
Proceedings of the 29th International Conference on Computational Linguistics, pages 938–949
October 12–17, 2022.

938

Semantic Sentence Matching via Interacting Syntax Graphs

Chen Xu1, Jun Xu1,2,∗, Zhenghua Dong3, Ji-Rong Wen1,2

1Gaoling School of Artificial Intelligence, Renmin University of China
2Beijing Key Laboratory of Big Data Management and Analysis Methods

3Huawei Noah’s Ark Lab
{xc_chen, junxu, jrwen}@ruc.edu.cn

dongzhenhua@huawei.com

Abstract

Studies have shown that the sentence’s syntac-
tic structures are important for semantic sen-
tence matching. A typical approach is encoding
each sentence’s syntactic structure into an em-
bedding vector, which can be combined with
other features to predict the final matching
scores. Though successes have been observed,
embedding the whole syntactic structures as
one vector inevitably overlooks the fine-grained
syntax matching patterns, e.g. the alignment
of specific term dependencies relations in the
two inputted sentences. In this paper, we for-
malize the task of semantic sentence matching
as a problem of graph matching in which each
sentence is represented as a directed graph ac-
cording to its syntactic structures. The syntax
matching patterns (i.e. similar syntactic struc-
tures) between two sentences, therefore, can
be extracted as the sub-graph structure align-
ments. The proposed method, referred to as
Interacted Syntax Graphs (ISG), represents two
sentences’ syntactic alignments as well as their
semantic matching signals into one association
graph. After that, the neural quadratic assign-
ment programming (QAP) is adapted to extract
syntactic matching patterns from the associa-
tion graph. In this way, the syntactic struc-
tures fully interact in a fine granularity during
the matching process. Experimental results on
three public datasets demonstrated that ISG can
outperform the state-of-the-art baselines effec-
tively and efficiently. The empirical analysis
also showed that ISG can match sentences in
an interpretable way.

1 Introduction

Matching two natural language sentences has be-
come a fundamental technique in information re-
trieval (IR) and natural language processing (NLP).
Extensive research efforts have been devoted to the
task (Li and Xu, 2014; Xu et al., 2020). Recently,

∗ Corresponding author

playing
VBG

some
DT

are
VBP

men
NNS

a
DT

sport
NNSentence X

Sentence Y

similar

with
IN

a
DT

game
NN

soccer
NN

playing
VBG

multiple
JJ

males
NNS

det nsubj

aux

obj

det

det

compound nsubj

obj

amod

case

subgraph
similar

Figure 1: A semantically similar sentence pair (X =
“Some men are playing a sport”, Y =“A soccer game
with multiple males playing”) from SNLI. The words
and POS tags are shown in the nodes, and syntactic
dependencies are shown as edges.

researchers found that the sentences’ rich syntac-
tic information helps match. Some studies utilize
the implicit syntax-encoding methods to learn the
sentence embedding based on its syntactic stric-
tures (Chen et al., 2016, 2017). Other studies di-
rectly utilize the different syntactic tags as syntactic
features and fuse them with word features (Mou
et al., 2016; Chen et al., 2018; Liu et al., 2020).
All these approaches separately represent the syn-
tactic information of the two input sentences as
two coarse-grained embedding vectors, ignoring
the fine-grained matching patterns between the syn-
tactic structures.

In sentence matching, The fine-grained syntax
structures are lost during the process of represent-
ing the syntactic information as a vector. Studies
in (Xu et al., 2020) also verified that representation-
based methods will lose the fine-grained match-
ing signals. Figure 1 illustrates two semantically
similar sentences from the SNLI dataset where
sentences X = “Some men are playing a sport”,
Y =“A soccer game with multiple males play-
ing”. The parsed syntactic structures (the POS
tags and syntactic dependencies) are represented
as nodes and edges in two graphs, respectively.
We can see that though the overall syntactic struc-

939

tures of the two sentences are very different, they
still contains matched sub-graphs: “men(NNS)

nsubj←−−−playing(VBG)
obj−→sport(NN)” from X and

“game(NN)
obj←−playing(VBG)

nsubj−−−→males(NNS)”
from Y . The matched sub-graphs provide a crucial
syntactic matching signal for downstream models
to make high-precision matching decisions. Exist-
ing approaches, however, inevitably overlook the
fine-grained sub-graph matching signal because
the sub-graph details are lost during the embedding
of the whole syntax graphs. Specifically, the sub-
graph details denote the combination of first-order
(e.g. Part-of-Speech) and second-order (e.g. word
dependency) syntactic information.

In this paper, we propose to formalize the task of
sentence matching as matching two directed graphs
where each graph corresponds to one sentence, and
its edges and nodes correspond to the word-word
syntactic dependencies and the words’ syntax and
semantic information, respectively. The sentence
matching, therefore, becomes a process of first ex-
tracting the sub-graph structure alignmentsand then
summarizing them into the final matching score.

A neural model called Interacted Syntax Graphs
(ISG) is developed for conducting the matching.
Specifically, given two sentences, ISG employs a
pre-trained language model (PLM) and a syntactic
parser to get the word embeddings and the syntactic
structures as the initialization features. Then, ISG
fuses these semantic and syntactic features into an
associate graph. Sub-graph matching patterns can
be extracted based on the associate graph, by us-
ing Lawler’s quadratic assignment programming
(QAP) (Cho et al., 2010). Finally, a matching clas-
sifier is used to merge the matching patterns and
semantic vectors outputted from the PLM, resulting
in the final matching score.

ISG offers several advantages, including accu-
rate extraction and fusion of the syntactic graph
matching signals, ease in interpretation, and high
matching accuracy. The contributions of this paper
can be summarized as follows: (1) We highlight the
importance of the fine-grained matching patterns
from syntax graphs in semantic sentence matching.
A novel matching model called ISG is proposed;
(2) Experimental results based on three available
benchmarks showed that the matching accuracy of
ISG outperformed the state-of-the-art baselines; (3)
Analysis showed that ISG can discriminate impor-
tant syntactic and semantic matching patterns in an
interpretable way.

2 Related Work

Machine learning models have been widely used
for matching natural language sentences (Li and
Xu, 2014; Xu et al., 2020). Among them, the rep-
resentative methods include DSSM (Huang et al.,
2013) and its extensions (Wang et al., 2017a; Shen
et al., 2014; Kim et al., 2019; Yang et al., 2019).
Representative interaction-based models include
ARC-II (Hu et al., 2014), MatchPyramid (Pang
et al., 2016), etc. Recently, the pre-trained lan-
guage model has been adapted to conducting match-
ing (Devlin et al., 2019; Liu et al., 2019). These
models always focused on superficial matching sig-
nals and ignore explicit NLP knowledge.

Recently, there is a trend to utilize explicit NLP
knowledge to improve sentence representation. For
example, HIM (Chen et al., 2017) used the syntac-
tic dependencies to enhance the sentence represen-
tations, see also (Chen et al., 2016; Liu et al.,
2018; Tymoshenko and Moschitti, 2018). The
NLP knowledge-enhanced matching models have
also adapted to the interaction-based models. For
example, MIX (Chen et al., 2018) utilizes POS
and named-entity tags as prior features. Recently,
(Sachan et al., 2021; Bai et al., 2021; Zhang et al.,
2020b) found that syntax can help PLM capture
more information and achieve impressive results
for NLP tasks. However, these models overlook
the fine-grained syntactic matching patterns.

Graph matching problem (GM) has also been
adopted for discovering the patterns between dif-
ferent graphs (Loiola et al., 2007). The key is
to learn a practical affinity function with given
two structures. In early work, most on seeking
approximate affinity function and Euclid distance
together with the Gaussian kernel is applied (Cho
et al., 2010; Leordeanu et al., 2012). Recently,
quadratic assignment programming (QAP) (Cho
et al., 2010) has a wide application in Graph Match-
ing (GM) because of its great performance. The
affinity function in QAP can be learned with the
manners of unsupervised (Leordeanu et al., 2012),
semi-supervised (Leordeanu et al., 2011), or super-
vised (Loiola et al., 2007). Recently, deep graph
matching has been applied for GM on images (Zan-
fir and Sminchisescu, 2018; Wang et al., 2021) and
the matching accuracy has been achieved. More-
over, Graph-based models have also been used for
sentence matching (Yao et al., 2019; Zhang et al.,
2020a; Sachan et al., 2021).

940

Mary
NN

nsubj

obj

compound

nsubj

obj

likes
VB

food
NN

flour
NN

Mary
NN

loves
VB

noodles
NN

sim(NN,NN)+sim(Mary,Mary)

(Mary,
Mary)

(a) Sentence matching (c) association graph 𝓖𝓖

(likes,
loves)

(Mary,
loves)

(likes,
Mary)

(likes
noodles)

(food
Mary)

(Mary,
noodles)

(flour,
Mary)

(flour,
loves)

(flour,
noodles)

(food
likes)

(food
noodles)

Sentence X Sentence Y

(b) affinity matrix 𝑲𝑲

(𝒙𝒙𝟏𝟏) (𝒙𝒙𝟐𝟐)

(𝒙𝒙𝟑𝟑) (𝒙𝒙𝟒𝟒)

(𝒚𝒚𝟏𝟏)

(𝒚𝒚𝟐𝟐) (𝒚𝒚𝟑𝟑)

sim(nsubj, nsubj)

Figure 2: Example of converting the matching of a pair of sentences with syntactic structures (a) to the corresponding
affinity matrix K (b) or association graph G (c).

3 Problem Formulation

3.1 Sentence matching

The matching of a pair of natural language sen-
tences can be formally described as follows: sup-
pose that Z is the set of labels which is defined by
a specific matching task. In the paraphrase iden-
tification (PI) tasks, Z = {0, 1}, where ‘0’ and
‘1’ respectively denote the relationship of “dissim-
ilar” and “similar”; in natural language inference
(NLI) Z = {0, 1, 2}, where 0, 1, 2 respectively in-
dicate “contradiction”, “neutral”, and “entailment”.
A set of training instances D = {(Xi, Yi, zi)}Ni=1

is given where each sample (X,Y, z) ∈ D con-
sists of a sentence pair (X,Y) and its ground-truth
matching label z. Moreover, the X,Y are two se-
quences of words: X = {x1, x2, · · · , xtX} and
Y = {y1, y2, · · · , ytY }, where the xi and yj de-
note the i-th and j-th words in X and Y , tX and
tY are the number of words (lengths) of X and Y ,
respectively.

3.2 Quadratic assignment programming

Quadratic assignment programming (QAP) is
a type of combinatorial optimization prob-
lems (Loiola et al., 2007), originally designed for
the facilities-location problems. Suppose to assign
N facilities to N locations, with the cost fij , dkl
of the affinities between the facilities (i, j) and lo-
cations (k, l), plus the costs biϕ(i) of assigning a
facility i to a certain location ϕ(i). The objective
of QAP is assigning each facility to a location such
that the total assignment cost is minimized. Lawler
(1963) introduced a general form of QAP as in
Equation (1):

min
ϕ∈S

N∑
i=1

N∑
j=1

cijϕ(i)ϕ(j) +
N∑
i=1

biϕ(i), (1)

where S is the set of all permutations ϕ : N → N ,
∀i, j, k, l, cijkl := fijdkl if ∧i ̸= j, k ̸= l, other-
wise ciikk := fiidkk + bik. The formulation has
been widely applied to graph matching, which in-
volves establishing node correspondences between
two graphs based on the linear and quadratic struc-
ture affinity (Leordeanu and Hebert, 2005).

3.3 Sentence matching over syntax graphs

This paper proposes to adopt QAP for conducting
sentence matching, by regarding the words in one
sentence as the “facilities” and words in another
sentence as the “locations”, and their differences
in syntactic structures and semantics as the “as-
signment costs”. In this way, QAP enables the
matching model to involve not only the linear syn-
tactic structure (e.g. word attribute structure) costs
which correspond to assigning the “facilities” to
certain “locations”, but also the quadratic syntac-
tic structures (e.g. word-word relation structure)
costs which correspond the affinities between the
assigning “facilities” and “locations”.

Figure 2 gives an illustrative example of formu-
lating the sentence matching as graph matching
and finding matching patterns in the affinity graph.
with a sentence pair X =“Mary likes flour food”
(length |X| = 4) and Y =“Mary loves noodles”
(length |Y | = 3), using the parsed POS tags and
syntactic dependencies shown in Figure 2(a) which
are represented as the node and edge weights, re-
spectively.

As shown in Figure 2(a), we firstly constructed
two directed graph (GX , GY) based on the two
sentences (X,Y)’s syntax. Specifically, the word
embedding and word syntax (i.e., POS) can be
encoded as node features, and the word-word syn-
tax (i.e., dependencies) can be encoded as edge
features. The fine-grained syntax-based matching
signals can be viewed as the alignments between

941

Sentence characteristic initialization component matching classifier component

affinity vector

�𝒛𝒛

QAP component

⋯

𝒙𝒙𝟏𝟏

𝒙𝒙𝒕𝒕𝑿𝑿

𝒚𝒚𝟏𝟏

𝒚𝒚𝒕𝒕𝒀𝒀

PLM

NLP
Parser

INPUT

likes (𝒙𝒙𝟐𝟐)

Mary (𝒙𝒙𝟏𝟏)

flour (𝒙𝒙𝟑𝟑)

food (𝒙𝒙𝟒𝟒)

loves (𝒚𝒚𝟐𝟐)

Mary (𝒚𝒚𝟏𝟏)

noodles (𝒚𝒚𝟑𝟑)

X

Y Syntactics

Affinity
Matrix

Construction

learned affinity matrix 𝑲𝑲𝒍𝒍

Classifier

association graph 𝓖𝓖

GCN

⋯

Semantics

semantic
vector

Figure 3: Architecture of Neural Quadratic Assignment Programming for Sentence Matching.

sub-graphs of two sentence graphs (GX , GY).
At the same time, to capture syntax-based pat-

terns effectively, we further construct the affinity
matrix K or the association graph G based on the
sentence graphs (GX , GY). The weights of nodes
and edges in the association graph are correspond-
ing to the diagonal and off-diagonal elements in
the affinity matrix (Figure 2(b,c)), respectively.

Specifically, the weights of nodes describe the
word semantic similarities and POS (word attribute)
affinities, and the weights of edges describe the syn-
tactic dependency (word-word relation) affinities.
For example, the node x1y1 =(“Mary”,“Mary”)
could have the weight of, for example, 1.0+ 1.0 =
2.0 where the first 1.0 denoting the semantic sim-
ilarity, and the second 1.0 denoting the similarity
between the POS tags.

As an example for the edges corresponding to the
off-diagonal elements in affinity matrix K, there
could be an edge with weight, for example, 1.0
between node x1y1 =(“Mary”,“Mary”) and node
x2y2 =(“likes”,“loves”) because the dependency
relation between x1 =“Mary” and x2 =“likes” is
“nsubj”, while the dependency relation between
y1 =“Mary” and y2 =“loves” is also “nsubj”. Sim-
ilarly, the other edges can also be created.

Then the QAP is applied to learn the semantic
and syntactic matching patterns in affinity matrix
K. Formally, a relaxed form of QAP can be shown
as Equation (2):

max
S

vec(S)TKvec(S), (2)

where S matrix encodes the word-word correspon-
dence; vec(S) is S’s column-vectorized notation,

and K ∈ RtX tY ×tX tY . The S matrix can be re-
garded as an aggregated matching patterns of syn-
tax and semantics.

4 Proposed model: ISG

In this section, we present an efficient implemen-
tation of interacting syntax graphs (ISG) with
quadratic assignment programming (QAP) (Lawler,
1963; Cho et al., 2010). Figure 3 illustrates the
model architecture, which can be divided into sen-
tence characteristic initialization, QAP component,
and matching classifier.

4.1 Sentence characteristic initialization
In this component, the inputted natural language
sentence pair (X,Y) is processed with a pre-
trained language model (PLM) and an NLP parser,
generating the semantic features and syntactic
structures.

Semantic features Given a pair (X,Y), the
semantic matching vector (e.g., “[CLS]” vector
of BERT), vs ∈ Rd and the words embeddings
FX ∈ RtX×d,FY ∈ RtY ×d consists of the seman-
tic features:

(vs,F
X ,FY) = PLM(X,Y ; θp),

where d denotes the size of the feature vector, PLM
could be BERT or other PLM models, and θp de-
notes the parameters of PLM.

Syntactic structures Generally speaking, there
are two types of structures: the word attribute struc-
ture (WAS) which reflects the attributes of the word,
and the word-word relation structure (WRS) which
defines the relationship between two words.

The WAS attributes can be further categorized

942

and this paper only considers POS attributes. Given
any sentence X = {x1, · · · , xtX}, the sequence of

WAS attributes could be
{
ax1 , ax2 , · · · , axtX

}
.

The WRS attributes can also be further catego-
rized and this paper considers syntactic dependency.
Given any sentence X = {x1, · · · , xtX}, the WRS
parsing results (a dependency parsing graph) can
be represented as two incidence matrices:

(IX ,HX) = Parse(X),

where IX ∈ RtX×eX records the output-links and
HX ∈ RtX×eX records the in-links, eX denotes
the edge number of WRS. The elements of these
two matrices are defined as: if k-th edge links from
word xi to xj (its type also denoted as ek(xi, xj)),
IX(i, k) = HX(j, k) = 1, and note that in order to
reduce the noise from the dependencies, we also set
IX(j, k) = HX(i, k) = 1. Otherwise, IX(i, k) =
HX(j, k) = IX(j, k) = HX(i, k) = 0.

In this paper, we used the Stanford CoreNLP
parser (Manning et al., 2014) for getting POS, and
syntactic dependencies. Note that other syntactic
structures can be also used, such as named-entity
and semantic dependencies (Wang et al., 2019b).

4.2 QAP component
Based on the word embeddings and parsed syn-
tactic structures, the QAP component first con-
structs an association graph (affinity matrix) and
then solves the QAP problem, achieving the permu-
tation which represents the word matching between
the two sentences.

4.2.1 Learned affinity matrix construction
Following the practices in (Zhou and De la Torre,
2015), the QAP sparse affinity matrix Kl ∈
RtX tY ×tX tY , referred to as the learned affinity ma-
trix, can be factorized as

Kl = diag(vec(P)) + (IX ⊗K IY)diag(vec(R))(HX ⊗K HY)T ,
(3)

where operator diag(·) builds a diagonal matrix
from input vector, IX ,HX , IY ,HY are sentences
X and Y ’s parsing results, as described in Sec-
tion 4.1, ⊗K denotes Kronecker product, and P
and R encode the WAS, word embedding similar-
ity and WRS similarity matrix, respectively and
they are defined as:

P = (1− α)UXΛuU
Y T

+ αFXΛfF
Y T

,R = LXΛrL
Y T ,

where Λu,Λf ,Λr are learn-able parameters for
affinity metric, α is the trade-off coefficient for

POS affinities and word-word similarities, and
UX ∈ RtX×d,UY ∈ RtY ×d are the WAS se-
quence embeddings of X,Y and the edge repre-
sentations LX ∈ ReX×d,LY ∈ ReY ×d are built
by its edge sequence embeddings. Note that all
the aforementioned operations for constructing Kl

allow back propagation, and we adopt the GPU
implementation provided by (Wang et al., 2019a).
A more detailed QAP factorization is given in Ap-
pendix A.

4.2.2 Solving the permutation vector
Due to the high compute cost for solving the per-
mutation vector through the learned affinity matrix
K l, we adopt the GCN method implemented by
Wang et al. (2019a) to approximate the QAP prob-
lem into a linear assignment programming(LAP)
problem, which can be solved in an efficient way
for both time and space.

Specifically, we build the association graph G =
{v(0),A} with its initial node embedding v(0) and
its sparse adjacent matrix A from the learned affin-
ity matrix K l. Then we can apply GCN method to
updated the node embedding for k-th GCN layer,
k = 1, 2, · · · , Gk. The key idea is to encode the
quadratic structure (WRS) to the linear structure
(WAS). The permutation matrix S can be regarded
as the last layer of the node features:

vec(S) = v(Gk), v(k+1) = AWf(v(k); θk))+v(k),
(4)

where the f(·) is a MLP projection function at
the k-th layer is parameterized by θk and the k-
th layer node embedding of association graph de-
notes as: v(k) ∈ RtX tY ×ℓk , with the initial em-
beddings v(0) ∈ RtX tY ×1 taken from the diago-
nal elements of K l. The GCN projection matrix
W ∈ RtX tY ×tX tY comes from the off-diagonal
elements.

v(0)(i, a) = Kl(ia, ia), W(ia, jb) = Kl(ia, jb),

for all i, j ∈ tX , a, b ∈ tY .
As for the adjacent matrix A, in order to control

its sparsity, we introduce a hyper-parameter γ to
generate the sparse adjacent matrix of association
graph G from the projection matrix W:

A(ia, jb) =

{
1 if W (ia, jb) ≥ γ,

0 otherwise.

4.3 Matching classifier
Given the semantic matching feature vs and QAP
permutation vector v(Gk), the matching score ẑ can

943

be obtained by the MLP parameterized by θm:

ẑ(X,Y) = MLP([vs|v(Gk)]; θm). (5)

where ‘|’ denotes the concatenation operation,
ẑ(X,Y) =

[
ẑ1, · · · , ẑ|Z|

]
and ẑk denotes the prob-

ability of k-th category. The last layer is softmax
so that the output is a probability distribution.

4.4 Learning the model parameters

ISG has parameters to determine, including Θ =
{θp, θk,Λu,Λf ,Λr, θm | k = 1, 2, · · · , Gk}. In
the training phase, given a set of sentence pairs
with ground truth labelsD = {(Xi, Yi, zi)}Ni=1, the
learning algorithm aims to minimize the matching
loss Lm which measures the differences between
the prediction ẑ and ground-truth z, regularized by
the affinity regularizerR which forces the learned
affinity matrix K l and the original parsed affinity
matrix K the being similar. Formally, the loss L
that being minimized is:

L = Lm(ẑ, z) + λaR(K,K l) + µr∥θ∥2, (6)

where ∥θ∥2 is the ℓ2 regularizer, λa, µr denote the
trade-off coefficient of affinity regularizer and ℓ2
regularizer.

Matching loss The matching loss Lm is learned
by minimizing the cross-entropy loss between the
labels and the predicted results:

Lm = −
∑

(X,Y,z)∈D

|Z|∑
k=1

zk log ẑk, (7)

Affinity regularizer The affinity regularizerR
aims to force the structure affinities respectively
correspond to the parsed syntactic structure and that
of learned from neural network to be similar. Thus
the R is learned to minimize the KL-divergence
between the learned affinity matrix K l and parsed
affinity matrix K:

R =
∑

(X,Y)∈D

KL(K||K l), (8)

where the parsed affinity matrix K is defined as
follows: the diagonal elements K(ia, ia) will be 1
if the matched words have identical attribute, oth-
erwise 0. And the off-diagonal element K(ia, jb)
will be 1 if the word pair (xi, xj) and (ya, yb) have
identical word-word relation, otherwise 0.

4.5 Time complexity of online matching

At the online time, ISG needs to process the sen-
tence pairs with PLM, parse them with the NLP
parser, solve the QAP and finally calculate the
matching score. The online time complexity for
typical PLM (Devlin et al., 2019; Liu et al., 2019)
and NLP parser (Manning et al., 2014; Wang et al.,
2019b) is of O(|tX + tY |2 × d) and O((|tX |2 +
|tY |2)× d), where d is the embedding dimension
of each word.

At the online matching, the time complexity of
the relaxed QAP is related to GCN, which is of
O(Gkmℓ + Gknℓ

2) (?) on the association graph,
where n = tXtY is the total number of nodes,
m is the total number of edges, Gk is the num-
ber of layers, and ℓ is the dimension of the node
hidden features. Note that the hyper-parameter γ
controls the sparsity of the edges (as mentioned in
Section 4.2), we can adjust γ so that m ≪ tXtY
and therefore reduce the time complexity of the
relaxed QAP to O(GktXtY ℓ

2), which is more ef-
ficient than the original QAP (Wang et al., 2019a).
Therefore, the total time complexity of ISG is
O(|tX + tY |2 × d + GktXtY ℓ

2), which is com-
parable with the underlying PLM.

5 Experiments

We conducted experiments to verify the effective-
ness of the proposed approach. The source code
and experiments are available at the link.1

5.1 Experimental Settings

The experiments were conducted on three large
scale publicly available benchmarks:

Quora Question Pairs (QQP):2 a large public
dataset for paraphrase identification. QQP contains
404k labeled sentence pairs. We used the same
data split as in (Wang et al., 2017b). SNLI:3 a
well-known dataset for natural language inference
(NLI). SNLI contains 570k labeled sentence pairs.
Following the practices in (Bowman et al., 2015),
we used the same data split way. SciTail:4 another
NLI dataset based on science exams and web. Its
label only contains two classes: “entailment” or
“neutral”. The dataset contains 27k sentence pairs.

1https://github.com/XuChen0427/Semantic-Sentence-
Matching-via-Interacting-Syntax-Graphs

2https://www.kaggle.com/c/
quora-question-pairs

3https://nlp.stanford.edu/projects/
snli

4http://data.allenai.org/scitail/

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://nlp.stanford.edu/projects/snli
https://nlp.stanford.edu/projects/snli
http://data.allenai.org/scitail/

944

Several state-of-the-art baselines which con-
ducts the matching without utilizing syntactic
structures were chosen as the baselines, includ-
ing DIIN (Gong et al., 2018), MwAN (Tan et al.,
2018),BIMPM (Wang et al., 2017a), CSRAN (Kim
et al., 2019), DecAtt (Parikh et al., 2016),
CAFE (Tay et al., 2018), and DGEM (Khot et al.,
2018), RE2 (Yang et al., 2019), and the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019).
Some models are task-adopted (e.g. DGEM is
for NLI task), thus they are missing on some
datasets. ISG was compared with the baselines
DDR-match (Yu et al., 2020, 2022) that applied
unsupervised assignment problems to conduct sen-
tence matching. ISG was also compared with
the baselines that utilize syntactic structures like
HIM (Chen et al., 2017), which uses the con-
stituency tree to improve local word representa-
tion, and Sembert (Zhang et al., 2020b), Syntax-
bert (Bai et al., 2021) that applied different syn-
tax to improve PLM performance. To make a
fair comparison, we cannot reproduce their results
due to the source codes are unavailable public of
graph-based matching models (). Therefore, we
decided to implement a representation-based GCN
method, by following the representation-model ar-
chitecture (lines 455-461, 497-505) and using the
same parsing results. The method is denoted as
ISG (representation-GCN) in Table 1.

To get the syntactic structures of the inputted
sentences, the Stanford-corenlp (Manning et al.,
2014) was used to parse the syntactic structures.
In all of the experiments, the maximum sentence
length was set to 70 and the sentences with lengths
less than 3 were removed for reducing the noise. In
the training process, all of the models were trained
with the learning rate tuned amongst [1e−5, 5e−5].
The batch size was tuned amongst [8, 16, 32], and
the graph network layer Gk was tuned amongst
[1, 3], the coefficient α = 0.8 and the sparsity
threshold tuned amongst [0, 0.3] . The trade-off
coefficient of affinity regularizer λa’s were tuned
amongst [4e− 3, 1e− 2].

5.2 Experimental results

Table 1 reports the matching accuracy of the pro-
posed ISG and the baselines on the three datasets.
The ‘-’ means the number is not available. The
accuracy of baselines is according to the numbers
reported. For our methods, the averaged numbers
over 5 runs are reported, with the standard devi-

3e-3% 1.5e-3% 1e-3% 9e-4% 5e-4% 2e-4%
Association graph edge sparsity

0.002

0.003

0.004

0.005

0.006

0.007

In
fe

re
nc

e
Ti

m
e

pe
r s

am
pl

e

ISG-BERT(BASE)
BERT(BASE)
BERT(LARGE)

(a) Inference time comparsion

3e-3% 1.5e-3% 1e-3% 9e-4% 5e-4% 2e-4%
Association graph edge sparsity

0.896

0.898

0.900

0.902

0.904

0.906

0.908

A
cc

ur
ac

y ISG-BERT(BASE)
BERT(BASE)
BERT(LARGE)

(b) Accuracy comparison

Figure 4: ISG-BERTBASE’s inference time (figure (a))
and matching accuracy (figure (b)) curves w.r.t. the
sparsity of the association graph. Experiments were
conducted on SciTail.

ations in parentheses. From the results, we can
see that different versions of the proposed ISG out-
performed all of the baselines. The results also
indicated that though PLM (e.g. BERT,RoBERTa)
achieved SOTA accuracy, ISG can still get improve-
ments by incorporating the syntactic information.

We also note that ISG outperformed the base-
lines that utilize the syntactic structures for match-
ing. Comparing ISG with these models, we found
that these baseline models all encode the syntac-
tic structures as sentence features to enrich their
representations, while ISG incorporates the syn-
tactic and semantic matching patterns through a
graph matching task and aggregates them through
the affinity matrix. Moreover, we also compared
the graph matching methods that separately encode
two graphs into two embeddings using GCN meth-
ods and conducted matching scores based on the
learned embeddings. We found that ISG will still
outperform the representation-based graph match-
ing methods. The results demonstrated that the
ISG is more effective to utilize syntactic matching
signals.

We also investigated the online time complexity
of ISG. Figure 4 reports the impacts of association
graph sparsity on ISG-BERTBASE on the Scitail
test-set, where the sparsity (calculated as the frac-
tion of edge number and square of node number
in association graph) is from [2e− 4%, 3e− 3%].
The sparsity was adjusted by changing the hyper-
parameters γ.

Figure 4(a) illustrates that the inference time of
ISG will decrease with the increase of the asso-
ciation graph sparsity. Moreover, the inference
time of ISG-BERTBASE is about 2.5 times that of
the underlying PLM, and about 0.7 times that of
BERTLARGE . The results verified the time com-
plexity analysis conclusion in Section 4.5.

Figure 4(b) shows the accuracy curves of ISG,

945

Table 1: Performance comparisons on Quora Question Pairs, SNLI and SciTail. The ±numbers in brackets mean
1-std deviations. The ∗ denotes the models are our implementations and are trained among same settings.

Models without syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
DGEM (Khot et al., 2018) - - 77.3
DecAtt (Parikh et al., 2016) - 82.5 81.7
CAFE (Tay et al., 2018) - 88.5 83.3
BIMPM (Wang et al., 2017a) 88.7 88.8 85.4
DIIN (Gong et al., 2018) 89.1 - -
MwAN (Tan et al., 2018) 89.1 - -
CSRAN (Kim et al., 2019) 89.2 88.7 86.7
RE2 (Yang et al., 2019) 89.2 89.0 86.6
DDR-Match(BERT)∗ (Yu et al., 2022) 89.6 89.2 90.3
BERT∗

BASE (Devlin et al., 2019) 89.4 89.0 89.5
BERT∗

LARGE (Devlin et al., 2019) 89.6 89.2 90.6
RoBERTa∗LARGE (Liu et al., 2019) 90.0 90.1 91.5
Models with syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
HIM (Chen et al., 2017) 88.7 88.6 71.6
SemBERT∗

BASE (Zhang et al., 2020b) 89.8 90.2 92.1
SemBERT∗

LARGE (Zhang et al., 2020b) 90.7 91.0 92.1
SyntaxBERTBASE (Bai et al., 2021) 89.6 87.8 -
SyntaxBERTLARGE (Bai et al., 2021) 89.5 89.0 -
ISG(representation-GCN)-BERT∗

BASE 90.1 89.7 90.6
ISG(representation-GCN)-BERT∗

LARGE 90.2 89.9 91.7
ISG(representation-GCN)-RoBERTa∗LARGE 90.8 90.4 92.3
Ours(ISG-BERT∗

BASE) 90.5 (±0.14) 90.0 (±0.16) 90.8 (±0.26)
Ours(ISG-BERT∗

LARGE) 90.8 (±0.08) 90.4 (±0.03) 91.9 (±0.24)
Ours(ISG-RoBERTa∗LARGE) 91.4 (±0.1) 91.2 (±0.08) 93.3 (±0.2)

(a) Ex. word-word similarity in RoBERTa (c) Ex. word-word crosspondence in ISG-RoBERTa(b) Ex. POS and dependencies affinities in ISG

Figure 5: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example(“this
gas is oxygen”,“oxygen gas is given off by plants”), which is from Scitail training set. Darker colors means higher
similarities or affinities values.

which first increases in [9e−4%, 3e−3%] and then
dropped. We conclude that even association graph
became sparse, ISG still constantly outperformed
BERTBASE and outperformed BERTLARGE at
some point. The results demonstrated that the QAP
is efficient and will not delay the online time.

5.3 Empirical Analysis

5.3.1 Ablation Study

Firstly, we respectively set the WAS(POS) features
UX ,UY , WRS(syntactic dependencies) features
LX ,LY and semantic features vs,F

X ,FY to zero

vectors, to investigate their effects. Table 2 reports
the accuracy of the ISG variation on the SciTail
test data under BERTBASE , where each variation
is denoted as, for example, “ISG-w/o WRS” which
means the WRS features were set zeros. Similar
phenomenons have also been observed on the other
two datasets, with other PLMs.

Compared ISG-BERTBASE with its variations,
we can see that the matching performances dropped
with large margins if the semantic features were
set as zeros, indicating that only considering the
syntax patterns did not work well. We also ob-

946

Table 2: Ablation study on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
ISG-w/o semantic and WRS 68.1 (±0.29)
ISG-w/o semantic and WAS 67.8 (±0.28)
ISG-w/o semantic 68.5 (±0.26)
ISG-w/o WAS 90.2 (±0.27)
ISG-w/o WRS 90.4 (±0.28)
ISG 90.8 (±0.26)

Table 3: Ablation study for different syntactic structure
on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
ISG NER&Syntactic dependencies 90.4 (±0.25)
ISG NER&Semantic dependencies 90.2 (±0.17)
ISG POS&Syntactic dependencies 90.8 (±0.26)
ISG POS&Semantic dependencies 90.6 (±0.21)

served that the performances dropped when the
WAS and WRS features were set to zeros. The bad
performances were caused by removing the WAS
and WRS features, indicating that syntax matching
patterns are effective for sentence matching.

Moreover, We conduct the experiments with dif-
ferent WAS and WRS. Specifically, we respectively
utilize the POS and named-entity(NE) as WAS
and respectively utilize the syntactic dependencies
and semantic dependencies as WRS. For seman-
tic dependencies parsing, we follows Wang et al.
(2019b). Table 3 also reports the accuracy of the
ISG-BERTBASE variation on the SciTail test data.

Compared to the ISG variations, we can see
that the matching accuracy is different for different
WAS and WRS. The best and worst performance
are caused by POS&syntactic dependencies and
NER&Semantic dependencies, respectively. How-
ever, we can observe that all of these variations out-
perform the BERT baseline, which indicates the
effectiveness of ISG in different WAS and WRS.

An experiment on the robustness of ISG’s pa-
rameters can be found in Appendix B.

5.3.2 Matching Visualization of ISG
We conducted experiments to investigate how the
ISG matched two sentences, using a real example
from Scitail. The experiment was conducted based
on the results of ISG-RoBERTa.

Figure 5(a) illustrated the word-word similar-
ity matrix of these two sentences, based on the

word embeddings outputted by RoBERTa, where
the darker colors denote the higher similarities. Fig-
ure 5(b) illustrated the affinities between POS and
dependencies in two sentences. Based on the simi-
larities and affinity matrices, ISG solved the QAP
and achieved a new correspondence matrix in Fig-
ure 5(c). The POS, word semantic similarities,
and dependencies affinities correspond to the node
weights and edge weights in the association graph.

The example illustrates the example that is from
the Sctail training set: (X = “this gas is oxygen”,
Y =“oxygen gas is given off by plants”) whose
ground truth label is “neutral”. The example il-
lustrates how the ISG conducts sentence matching.
Comparing word-word similarities by RoBERTa
(Figure 5(a)) and that of ISG (Figure 5(c)), we can
see that RoBERTa’s results show high similarities
between words in two sentences. On other hand,
ISG can find fine-grained syntactic patterns, for
example, the matching patterns of POS “VB” and
“NN” and dependency “nsubj”. And ISG will out-
put the “dissimilar” result due to its low syntactic
matching pattern scores.

The analysis clearly showed that ISG can well
learn different syntax-based matching signals, and
make them into good interactions. The results also
showed what syntactic matching patterns are im-
portant and how two sentences were matched with
the association graph.

6 Conclusion

This presents a novel sentence matching model
which formulates sentence matching as a problem
of syntax graph matching, referred to as ISG. Based
on the constructed association graph, ISG explic-
itly aligns the syntactic sub-graphs as fine-grained
matching signals. Neural QAP is adopted to learn
the rich matching patterns from the training data.
ISG offers several advantages: explicitly interact-
ing with the syntactic structures in fine granular-
ity, high matching accuracy, and the ability to in-
terpret. Experiments on three publicly available
benchmarks verified the effectiveness, robustness,
and interpretability of ISG.

Acknowledgments

This work was funded by the National Key R&D
Program of China (2019YFE0198200), National
Natural Science Foundation of China (61872338,
61832017), and Beijing Outstanding Young Scien-
tist Program NO. BJJWZYJH012019100020098.

947

References
Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,

Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
bert: Improving pre-trained transformers with syntax
trees. arXiv preprint arXiv:2103.04350.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on EMNLP,
pages 632–642.

Haolan Chen, Fred X. Han, Di Niu, Dong Liu, Kunfeng
Lai, Chenglin Wu, and Yu Xu. 2018. MIX: multi-
channel information crossing for text matching. In
Proceedings of the 24th International Conference on
KDD, pages 110–119.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1657–1668.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree lstm for natural language inference.
arXiv preprint arXiv:1609.06038.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. 2010.
Reweighted random walks for graph matching. In
European conference on Computer vision, pages 492–
505. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171–4186.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Natural
language inference over interaction space. In 6th In-
ternational Conference on Learning Representations,
ICLR, Conference Track Proceedings.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances
in Neural Information Processing Systems 27, pages
2042–2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry P. Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In 22nd ACM International Con-
ference on Information and Knowledge Management,
CIKM’13, pages 2333–2338.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
pages 5189–5197.

Seonhoon Kim, Inho Kang, and Nojun Kwak. 2019.
Semantic sentence matching with densely-connected
recurrent and co-attentive information. In The Thirty-
Third AAAI Conference on Artificial Intelligence,
pages 6586–6593.

Eugene L Lawler. 1963. The quadratic assignment prob-
lem. Management science, pages 586–599.

Marius Leordeanu and Martial Hebert. 2005. A spectral
technique for correspondence problems using pair-
wise constraints.

Marius Leordeanu, Rahul Sukthankar, and Martial
Hebert. 2012. Unsupervised learning for graph
matching. International journal of computer vision,
pages 28–45.

Marius Leordeanu, Andrei Zanfir, and Cristian Smin-
chisescu. 2011. Semi-supervised learning and opti-
mization for hypergraph matching. In 2011 Interna-
tional Conference on Computer Vision, pages 2274–
2281.

Hang Li and Jun Xu. 2014. Semantic matching in
search. Foundations and Trends in Information Re-
trieval, pages 343–469.

Tao Liu, Xin Wang, Chengguo Lv, Ranran Zhen, and
Guohong Fu. 2020. Sentence matching with syntax-
and semantics-aware bert. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3302–3312.

Yang Liu, Matt Gardner, and Mirella Lapata. 2018.
Structured alignment networks for matching sen-
tences. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1554–1564.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Eliane Maria Loiola, Nair Maria Maia de Abreu,
Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. 2007. A survey for the quadratic as-
signment problem. European journal of operational
research, pages 657–690.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui
Yan, and Zhi Jin. 2016. Natural language inference
by tree-based convolution and heuristic matching. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 130–136.

948

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016. Text matching
as image recognition. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence, pages
2793–2799.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on EMNLP, pages 2249–
2255.

Devendra Sachan, Yuhao Zhang, Peng Qi, and
William L Hamilton. 2021. Do syntax trees help
pre-trained transformers extract information? In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2647–2661.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. Learning semantic rep-
resentations using convolutional neural networks for
web search. In Proceedings of the 23rd international
conference on WWW, pages 373–374.

Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, and
Ming Zhou. 2018. Multiway attention networks for
modeling sentence pairs. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, pages 4411–4417.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Com-
pare, compress and propagate: Enhancing neural ar-
chitectures with alignment factorization for natural
language inference. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1565–1575.

Kateryna Tymoshenko and Alessandro Moschitti. 2018.
Cross-pair text representations for answer sentence
selection. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2162–2173, Brussels, Belgium. Association
for Computational Linguistics.

Runzhong Wang, Junchi Yan, and Xiaokang Yang.
2019a. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 3056–3065.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. 2021.
Neural graph matching network: Learning lawler’s
quadratic assignment problem with extension to hy-
pergraph and multiple-graph matching. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019b.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Annual Meeting of the ACL, pages 4609–4618.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017a.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelli-
gence, pages 4144–4150.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017b.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, pages 4144–4150.

Jun Xu, Xiangnan He, and Hang Li. 2020. Deep learn-
ing for matching in search and recommendation.
Foundations and Trends in Information Retrieval,
pages 102–288.

Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and
Haiqing Chen. 2019. Simple and effective text match-
ing with richer alignment features. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4699–4709.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7370–7377.

Weijie Yu, Chen Xu, Jun Xu, Liang Pang, Xiaopeng
Gao, Xiaozhao Wang, and Ji-Rong Wen. 2020.
Wasserstein distance regularized sequence represen-
tation for text matching in asymmetrical domains. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2985–2994.

Weijie Yu, Chen Xu, Jun Xu, Liang Pang, and Ji-Rong
Wen. 2022. Distribution distance regularized se-
quence representation for text matching in asymmet-
rical domains. IEEE/ACM Trans. Audio, Speech and
Lang. Proc., 30:721–733.

Andrei Zanfir and Cristian Sminchisescu. 2018. Deep
learning of graph matching. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 2684–2693.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and
Min Zhang. 2020a. Syntax-aware opinion role label-
ing with dependency graph convolutional networks.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3249–
3258.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020b.
Semantics-aware bert for language understanding. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9628–9635.

Feng Zhou and Fernando De la Torre. 2015. Factor-
ized graph matching. IEEE transactions on pattern
analysis and machine intelligence, pages 1774–1789.

https://doi.org/10.18653/v1/D18-1240
https://doi.org/10.18653/v1/D18-1240
https://doi.org/10.1109/TASLP.2022.3145289
https://doi.org/10.1109/TASLP.2022.3145289
https://doi.org/10.1109/TASLP.2022.3145289

949

Mary
NN nsubj

obj

compound

likes
VB

food
NN

flour
NN

nsubj

obj

Mary
NN

loves
VB

noodles
NN

(a) Sentence Pair

1 0.2 0.3
0.2 0.9 0.3
0.3 0.2 0.6
0.2 0.2 0.5𝑿𝑿𝟏𝟏 𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒 𝒀𝒀𝟐𝟐

𝒀𝒀𝟏𝟏

𝒀𝒀𝟑𝟑

1 0 1
0 1 0
0 0 1
1 0 1

2 0.2 1.3
0.2 1.9 0.3
0.3 0.2 1.6
1.2 0.2 1.5

𝒀𝒀𝟏𝟏 𝒀𝒀𝟐𝟐 𝒀𝒀𝟑𝟑
𝑿𝑿𝟏𝟏
𝑿𝑿𝟐𝟐
𝑿𝑿𝟑𝟑
𝑿𝑿𝟒𝟒

(b) Linear Structure

Embedding Similarities: 𝑭𝑭𝑿𝑿𝜦𝜦𝒇𝒇 𝑭𝑭𝒀𝒀 𝑻𝑻WAS Similarities：𝑼𝑼𝑿𝑿𝜦𝜦𝒖𝒖 𝑼𝑼𝒀𝒀 𝑻𝑻

R

NN

likes

flour
food

Mary loves food

Mary
VB

NN

NN

NN VB NN

1 0 0
1 1 0
0 0 1
0 1 1

nsubj obj compound

likes

flour
food

Mary

1 0 0
1 1 0
0 0 1
0 1 1

nsubj obj compound

likes

flour

food

Mary

𝑰𝑰𝑿𝑿

𝑯𝑯𝑿𝑿

1 0

1 1

0 1

nsubj obj

loves

noodles

Mary

1 0

1 1

0 1

nsubj obj
𝑰𝑰𝒀𝒀

𝑯𝑯𝒀𝒀

loves
noodles

Mary

1 0

0 1

0 0

nsubj obj

nsubj

obj

compound

P

(d) Learned Affinity Matrix 𝑲𝑲𝒍𝒍(c) Quadratic Structure

diagonal
elements

off-diagonal
elements

output
link

input
link

Figure 6: A working example of factorized affinity matrix Kl with aforementioned example (“Mary likes flour
food”, “Mary loves noodles”). The affinity matrix can be factorized into six matrices: P,R, IX , IY ,HX ,HY

Appendix A: An intuitive example on
affinity matrix factorization

Figure 6 gives a working example of factorizing
the affinity matrix Kl ∈ RtX tY ×tX tY in Equa-
tion (3) (Zhou and De la Torre, 2015):

Kl = diag(vec(P)) + (IX ⊗K IY)diag(vec(R))(HX ⊗K HY)T ,
(9)

with the aforementioned example sentence pair:
(“Mary likes flour food”, “Mary love noodles”).
As shown in Figure 6(a), the words, POS and syn-
tactic dependencies are represented in the nodes
and edges, respectively.

The diagonal and off-diagonal elements in the
affinity matrix (Figure 6(d)) represent the affinity of
sentence linear structures and quadratic structures,
respectively. According to Zhou and De la Torre
(2015), the affinity matrix Kl can be factorized
into six matrices P,R, IX , IY ,HX ,HY (shown in
Figure 6(b,c)) and defined in Section 4.

Appendix B: Robustness of ISG

ISG has a set of important hyper-parameters λa

which trade-off the affinity regularizer Ra and
matching loss Lm. We conducted experiments on
the Scitail test set with BERTBASE as the encoder
to test the sensitivity of these hyper-parameters.
Figure 7 illustrates the performance changes w.r.t.
λa in terms of accuracy, where λa ∈ [3e−3, 1.1e−
2]. We can see that ISG performed best when
λa ≈ 8e− 3. However, the performance changes

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011
Trade-off coefficient lambda

90.625

90.650

90.675

90.700

90.725

90.750

90.775

90.800

A
cc

ur
ac

y(
\%

)

Figure 7: Accuracy curve of ISG-BERTBASE w.r.t. λa

(trade-off coefficient for affinity regularizer) on the Sci-
tail test set.

were not severe (from 90.6% to 90.8% in terms of
accuracy). We conclude that (1) the introduction of
the affinity regularizer enables ISG to have some
tolerances to the errors caused by the NLP parser,
which inevitably occurs in real-world applications;
(2) ISG is robust and not sensitive to the λa.

