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Abstract
We present a biomedical knowledge enhanced
pre-trained language model for medicinal prod-
uct vertical search. Following ELECTRA’s
replaced token detection (RTD) pre-training,
we leverage biomedical entity masking (EM)
strategy to learn better contextual word repre-
sentations. Furthermore, we propose a novel
pre-training task, product attribute prediction
(PAP), to inject product knowledge into the
pre-trained language model efficiently by lever-
aging medicinal product databases directly. By
sharing the parameters of PAP’s transformer
encoder with that of RTD’s main transformer,
these two pre-training tasks are jointly learned.
Experiments demonstrate the effectiveness of
PAP task for pre-trained language model on
medicinal product vertical search scenario,
which includes query-title relevance, query in-
tent classification, and named entity recogni-
tion in query.

1 Introduction

Pre-trained language models (PLMs) have signif-
icantly improved the performance of various nat-
ural language processing (NLP) tasks in the re-
cent years. It is now a common practice to adapt
the pretrain-then-finetune approach in NLP. PLMs
such as BERT (Devlin et al., 2019) and ELEC-
TRA (Clark et al., 2020) capturing word meaning
through self-supervised learning from large corpus
have shown a significant improvement on various
text mining tasks. In the biomedical domain, many
BERT variants such as BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), PubMedBERT (Gu
et al., 2021) and BioMedBERT (Chakraborty et al.,
2020), follow either continual pre-training or pre-
training from scratch approach using domain spe-
cific corpora to further improve the model perfor-
mance.

Our motivation is to apply powerful pre-trained
language models on medicinal product vertical
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search engine to solve query understanding and
query title relevance tasks. Most of the models
trained on either the general corpus or the medical
literature corpus lack medicinal product knowledge.
For the product vertical search scenario, medici-
nal product information is usually stored in struc-
tured relational database tables, and traditional pre-
trained language models focus on natural language
text in the form of sentences without considering
the semantic relationship modeling of structured
text in the product information tables. From the
perspective of users’ search habits, in addition to
searching directly for the medicine name, users also
often search for disease, symptoms and other im-
portant proudct attribute words to find the medicine.
Therefore, we propose a novel pre-training task
called product attribute prediction (PAP). Although
we could carefully craft a medicinal product knowl-
edge graph from product databases and then try to
inject the extracted explicit knowledge graph into
the pre-trained language model, we argue that the
procedure of building product knowledge graph is
laborious but avoidable by training the language
model directly on product structural information.

In this paper, we propose a novel ELEC-
TRA(Clark et al., 2020) based biomedical knowl-
edge enhanced pre-trained language model. It con-
sists of two pre-training tasks: replaced token detec-
tion and product attribute prediction. Our approach
is inspired by ELECTRA and TransE(Bordes et al.,
2013) methods but distinguish itself in two promi-
nent ways. Firstly, we use entity masking strat-
egy for biomedical text instead of only masking
random tokens. Text spans of biomedical named
entities are masked dynamically before each train-
ing iteration. We let the model predict whether
these terms are replaced to incorporate biomedical
domain knowledge. Secondly, we utilize medic-
inal product textual information instead of node
identifiers in product knowledge graphs, to further
bring rich medicinal product knowledge into the
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pre-trained language model. The triples (product
title, attribute name, attribute values), which can
be easily drawn from medicinal product databases,
are all encoded and then used in the contrastive
loss of PAP pre-training task to capture product
knowledge.

Our main contributions can be summarized as
follows: 1) We augment ELECTRA’s replaced
token detection pre-training task by leveraging
biomedical entities masking (EM) to learn better
contextual word representation; 2) We propose a
novel pre-training task, product attribute predic-
tion (PAP), which can inject medicinal product
knowledge into the pre-trained language model
by exploiting medicinal product databases directly.
The proposed pre-training task is also applicable
to vertical search scenarios for products in general,
not limited to medicinal products; and 3) We have
demonstrated the effectiveness of PAP pre-training
task for PLMs in medicinal product vertical search
scenario.1

2 Related Work

2.1 Pre-trained Language Model

Recently pre-trained language models have domi-
nated many NLP tasks by pre-training on a large
corpus of text followed by fine-tuning on a spe-
cific task. ELMo (Peters et al., 2018) learns the
contextual representations based on a bidirectional
language model (biLM) with forward and back-
ward LSTM layers. GPT (Radford et al., 2018)
as an effective pre-trained generative model pre-
dicts the next token based on the left-hand side
context by adapting the transformer. GPT-2 (Rad-
ford et al., 2019) brings task information to the pre-
training process and adopt the model to zero-shot
tasks. GPT-3 (Brown et al., 2020) further improves
task-agnostic, few-shot performance and produce
human-like texts. BERT (Devlin et al., 2019)
presents a bi-directional LM to predict the masked
tokens and demonstrates strong performance on a
wide range of NLP benchmarks. RoBERTa (Liu
et al., 2019) shows that more careful parameter tun-
ing on more data can benefit PLMs. ALBERT (Lan
et al., 2019) uses weight sharing and embedding
factorization to reduce memory consumption and
improve training speed. XLNet (Yang et al., 2019)
as a permutation language model predicts masked
tokens in a permuted order in a auto-regressive way.

1Our code and models are publicly available on Github:
https://github.com/liuks/ep_plm

T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020a) adopts denoising sequence-to-sequence pre-
training method. ELECTRA (Clark et al., 2020)
introduce a more sample-efficient pre-training task
called replaced token detection, which is replacing
some tokens with plausible alternatives and pre-
dicting whether each token was replaced or not.
MacBERT (Cui et al., 2020) adopts MLM as cor-
rection (Mac) and achieve state-of-the-art perfor-
mances on several Chinese NLP tasks.

2.2 Knowledge Enhanced and Domain
Specific Pre-trained Language Model

ERNIE (Zhang et al., 2019b) utilize pre-processed
knowledge embeddings of entity mentions in text.
KnowBert (Peters et al., 2019) uses retrieved rel-
evant entity embeddings and word-to-entity atten-
tion to update contextual word representations. K-
ADAPTER (Wang et al., 2021b) integrates knowl-
edge into PLM with neural adapters. E-BERT
(Poerner et al., 2020) adds aligned entity embed-
dings into BERT without additional pre-training.
Joint representation learning of words and enti-
ties (Zhang et al., 2019a, 2021) leverage external
Knowledge Graphs. BioBERT (Lee et al., 2020)
is pre-trained on PubMed and PubMed Central
articles. SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2021) and Bio-LM (Lewis
et al., 2020b) have shown that pre-training from
scratch with domain-specific data can improve per-
formance. KeBioLM (Yuan et al., 2021) and Umls-
BERT (Michalopoulos et al., 2021) leverage UMLS
knowledge bases during the pre-training. Domain
specific pre-training (Wang et al., 2021d) has also
been employed for biomedical literature search
problems. Moreover, (Wang et al., 2021a) gives a
systematic survey for biomedical domain PLMs.

For Chinese medical text mining, MC-BERT
(Zhang et al., 2020) introduces a conceptual-
ized representation learning approach for Chinese
biomedical corpora and a Chinese Biomedical
Language Understanding Evaluation benchmark
(ChineseBLUE). EMBERT (Cai et al., 2021) is
an entity-level knowledge-enhanced pre-trained
language model, which leverages several distinct
self-supervised tasks. BioHanBERT (Wang et al.,
2021c), as a hanzi-aware PLM, utilizes component-
level internal semantic information of Chinese char-
acters to enhance the semantics of Chinese biomed-
ical concepts and terminologies.

https://github.com/liuks/ep_plm


1016

Figure 1: The overview of our pre-training model architecture. The auxiliary transformer is pre-trained by masked
language model with biomedical entity masking. The corrupted text is then used as the main transformer’s input in
replaced token detection task. The same main transformer encodes medicinal product title, attribute name, attribute
value and phrase level negative sampled attribute value, respectively. These encoded embeddings are then used in
product attribute prediction task.

3 Method

To augment the pre-trained language model with
biomedical domain knowledge, we follow ELEC-
TRA’s replaced token detection (RTD) pre-training
task on general domain and biomedical specific
corpora, and further introduce dynamic biomedi-
cal entity word masking to learn better contextual
word representations. Although it is possible to
use other pre-training tasks such as the masked
token prediction in BERT, we chose the ELEC-
TRA’s pre-training task due to the sample efficiency
of the RTD task and the comparable performance
of ELECTRA-Base and BERT-large models(Clark
et al., 2020). For better application to the vertical
search scenario of medicinal product search, it is
desirable that the pre-trained language model con-
tains product-related knowledge. Considering that
important product attributes such as drug names,
diseases and symptoms are common search terms
and the structured information of products also
contains these terms, so we propose the product
attribute prediction pre-training task to model the
semantic relationships of product attributes.

As shown in Figure 1, our approach consists of
two pre-training tasks: replaced token detection
and product attribute prediction.

3.1 Replaced Token Detection with
Biomedical Entity Masking

Given an input text sequence x = (x1, x2, . . . , xm)
with m tokens, a text span sequence s =

(s1, s2, . . . , sn) with n span units is produced by
applying Chinese word segment and biomedical
name entity recognition. These text span units
are then randomly replaced with an equal length
[MASK] tokens to create xmask with about 15%
tokens masked out, e.g. selecting sj and replacing
every token xi for xi ∈ sj with the [MASK] token.

The masked sequence xmask is then input to
the auxiliary transformer (generator) to produce
a corrupt sequence xcorrupt by sampling new to-
kens according to x̂i ∼ pG(xi|xmask) for i in all
masked positions. Comparing the original text
and the corrupt text gives the supervisory sig-
nal label sequence L = (l1, l2, . . . , lm), where
li = 1(xi, x

corrupt
i ). The main transformer (dis-

criminator) predicts whether tokens are replaced
or not. For replaced token detection task, the loss
function is:

LRTD = −
∑
x

(
log pG(x

corrupt|xmask)

+λ log pD(x
corrupt, x)

) (1)

where pG is generating token probability for
masked-out positions in the generator network; pD
is replaced probability for all position tokens in the
discriminator network; λ is the hyperparameter for
balancing these two network losses.

Different from whole word masking with Word-
Piece in BERT, we not only randomly mask whole
words but also biomedical entities including drug
name, chemical name, disease, syndrome, effi-
cacy words and so on, which can explicitly inject
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biomedical domain knowledge to the pre-trained
language model.

3.2 Product Attribute Prediction Task

Let t, n, v be a medicinal product title, attribute
name and attribute value respectively. We encode
the text description of product tile t, attribute name
n and attribute value v using the same main trans-
former (encoder) E to obtain text representations.
Inspired by the TransE (Bordes et al., 2013) and
RotateE (Sun et al., 2019) models, we define the
distance function of the triples according to Equa-
tion (2) and PAP loss function according to Equa-
tion (3) to push the projection of concatenated title
and attribute name representation E(t ⊕ n) near
that of attribute value representation E(v) but far
away from negative sampled attribute value rep-
resentation E(v′). The projection denoted as f
is implemented as a feed forward neural network
layer.

d(t, n, v) = ∥f(E(t⊕ n))− f(E(v))∥ (2)

LPAP =− log σ(γ − d(t, n, v))

−
∑
v′

1

k
log σ(d(t, n, v′)− γ)

(3)

where γ > 0 is a margin hyperparameter; σ is the
sigmoid function; v′ denotes the negative randomly
sampled attribute value; k is the number of nega-
tive values v′ in the summation, and is chosen to be
twice the number of the positive attribute values. It
is worth noting that the representation of E(t⊕ n)
can be broadcast across all corresponding positive
attribute value v and negative ones v′ to acceler-
ate computing in the implementation, because a
medicinal product usually contains only one title
and multiple attribute names, each of which corre-
sponds multiple attribute values.

For example, given a medicinal product with
title (Sanjiu Medical & Pharmaceutical Cold Rem-
edy Granules), we firstly draw the attribute name
(syndrome) and corresponding attribute values
(headache, fever, nasal congestion and runny nose)
from product database. Then we randomly sam-
ple negative values (stomachache, lumbar strain)
for the given syndrome attribute. Intuitively, we
would like the name of the medicine to be seman-
tically closer to the corresponding indication of
the medicine and more semantically distant from
the random chosen indications. In addition, most
queries in the medicinal product vertical search

usually come from product titles and attribute val-
ues, so it is beneficial to model the semantic rela-
tionships between these terms using the PAP pre-
training task.

Thanks to PAP contrastive loss, the semantic re-
lations of product attributes and the original medic-
inal product title, which usually contains brand,
drug name, ingredients, etc., is explicitly learned.
Thus, we can inject medicinal product knowledge
into the pre-trained language model.

3.3 Multi-task Pre-training
We pre-train the model from scratch using general
and biomedical domain corpora for RTD task and
medicinal product datasets for PAP task, see Equa-
tion (4).

L = LRTD + LPAP (4)

We train the model parameters by repeatedly
switching back and forth between RTD and PAP
tasks. The hyper parameter ρ denotes the proba-
bility of selecting the PAP task training batch at
each gradient descent iteration. The overall training
procedure is shown in Algorithm 1.

Algorithm 1 Overall Training Procedure
1: Initialize model parameters randomly.
2: Mark biomedical entity boundaries for the gen-

eral and biomedical domain corpora.
3: Collect triples (product title, attribute name, at-

tribute value) from medicinal product database.
4: while needing more training steps do
5: Select a training batch from RTD and PAP

tasks randomly
6: if the training batch is from RTD task then
7: Sample tokens for randomly masked

word spans using the auxiliary transformer.
8: Calculate RDT task loss using the main

transformer according to Equation (1) and up-
date model parameters.

9: else ▷ for PAP task
10: Sample negative attribute values ran-

domly for each product title and attribute name
pair.

11: Calculate PAP task loss using the same
main transformer according to Equation (2)
and (3) and update model parameters.

4 Experiments and Results

To demonstrate the effectiveness of the PAP pre-
training task, we train the pre-trained language
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Dataset #Sen #Tok

Wikipedia 0.5M 0.4B
News Articles 1M 2B
Package Insert of Drugs† 8K 0.9M
Medical Encyclopedia† 9K 1M
Biomedical Community QA† 39M 8B

Table 1: Statistics of pre-training corpus. Datasets with
dagger symbols indicate that they are from the biomedi-
cal domain. Other datasets are from general domain.

model from scratch, first on the general corpus and
biomedical domain corpus shown in Table 1 using
only the RTD task with biomedical entity mask-
ing, and then adding the PAP task on the medicinal
product dataset shown in Table 2. The reason that
we use pre-training from scratch strategy instead of
parameter initialization from other existing PLMs
to continue pre-training is to exclude the influence
caused by different datasets.

Therefore, we first train a base-size model
(ELECTRA+EM) on the general and biomedical
domain datasets in Table 1 as a strong baseline
and compare it with other Chinese PLM models.
Then we train another base-size model (ELEC-
TRA+EM+PAP) on the common datasets in Table 1
and the medicinal product dataset in Table 2 and
do ablation experiments to verify the effectiveness
of the PAP pre-training task.

4.1 Pre-training Datasets
We collect general and biomedical domain specific
Chinese corpus, as shown in Table 1. The general
domain corpus consists of the Chinese Wikipedia
dataset and Chinese News Articles dataset, which
are publicly available from NLP Chinese Corpus
(Xu, 2019). The biomedical domain specific Chi-
nese corpus consists of Package Insert of Drugs,
Medical Encyclopedia and Biomedical Community
QA, which are from Shenma Search Engine2. As
shown in Table 2, We construct (product title, at-
tribute name, attribute value) dataset from vertical
search medicinal product database.

4.2 Evaluation Datasets
For the ELECTRA+EM model, we use Chinese
Biomedical Language Understanding Evaluation
benchmark (ChineseBLUE) (Zhang et al., 2020)
to demonstrate the benefits of its in-domain pre-
training. The benchmark contains a variety of

2http://m.sm.cn/

Medicinal Product dataset #

Product Titles 29K
Product Attribute Categories 2
Product Attribute Values 191K
Product Attribute Values per Title 6.5

Table 2: Statistics of medicinal product dataset

Dataset Train Dev Test

QTRel-easy 9,303 1,000 1,000
QTRel-hard 8,941 1,000 1,000
QIC 34,929 13,234 13,234
QNER 135,411 14,047 14,047

Table 3: Statistics of PAP evaluation benchmark for
medicinal product search.

NLP tasks: cEHRNER and cMedQANER are two
named entity recognition tasks; cMedQQ is a para-
phrase identification task to determine whether two
sentences have the same meaning; cMedQA and
cMedQNLI are two question answering tasks that
can be approximated as a ranking of candidate an-
swer sentences based on their similarity; cMedIR is
a ranking task that retrieves the most relevant docu-
ments for a given search query; cMedIC is an intent
classification task that assigns three types of labels
to query terms with no intention, weak intention,
and firm intention; cMedTC is a text classification
task that assigns multiple labels to biomedical texts.
Further details about these datasets can be found in
(Zhang et al., 2020).

For the ELECTRA+EM+PAP model, we con-
struct a benchmark containing four NLP tasks from
our medicinal product vertical search scenario to
validate the advantage of PAP pre-training task
compared to ELECTRA+EM model. As shown
in Table 3, the benchmark contains four datasets:
QTRel-easy and QTRel-hard are two query-title
relevance tasks, where the “hard” part in dataset
name means that none of the query terms appear
in the corresponding medicinal product title and
the “easy” dataset does not have this constraint;
QIC is a query intention classification task which
assigns 22 different types of labels to queries, in-
cluding medicine name, disease, symptom, inquiry,
etc. QNER is a named entity recognition in query
task with 28 total entity types, such as brands, main
ingredients of drugs, dosage forms, etc.

http://m.sm.cn/
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4.2.1 Parameter Settings
To compare with ELECTRA and other baseline
models, we leverage the same model settings of the
transformer as ELECTRA. Both ELECTRA+EM
and ELECTRA+EM+PAP use the base version
of ELECTRA, which contains 12 layers, 12 self-
attention heads, and 768-dimensional of hidden
size for the discriminator network and 1/3 genera-
tor size.

For ELECTRA+EM, we set the initial learning
rate as 2e-4, batch size as 128, maximum sequence
length as 128, training steps as 420M. For ELEC-
TRA+EM+PAP, we use the same learning rate and
maximum sequence length, but set batch size as
16, training steps as 3400M. For the optimizer, we
use the same setting with ELECTRA, both in pre-
training and fine-tuning steps.

4.3 Results

4.3.1 ELECTRA+EM
For the ELECTRA+EM model, we compare it
with several typical Chinese general and biomedi-
cal domain PLM baselines, namely BERT-Base3,
ELECTRA-Base4 (Cui et al., 2020), MC-BERT5

(Zhang et al., 2020), EMBERT (Cai et al., 2021)
and BioHanBERT (Wang et al., 2021c).

For BERT-Base, ELECTRA-Base and our
ELECTRA+EM, we run the finetuning 5 times
for each downstream task and report the results in
average/maximum metric format. For MC-BERT,
EMBERT and BioHanBERT, we directly cite the
results from the corresponding papers. The eval-
uation metric of all ChineseBLUE datasets is F1
score except the cMedIR dataset whose metric is
PAIR score.

As shown in Table 4, ELECTRA+EM achieves
comparable performance compared to other base-
line and state-of-the-art methods. The comparison
also demonstrates the benefits of in-domain pre-
training from scratch. We can therefore use ELEC-
TRA+EM as a very strong baseline model to verify
the effectiveness of PAP pre-training task.

4.3.2 ELECTRA+EM+PAP
We also run the finetuning 5 times for each
downstream task and report the results in aver-

3https://github.com/google-research/
bert

4https://github.com/ymcui/
Chinese-ELECTRA

5https://github.com/alibaba-research/
ChineseBLUE

age/maximum metric format for PAP evaluation
benchmark.

As shown in Tables 5, ELECTRA+EM+PAP
outperforms ELECTRA-Base significantly on all
four tasks. There may be two reasons for these
large improvements. Firstly, medicinal product
titles and queries in the benchmark usually consist
of brand, disease, symptom words and phrases,
which are also abundant in PAP pre-training task
datasets. Secondly, PAP pre-training task leverages
the semantic relation of product titles and attributes
to obtain better word representations.

Hyperparamter Since ELECTRA+EM+PAP
adopts a multi-task pre-training framework, it is
necessary to tune the hyperparameter ρ, the prob-
ability of selecting PAP task while training. We
search for the best ρ out of [1%, 5%, 10%, 15%].
For the margin hyperparameter γ in PAP loss, we
search the best out of [2, 4, 6, 8]. We find the combi-
nation of γ = 4, ρ = 5% works best. Since results
are more insensitive to the hyperparameter γ, we
fix γ = 4 and then plot the effect of the hyperpa-
rameter ρ on results, as is shown in Figure 2.

Ablation Study As shown in Table 5, the method
without PAP pre-training task, ELECTRA+EM,
has worse performance than ELECTRA+EM+PAP.
This is reasonable because the product knowledge
learned by PAP pre-training task is beneficial for
medicinal product search.

It is interesting that on average the performance
degradation in terms of F1 score is much larger for
QTRel-hard task than QTRel-easy, QIC and QNER
tasks. We hypothesize that biomedical entity se-
mantics, which plays a crucial role in QIC and
QNER tasks, can be largely captured by biomedical
entity masking in RTD task. The PAP pre-training
task may be more beneficial for product related
concept complex interaction understanding task,
such as QTRel-hard dataset.

Case Study As shown in Table 6, We com-
pare ELECTRA+EM+PAP and ELECTRA-Base
on QTRel-hard task for a given query “中耳炎”
(“tympanitis”). The first two column scores are
the predicted probabilities that the given query-title
pair is relevant. The label +/- indicates whether the
query-title pair is relevant or not in real. Base on
their package inserts, the indications of cefixime
and azithromycin tablets include tympanitis, while
mosapride citrate is not suitable for treating tym-
panitis. ELECTRA+EM+PAP scores align more

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/ymcui/Chinese-ELECTRA
https://github.com/ymcui/Chinese-ELECTRA
https://github.com/alibaba-research/ChineseBLUE
https://github.com/alibaba-research/ChineseBLUE
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Model cEHRNER cMedQANER cMedQQ cMedQA
MC-BERT 90.0 88.1 87.5 82.3
BioHanBERT(10K) 90.51 - 86.46 96.53
BioHanBERT(20K) 91.67 - 87.14 96.37
BioHanBERT(30K) 91.83 - 86.26 96.36
BioHanBERT(40K) 90.44 - 87.18 96.49
BioHanBERT(50K) 90.91 - 87.86 96.65
EMBERT♣ - 84.49 87.59 75.10
EMBERT♠ - 85.02 88.06 75.32
BERT-Base 90.19/90.50 85.05/85.29 87.06/87.43 96.03/96.09
ELECTRA-Base 91.63/92.17 86.37/86.81 87.27/87.46 95.60/95.90
ELECTRA+EM 92.10/92.85 88.18/88.53 87.56/87.89 96.55/96.78
Model cMedQNLI cMedIR cMedIC cMedTC
MC-BERT 95.5 2.04 87.5 82.1
BioHanBERT(10K) 95.86 - 90.48 81.78
BioHanBERT(20K) 95.59 - 96.43 83.67
BioHanBERT(30K) 95.72 - 83.33 83.00
BioHanBERT(40K) 95.50 - 90.48 82.72
BioHanBERT(50K) 95.78 - 86.90 83.06
EMBERT♣ 96.50 - - -
EMBERT♠ 96.59 - - -
BERT-Base 96.05/96.11 3.03/3.07 92.43/92.89 82.99/83.78
ELECTRA-Base 95.42/95.55 3.41/3.49 90.61/92.31 83.43/83.78
ELECTRA+EM 96.66/96.78 3.64/3.71 92.48/93.26 83.73/84.00

Table 4: Experimental results on ChineseBLUE test datasets. For the BioHanBERT model, the number in parentheses
indicates the number of steps in the training step. For the EMBERT model, ♣ and ♠ indicate it is initialized by
BERT-Base and MC-BERT, respectively.

Model QTRel-easy QTRel-hard QIC QNER

ELECTRA-Base 98.20/98.51 81.90/82.80 81.37/82.06 82.53/82.78
ELECTRA+EM+PAP 98.67/98.95 84.88/85.86 86.90/87.26 88.28/88.72
ELECTRA+EM 98.44/98.66 82.90/83.46 86.58/87.11 88.03/88.35
Average Drop w/o PAP -0.23 -1.98 -0.32 -0.25

Table 5: Experimental results on PAP evaluation benchmark for medicinal product search.

ELECTRA
-base

ELECTRA
+EM+PAP

Label Product Title

0.62 0.88 +
999头孢克肟片 0.1g*7片/盒

999 Cefixime Tablets 0.1g*7tablets/box

0.49 0.87 +
999阿奇霉素片 0.25g*6片/盒

999 Azithromycin Tablets 0.25g*6tablets/box

0.93 0.42 -
信谊美唯宁枸橼酸莫沙必利胶囊 5mg*24粒

SINE MeiWeiNing Mosapride Citrate Capsules 5mg*24

Table 6: Examples of query-title relevance scores on QTRel-hard task for the query “tympanitis”.
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Figure 2: Hyperparameter tuning for ρ (when γ = 4) on PAP evaluation benchmark for medicinal product search.

closely with labels than ELECTRA-Base. For the
first example, ELECTRA+EM+PAP is more con-
fident about the relevance of “cefixime tablets”
and “tympanitis” than ELECTRA-Base. When
a threshold probability of 0.5 is applied, ELEC-
TRA+EM+PAP succeeds in classifying the last two
examples, while ELECTRA-Base fails.

5 Discussion

As mentioned in Section 3, other self-supervised
learning tasks for language models could be learned
together with the PAP pre-training task. We only
explore the combination of ELECTRA’s RTD and
PAP for joint training. Due to limited computa-
tional resources, we could not push the model to
larger sizes. These may prevent the full potential
of PAP pre-training task from being unleashed.

For vertical search applications, PAP pre-
training task is also applicable to other product
searches. For example, based on movie struc-
tured information such as movie title, genre and
story type, it is feasible to use PAP task to model
the semantic relationships between these movie
attributes. In the study of product knowledge en-

hanced language models, comparing the way PAP
uses product structured information with the graph
embedding approach based on product knowledge
graphs may be an interesting research problem for
the future.

6 Conclusion

In this article, we propose a biomedical knowledge
enhanced pre-trained language model for medicinal
product vertical search. We improve ELECTRA’s
replaced token detection pre-training task with
biomedical entity masking (EM). Then we present
a novel pre-training task, product attribute predic-
tion (PAP), to incorporate medicinal product knowl-
edge into the PLM. We train ELECTRA+EM and
ELECTRA+EM+PAP two biomedical knowledge
enhanced pre-trained language models to demon-
strate the effectiveness of PAP pre-training task for
medicinal product vertical search. Our work may
shed some light on combining the powerful pre-
trained language models with product knowledge
for vertical search scenarios.
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