI/AGN
2https://github.com/UVa-NLP/VMASK
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Table 3: The AOPC accuracy(%) comparison of different methods. The best results are marked in bold.

k Method QNLI QQP RT COLA IMDB SST1 SST2 AGNews Subj Yelp

1
Vmask 3.44 4.61 7.19 5.61 3.38 7.80 10.52 2.34 2.31 1.15
E-VarM 6.27 6.37 8.18 8.57 4.25 8.86 11.16 3.08 1.94 1.61

5
Vmask 14.09 13.22 25.16 13.02 13.29 17.73 33.53 9.76 13.75 6.17
E-VarM 21.04 16.23 28.58 17.83 13.52 19.67 35.43 12.69 13.14 8.29

9
Vmask 18.65 15.04 31.84 15.05 19.89 19.20 37.78 15.60 22.97 9.55
E-VarM 26.31 17.54 36.70 22.50 20.47 21.34 39.49 19.63 23.32 12.61

5 Experimental Results

5.1 The Classification Performance

As shown in Table 2, our approach achieves the
best results in most datasets, proving its strength in
various text classification tasks. More specifically,
we can draw the following conclusions.

Compared with the gate-based model. AGN
exploits an adaptive gate to obtain data-specific
prior distributions to boost its accuracy. However,
the prior distribution of the data does not always
contribute to the model’s performance, leading to
inferior results. In contrast, our method always
concentrates on task-specific words and is not re-
stricted by the prior distribution of the data.

Compared with the contrastive learning-
based model. Our method has enhancements over
SCL on all datasets due to the high-quality posi-
tive samples. These samples, created with the help
of task-specific words, will increase the challenge
of contrastive learning and facilitate the model to
learn better class discriminative representations.

Compared with the interpretable-based
model. Our approach outperforms Vmask on most
datasets, in particular, with obvious improvements
on the QNLI, QQP, and COLA datasets. Since
Vmask only uses word embedding information to
select important words, it has poor selection deci-
sions on tasks that rely on mid-level or high-level
information, such as semantic reasoning (QNLI,
QQP) and syntactic judgment (COLA), decreasing
the classification performance.

Compared with the variants. When re-
moving the representation optimization stage, E-
VarMMASK shows a performance degradation on
all datasets compared to E-VarM, illustrating that
contrastive learning can improve prediction perfor-
mance. Since the gate network of E-VarMETE is
adversely affected by contrastive loss, the perfor-
mance of E-VarMETE decreases substantially com-
pared to E-VarM. As the encoder of E-VarMPPL

cannot be corrected in time if there is a representa-
tion overlap in the extraction stage, so that the per-
formance of E-VarMPPL slightly drops compared
to E-VarM. In contrast, E-VarM uses a two-task
iterative way at the batch level, where words ex-
traction is performed and immediately followed by
the representation adjustment within a batch.

5.2 The Interpretability
Because of the computational cost, we select 500
samples randomly from the test set to evaluate the
interpretability of the models.

The local interpretability (AOPC). We remove
k task-specific words from the input for the AOPC
experiment ( Equation 12) with k selected from
{1, 5, 9}. As shown in Table 3 , the AOPC of E-
VarM outperforms Vmask on almost all datasets.
On the four datasets: AG’s News, COLA, QQP, and
QNLI, E-VarM shows a noticeable improvement
over Vmask. For example, it outperforms Vmask
by 7% at K=5 on QNLI. These four datasets in-
volve complex tasks, such as topic classification,
semantic inference, and grammar judgment, and
rely on medium or high-level information to se-
lect task-specific words as explanations. E-VarM
integrates multi-level information for words selec-
tion and has good interpretability for such complex
tasks. Even for datasets that rely on shallow fea-
tures to mask, such as SST2, and IMDB datasets,
E-VarM can slightly outperform Vmask by about
2% on average.

The global interpretability (Post-hoc accu-
racy). To compute the post-hoc accuracy of mod-
els, we use the top k task-specific words from the
input for prediction and compare it with the result
from the whole input ( Equation 13), with k rang-
ing from 1 to 9. As shown in Fig 2, the global
interpretability of E-VarM outperforms Vmask on
almost all datasets, with the best performance on
the COLA dataset. On datasets that require multi-
level information for masking, such as QNLI, QQP,
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Figure 2: The post-hoc accuracy(%) comparison of different methods on ten datasets.
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Figure 3: The TSNE visualization comparison of text representations of different models.

and RT, there is a gap between Vmask and E-
VarM, which further illustrates the superiority of
our model in handling complex tasks. Also, E-
VarM achieves relatively good results on IMDB, a
dataset with an average of 268 tokens per sentence,
demonstrating the outstanding performance of our
model in extracting task-specific words.

5.3 The Effect of Different Levels of
Information.

We adopt the bottom (1∼4 layer), middle (5∼8
layer), and top (9∼12 layer) layers of information
for model performance evaluation to demonstrate
the importance of using multi-layer information
when selecting task-specific words. As shown in
Table 5, the model , relying only on low-layer in-
formation (low-layer model), achieves good perfor-
mance when performing shallow-level tasks such
as sentiment analysis. In contrast, when the model

uses only middle or high-layer information (middle-
layer or high-layer model), its performance de-
creases slightly compared to the low-layer model
since the middle and high layers are not sensitive to
superficial information such as the sentiment task’s
literal meaning. Similarly, for tasks such as syntac-
tic judgment and semantic reasoning, the accuracy
of the low-layer model is much lower than that
of the middle-layer or high-layer model, indicat-
ing that the low layer does not contain the syntac-
tic knowledge on which these complex tasks rely.
Since fusing all layers of information, our model
achieves the highest accuracy on all datasets. The
above experiments indicate that the model needs
to simultaneously learn multiple levels of informa-
tion, including literal, phrasal, syntactic, semantic,
and task information, when selecting task-specific
words for a classification task.
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Table 4: A case study of the interpretability of different models on three datasets. The top three task-specific words
are highlighted and the color saturation indicates the word importance.

Datasets Models Texts Prediction

Subj
BERT thoughtful even stinging at times and lots of fun.

SubjectiveVmask thoughtful even stinging at times and lots of fun.

E-VarM thoughtful even stinging at times and lots of fun .

AGNews
BERT athens reuters at the beach volleyball the 2004 olympics is a sell out ...

SportsVmask athens reuters at the beach volleyball the 2004 olympics is a sell out ...

E-VarM athens reuters at the beach volleyball the 2004 olympics is a sell out ...

RT
BERT characterisation has been sacrificed for the sake of spectacle.

NegativeVmask characterisation has been sacrificed for the sake of spectacle.
E-VarM characterisation has been sacrificed for the sake of spectacle.

Table 5: Bottom (1∼4 layer), middle (5∼8 layer) and
top (9∼12 layer) level information impact on model
performance.

Datasets Bottom Middle Top E-VarM
QNLI 86.02 86.95 87.52 87.94
QQP 89.31 90.15 90.32 91.08

COLA 81.36 81.98 82.35 83.99
IMDB 92.34 92.05 91.73 92.73

AGNews 92.72 91.18 93.69 94.00
Yelp 96.98 96.65 96.39 97.28
Subj 96.32 96.35 97.01 97.30
RT 87.97 87.21 87.10 88.67

SST-1 52.58 50.81 50.31 53.44
SST-2 91.54 91.01 90.87 92.37

5.4 Visualizing the Text Representations

To present the phenomenon of representations over-
lap caused by IB and demonstrate that our E-VarM
can learn better class discriminative representa-
tions, we randomly select 1000 test samples for
each dataset and feed them to E-VarMMASK and
E-VarM to obtain text representations. We then vi-
sualize these text representations using the T-SNE
(Van der Maaten and Hinton, 2008) and show the
results for the five datasets in Fig 3 (The results of
the comparison with Vmask are in Appendix B).
As observed, the text representations obtained by
E-VarMMASK have different degrees of overlap, in
which the inter-class distance is smaller than that of
E-VarM, while the intra-class distance is larger than
that of E-VarM. Especially, on the COLA, QNLI,
and QQP datasets that involve complex tasks and
rely on multi-layer semantics for decisions, there is
significant overlap of text representations obtained
by E-VarMMASK among different classes, which

would result in indistinguishable classes and re-
duce the prediction accuracy. In contrast, E-VarM
alleviates the problem of inter-class overlap and
intra-class dispersion on all datasets through super-
vised constrastive learning and thus obtains better
text representations.

5.5 Visualizing the Interpretation
To further compare the interpretability of the BERT,
Vmask, and E-VarM, we conduct case studies on
three datasets: Subj, AGNews, and RT. We high-
light the top three important words selected by
LIME, with the level of color saturation indicating
the word’s importance. As shown in Table 4, for
the same sentences, all three models make correct
predictions, it is clear that BERT and Vmask ex-
tract many nonsense or task-irrelevant words such
as ’at’, ’of’, and ’out’. In contrast, our model cap-
tures more task-specific words, such as ’olympics’
related to the topic ’sports’, ’characterisation’ as
the subject of ’sacrificed,’ which fits better with the
semantics of the input, and ’stinging’ and ’fun ’,
which are more of a subjective expression, showing
the outstanding interpretability of our model.

6 Conclusion

In this paper, we propose E-VarM to simultane-
ously boost the model’s interpretability and accu-
racy. E-VarM combines multi-level information
for task-specific words selection, which can adjust
the decision basis of the model, and improve the
model’s interpretability. Further, E-VarM adopts
contrastive learning for representation optimiza-
tion to mitigate the risk of representations overlap,
enhancing the model’s classification performance.
Experimental results on ten benchmark datasets
demonstrate the effectiveness of E-VarM.
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A Datasets

This paper uses ten widely studied datasets that
cover a wide range of application domains, which
are described in detail below:

For sentiment analysis, we use five benchmark
datasets in which RT 3 (Pang and Lee, 2005a),
IMDB 4 (Maas et al., 2011), SST-2 5 (Socher et al.,
2013) and Yelp (YelpReviewPolarity) 6 (Zhang
et al., 2015) are four binary sentiment polarity
datasets with each sentence annotated as positive
or negative. And SST-1 7 (Socher et al., 2013) is a
fine-grained sentiment dataset derived from Stan-
ford Sentiment Treebank with five balanced labels
(negative, somewhat negative, neutral, somewhat
positive, positive).

For topic categorization, we use AG’s News8

(Zhang et al., 2015) dataset where each article
only has a title and description and can be cate-
gorized into one of the four main classes: "World",
"Sports", "Business", and "Technology".

For grammatical judgment, we adopt COLA
9 (Wang et al., 2018) dataset that published by
New York University with each sentence marked
whether there are grammatical errors or not.

For semantic inference, we employe QQP 10

(Wang et al., 2018) dataset to determine whether a
questions pair is semantically equivalent, and the
QNLI 11 (Wang et al., 2018) dataset to judge a
question-sentence pair is entailment relation or not.

Additionally, we leverage Subj 12 (Pang and
Lee, 2005b) dataset to carry out subjective / objec-
tive classification, which contains 5000 subjective
and 5000 objective sentences, respectively.

B Visualization Supplement

We visualize the text representations for the re-
maining five datasets . As shown in Fig. 4, the

3https://www.cs.cornell.edu/people/pabo/movie-review-
data/rt-polaritydata.tar.gz

4http://ai.stanford.edu/ amaas/data/sentiment/aclImdb_v1
.tar.gz

5https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

6https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

7https://drive.google.com/uc?export=download&
id=0Bz8a_Dbh9QhbNUpYQ2N3SGlFaDg

8http://groups.di.unipi.it/ gulli/AG_corpus_of_news_
articles.html

9https://gluebenchmark.com/tasks
10https://gluebenchmark.com/tasks
11https://gluebenchmark.com/tasks
12https://www.cs.cornell.edu/people/pabo/movie-review-

data/

text representations obtained by E-VarM have a
larger inter-class distance and a smaller intra-class
distance than that obtained by Vmask. This phe-
nomenon indicates that our model can adjust the
text representation and alleviate the problem of
representations overlap.



1050

−40 −20 0 20 40

−40

−20

0

20

40

60
COLA

−20 −10 0 10 20

−40

−20

0

20

40

RT

−20 −10 0 10 20 30

(a) Vmask

−30

−20

−10

0

10

20

30

40
QNLI

−30 −20 −10 0 10 20 30

−40

−20

0

20

40

QQP

−40 −20 0 20
−40

−30

−20

−10

0

10

20

30

40

AGNews

−40 −20 0 20

−40

−20

0

20

40

60

80
COLA

−40 −20 0 20 40

−15

−10

−5

0

5

10

15

RT

−40 −20 0 20 40

(b) E-VarM

−10

−5

0

5

10

QNLI

−60 −40 −20 0 20 40

−20

−15

−10

−5

0

5

10

15

QQP

−40 −20 0 20 40
−40

−20

0

20

40

AGNews

Figure 4: T-SNE visualization comparison. The upper is Vmask, and the lower is our method.


