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Abstract

Recent research shows that pre-trained lan-
guage models, built to generate text condi-
tioned on some context, learn to encode syn-
tactic knowledge to a certain degree. This
has motivated researchers to move beyond the
sentence-level and look into their ability to en-
code less studied discourse-level phenomena.
In this paper, we add to the body of probing
research by investigating discourse entity repre-
sentations in large pre-trained language models
in English. Motivated by early theories of dis-
course and key pieces of previous work, we
focus on the information-status of entities as
discourse-new or discourse-old. We present
two probing models, one based on binary clas-
sification and another one on sequence labeling.
The results of our experiments show that pre-
trained language models do encode information
on whether an entity has been introduced before
or not in the discourse. However, this informa-
tion alone is not sufficient to find the entities in
a discourse, opening up interesting questions
about the definition of entities for future work.

1 Introduction

In a seminal paper from 1969, Karttunen imagines
“a device designed to read a text in some natural
language, interpret it, and store the content in some
manner, say, for the purpose of being able to answer
questions about it”. Such a device—considered by
him “not a practical idea, for the time being at
least”—he says would need to have a particular
feature, namely that it “be able to recognize when a
novel individual is mentioned in the input text and
to store it along with its characterization for future
reference.”

Now, more than 50 years later, neural models
appear to have made such a device a practical idea
after all. But do they recognize when a text intro-
duces a new entity into the “universe of discourse”,
or when, in contrast, the new information concerns

∗Shared first authorship.

a previously introduced one? This is the question
that we are asking in this paper.

Following Karttunen’s idea and inspired by
Prince (1992)’s analysis of information-status, we
focus on discourse entities. In particular, we tar-
get the task of distinguishing between the status of
entity mentions as discourse-new or discourse-old.
Considering that discourse entities are central to
discourse theories and meaning, we consider that
this is an understudied subject in the field. We take
a step back from much more specific tasks such as
coreference resolution and look at entities being
referred to over time. We believe that the new/old
distinction, as a simplified form of discourse repre-
sentation, lets us ask whether language models are
able to keep track of discourse entities.

Concretely, we build probing models that take
as input the representations of pre-trained English
language models and predict discourse-new/-old
values for all mentions in a text. We present two
probing models tackling the task on two different
levels of complexity: binary classification and se-
quence labeling. The first probe takes one entity
mention and its preceding context up to that point,
and produces a binary decision (discourse-new/-
old). It tells us to what extent the context matters
for this task. Inspired by the Named Entity Recog-
nition task, the second probe labels each token in a
sequence (new/old/outside). It tells us thus whether
the entities can be localized in the sequence and
labeled with the correct type. A few pieces of
research have found first indications about the pres-
ence of entity knowledge in pre-trained language
models. In particular, Sorodoc et al. (2020) focus
on identifying pronoun-antecedent pairs, leaving
the question open of whether models have a general
notion of entities. Li et al. (2021) work only with
synthetic data, which is simple in nature with short
sentences and few entities. Last, Gupta and Durrett
(2019b) find that pre-trained language model’s rep-
resentations are unable to trace explicit entity state
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changes in recipes and physical processes.
Our findings suggest that contextualized pre-

trained language model representations generated
with a transformer model contain enough discourse
information to determine whether an entity is new
or old—with results as high as 0.89 F1 in the clas-
sification probe, even beyond the case of pronouns.
However, that knowledge does not suffice to local-
ize the entity in the sequence—with results as low
as 0.51 F1 in the sequence labeling task. 1

2 Related Work

The intuition that language models implicitly cap-
ture and in turn also benefit from entity knowledge
has been explored for some time now (Ji et al.,
2017; Yang et al., 2017; Schuster and Linzen, 2022,
inter alia), with recent papers focusing on how
to inject some explicit entity representation into
the system (Aina et al., 2019; Gupta and Durrett,
2019a, among others). The information-status dis-
tinguishes between discourse entities that are newly
introduced in the text and those that are already
known to the comprehender (Prince, 1992; Kamp
and Reyle, 1993). It is a central part in discourse
theories as it accounts for the changes in referring
expressions used to re-mention discourse entities
as they undergo meaning updates as the context
evolves.

Our work is most similar to that of Sorodoc et al.
(2020) and Li et al. (2021). Both of these papers
are interested in probing entity knowledge in pre-
trained language models at the discourse level, and
they both take a semantic approach in that they
are interested in the similarity between different
mentions of the same entity at different points in
the discourse.

Working with the OntoNotes (Pradhan et al.,
2012) coreference corpus, Sorodoc et al. test
whether pre-trained language model representa-
tions have the morpho-syntactic and semantic
knowledge required to match a pronoun with its an-
tecedent. They report results based on pre-trained
representations generated with both a Transformer
and an LSTM model. Using two baselines i) always
referring to the nearest mention, ii) always referring
to the most similar (cosine similarity) token, they
found that a probe fed with the pre-trained embed-
dings succeeds at the task of predicting the correct

1The code for our experiments is available
at: https://github.com/clp-research/
new-old-discourse-entities.

antecedent (75.9% accuracy). An error analysis
of the probe with the Transformer representations
showed that noun phrases were harder to solve than
pronouns (so they focus on the latter). The probe
also succeeded in learning agreement, as tested by
inserting distractors, but accuracy drops to 53% in
hard cases (e.g., when the pronoun and antecedent
disagree in gender/number). In our experiments,
we go a step further and consider pronouns as well
as noun phrase mentions.

Focusing on Transformers, Li et al., on their side,
work with the Alchemy (derived from Long et al.
(2016)) and Textworld (Côté et al., 2019) datasets.
They use the data to construct logical propositions
which are then classified into True/False with a bi-
nary classifier probe (e.g., You see an open chest.
The only thing in the chest is an old key. The chest
contains an apple. → True/False). This data trans-
formation is possible because the original data are
constructed short documents with simple sentences
and few entities. It should be noted as well that
although the probe itself is a low-capacity linear
classifier, it needs a proposition embedder and a
localizer of the entity in the sequence as additional
pipeline components. Their results are measured
through accuracy (the aggregation of all proposi-
tions with an entity) and they go as high as 94%.
Our work is concerned with real world text data
instead. As this increases the space of possible
propositions, it also requires us to simplify the task,
which we will explain in detail in the next sections.

Turning to the approach of probing or diagnostic
classifiers (Hewitt and Liang, 2019), these are sim-
ple systems trained on the encoded representations
of another system. If the probe succeeds in the task
for which it is trained—discourse-new/discourse-
old in our case, we conclude that the input had the
necessary knowledge to solve the task. Research
based on probing models mostly relies on classifi-
cation tasks. This paper is a part of that, but here
we additionally use a sequence labeling task. This
strategy has precedent in examples such as Ram-
poni et al. (2020) and Dai et al. (2019a) who use
sequence labeling for event and entity extraction,
respectively. In the context of probing discourse
knowledge, Koto et al. (2021) has used this for-
mat for a sentence ranking experiment where the
probe was asked to predict the most likely sentence
ordering as a sequence.

https://github.com/clp-research/new-old-discourse-entities
https://github.com/clp-research/new-old-discourse-entities
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(1) [The researchers]t said [they]t have isolated [a plant gene that prevents [the production of
[pollen]i]j]m. [The gene]m thus can prevent [a plant]y from fertilizing [itself]y.

(2) The researchers said they have isolated [a plant gene that prevents the production of pollen]. – new
The researchers said they have isolated a plant gene that prevents the production of pollen. [The gene] – old

(3) The researchers said they have isolated a plant gene that prevents the production of [pollen]. – new
The researchers said they have isolated a plant gene that prevents the production of pollen. The [gene] – old

(4) [The
B-old

researchers]
I-old

said
O

[they]
B-old

have
O

isolated
O

[a
B-new

plant
I-new

gene
I-new

that
I-new

prevents
I-new

the
I-new

production
I-new

of
I-new

pollen]
I-new

.

.
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B-old
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O
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O
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.
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O
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B-old
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O

a
O
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O
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that
O
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O
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O
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.
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Figure 1: Excerpt from one document extracted from the ARRAU corpus. (1) presents the original entities with
their embedded mentions, (2) shows the spans data for the classification experiments, while (3) the heads data, (4)
shows our formatting into IOB labels for the sequence labeling experiments for spans, and (5) shows our formatting
into IOB labels for heads (see Sec. 4.2).

3 Data and Pre-trained Model

We present two sets of probing experiments on the
hidden representations of a pre-trained model using
real-world text data.

3.1 Data
For our experiments, we use data from the ARRAU
corpus (Uryupina et al., 2020), a richly annotated
coreference corpus which includes information-
status (discourse-new/-old) annotations.2 We only
consider referring mentions, as non-referring men-
tions do not introduce a discourse entity and thus
are not annotated with their information-status. The
ARRAU corpus contains annotations for all NPs,
including singletons (discourse-new entities that
do not occur as antecedents for any other mention).
We kept the official split used in the CRAC shared
task3 (Poesio et al., 2018), but discarded the spoken
dialog and narrative genres (trains and pears,
respectively) because they are presumably differ-
ent from the domain of the pre-trained model. We
construct two data variants, spans and heads. The
examples per partition can be found in Table 1.

Spans As Fig. 1 shows, the original ARRAU data
contains several embedded entities (1), that require

2The complete corpus is available through the LDC:
https://catalog.ldc.upenn.edu/LDC2013T22.
Some parts are also available through the ARRAU
corpus GitHub, according to the authors: https:
//sites.google.com/view/arrau/corpus.

3http://anawiki.essex.ac.uk/dali/
crac18/crac18_shared_task.html

some adaptation. We first remove all embedded
entities from the maximal entity span containing
them. For example, the mentions i and j have been
removed from the outer entity span m, a plant gene
that prevents the production of pollen (4). If an
embedded mention in the current sentence is re-
mentioned in a subsequent sentence, the remention
is retained (despite the first embedded mention not
being retained). Then, for the sequence labeling
task, we create standard IOB labels: an entity’s first
token is either B-NEW or B-OLD and subsequent
tokens have an I-NEW or I-OLD label. Non-entity
tokens are labeled as outside (O).

We expect this version of the data to be easier
for the classification probe as it has access to all the
information in the span, but harder for the sequence
labeling probe, since there is much variability in
the length of the mentions. Identifying the span
also implies higher order knowledge of the notion
of entity. Neural coreference resolution systems,
for instance, explicitly learn the representation of
spans as the combination of the vectors for the first
and last tokens and the head of a mention (Lee
et al., 2017).

Heads In this version, we take only the head of
each mention. This means that the probing model
only needs to label the lexical head or pronoun, as
opposed to the complete span of a mention. We
obtained the heads by extracting the min_words
attribute from the manual ARRAU annotations.4

4This can either be a pronoun, head noun or proper name.

https://catalog.ldc.upenn.edu/LDC2013T22
https://sites.google.com/view/arrau/corpus
https://sites.google.com/view/arrau/corpus
http://anawiki.essex.ac.uk/dali/crac18/crac18_shared_task.html
http://anawiki.essex.ac.uk/dali/crac18/crac18_shared_task.html


878

Heads Spans

Train Dev Test Train Dev Test

New 29, 117 1, 991 5, 084 16, 639 1, 141 2, 812
Old 19, 171 1, 391 3, 672 9, 814 714 1, 883
Total 48, 288 3, 382 8, 756 26, 453 1, 855 4, 695

Table 1: Data splits for the discourse entity probes.

Here, embedded entities are retained.

3.2 Pre-trained Representations
All of our probes are based on the representations
learned by a pre-trained Transformer-XL model
(Dai et al., 2019b) (available through the Hugging
Face library (Wolf et al., 2020) as TRANSFO-XL-
WT103). We focus on this English model first,
as it has been used in the closely related work by
Sorodoc et al. (2020) and because it is explicitly
able to capture long contexts and generate “rela-
tively" coherent long texts (Dai et al., 2019b) by us-
ing a recurrence mechanism over cached previous
segment states. This counteracts the “context frag-
mentation" introduced by chopping off contexts at
a given length to cope with limited computational
capacities.

We extract the last 1024-dimensional hidden
state representations for each token by feeding the
pre-trained model a whole document at a time, so
they are contextualized with the discourse knowl-
edge encoded by the model. In Section 4.3, we
show how to extend our probes to other models and
compare the results to pre-trained representations
extracted from GPT-2 (Radford et al., 2019), which
is not specifically adjusted for longer inputs.5.

3.2.1 Baselines
To interpret the results of our probing models, we
compare them to models initialized with static 300-
dimensional fastText embeddings (Grave et al.,
2018), which we extract word by word using the
Python fastText module.6 We further match
the results against two simple baselines, a majority
baseline that labels every entity as new, and one
based on POS tags where only entity mentions that
start with a definite article or pronouns are consid-
ered old. The intuition behind the second one is
that these are easy and frequent cases, which may
reveal whether our models simply rely on these
linguistic cues.

5An extension to different languages, however, would also
require gold data with information-status annotations and is
not included in this work.

6https://fasttext.cc/docs/en/
python-module.html

4 Probing Experiments

We first perform a classification task to gather infor-
mation about the entity representations themselves.
The second probing task looks at sequence labeling
in order to evaluate whether this information can
be also used to detect entity boundaries.

4.1 Classification Task

Previous work on entity status tracking (Gupta and
Durrett, 2019b) framed the task as entity classi-
fication by pre-extracting the entity in question,
thereby not requiring the model to identify what
an entity is in the first place. We adapt this task in
order to probe whether pre-trained hidden represen-
tations contain information about whether an entity
is newly introduced into the discourse or if it is a
re-mention of an already introduced entity.

4.1.1 Pre-processing
First, we split each text incrementally at each en-
tity mention such that the context contains the n
words up to the first entity (and in the next sample
the second and so on), and the target contains the
respective following entity tokens. As described
in Sec. 3.1 we extract either only the heads or the
maximal spans of entities as the target. We prepend
the ⟨eos⟩ token to the context to avoid empty con-
texts when the first token is (part of) an entity (e.g.,
in the very first sentence of a document).

Next, we use the pre-trained Transformer-XL
representations for every context token, and sum
over the extracted target entity vectors to get an
entity representation (see lower part of Fig. 2).

4.1.2 Models
Following the baseline models of Gupta and Dur-
rett (2019b), we train an attention-based classifier
that computes bilinear attention (Luong et al., 2015)
between the entity representation and the context
tokens and predicts the entity category (new/old)
from the combined result. We use the Attention
implementation from pytorch-nlp (Petrochuk,
2018) (Eq. 1-4) and a linear layer with a sigmoid
function on top (Eq. 5).

ai = hTci ∗Watt ∗ e (1)

α = softmax(a) (2)

context =
∑

αi ∗ hci (3)

hc,e = tanh(Wcomb ∗ [context, e]) (4)

https://fasttext.cc/docs/en/python-module.html
https://fasttext.cc/docs/en/python-module.html
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Figure 2: Probing classifier architectures. Embeddings
are previously extracted document-wise from the hid-
den layer of a pre-trained Transformer-XL model (Em-
bedder). a) Contextualized classification based on at-
tention between context (c1...cn) and summed entity
(en+1..em) representation (Eq. 1-5). b) Entity classifica-
tion based on summed entity (en+1..em) representation
alone (Eq. 6).

P (y|hc1 , ..., hcn , e) = sigmoid(Wa ∗ hc,e + b)
(5)

This model has access to the whole context up to
the entity. To gather further insights on the role of
the context tokens in terms of what kind of informa-
tion is already encoded in the entity representation
itself, we additionally train a model without con-
text, using only the entity representation to predict
its status (Eq. 6).

P (y|e) = sigmoid(Wb ∗ e+ b) (6)

The model architectures are displayed in Fig. 2.
Training details and hyperparameters used are pro-
vided in Appendix A.

4.1.3 Results
The results of the classification experiments are dis-
played in Table 2. While the fastText embeddings
already yield an improvement over the majority
and the POS baseline, the Transformer-XL embed-
dings yield the best overall results, suggesting that
the contextualization adds some useful information
on the entity state. Surprisingly, however, there is
not much difference between the attention-based
and the entity-based models, suggesting that the in-
formation required for this task is contained in the
pre-trained representations themselves. It is also

interesting that taking the whole span into account
improves the results for the fastText embeddings,
but yields no gain for the Transformer-XL represen-
tations. This suggests that due to the contextualiza-
tion, the necessary information is already encoded
in the head representation itself. A detailed discus-
sion follows in Sec. 5.

4.2 Sequence Labeling Task

Inspired by the NER scenario, our second probing
model takes the form of a sequence labeling task,
whereby each token in the sequence is assigned a
categorical label. Discourse entities are a broader
category of named entities, so instead of assign-
ing entities a type (e.g., ORGANIZATION, PERSON,
TIME, etc.), the probe assigns new or old labels,
following the IOB scheme. An example is shown
in Fig. 1.

This framework offers us two advantages in a
single task: i) the probe has to localize the entity
in the sequence (an additional pre-processing step
in previous work), and ii) the probe has to assign a
classification label to the entity.

4.2.1 Pre-processing
We slice the extracted hidden vector sequence ac-
cording to the tokens in the original sentences,
in order to feed our probes with examples at the
sentence-level. In other words, the hidden represen-
tations are extracted based on the whole document,
but the probing model labels the document sentence
by sentence. The fact that our probes work at the
sentence-level can be seen as a safety switch that
limits their power, so no further contextualization–
beyond that from the original embeddings– occurs.
Because this precludes the probe from accessing
any embeddings beyond the sentence, any success
at predicting discourse-new or discourse-old should
come from the entity embeddings themselves. This
has the added advantage of easing the computation
cost.

4.2.2 Model
The underlying method for our probe is a linear
chain conditional random field (CRF) model.7 The
input to the model are sequences of n vectors,
where each input hi is a contextualized vector
with size 1024 yielded by the pre-trained language
model. This sequence of pre-trained vectors is fed

7We took advantage of the freely available implementation
at https://github.com/kmkurn/pytorch-crf

https://github.com/kmkurn/pytorch-crf
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Heads Spans

Discourse New Discourse Old
Acc.

Discourse New Discourse Old
Acc.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
Attention-based 0.86 0.92 0.89 0.88 0.80 0.84 0.87 0.88 0.91 0.89 0.86 0.81 0.83 0.87
Entity-based 0.87 0.91 0.89 0.87 0.81 0.84 0.87 0.85 0.92 0.88 0.86 0.76 0.80 0.85

Baselines fastText 300
Attention-based 0.76 0.86 0.81 0.76 0.62 0.68 0.76 0.82 0.89 0.85 0.81 0.71 0.75 0.82
Entity-based 0.70 0.93 0.80 0.82 0.46 0.59 0.73 0.76 0.92 0.83 0.82 0.56 0.67 0.78

Baselines w/o embeddings
POS-based 0.66 0.83 0.73 0.63 0.40 0.49 0.65 0.74 0.80 0.77 0.66 0.57 0.61 0.71
Majority class 0.58 1.00 0.73 0.00 0.00 0.00 0.58 0.60 1.00 0.75 0.00 0.00 0.00 0.60

Table 2: Average results from five different random seeds of discourse-new vs. discourse-old classification
experiments, probing pre-trained Transformer-XL representations versus static fastText embeddings (standard
deviation is between 0.00 and 0.04 for all versions), and a POS-based (pronouns and defNP = discourse-old) and
majority class (discourse-new) baseline

into an LSTM layer (Eq. 7) and a rectified lin-
ear unit activation function (Eq. 8), before being
resized (Eq. 9) in order to fit the CRF (Eq. 10).
The CRF layer finds the best possible sequence of
labels (yi, ..., yn) for the entire input sequence.

ri = LSTM(hi, ri−1) (7)

oi = RELU(ri) (8)

li = W ∗ oi + b (9)

p(y1, ..., yn|h1, ..., hn) = CRF (l1, ..., ln) (10)

Figure 3: Sequence labeling model. The input to
the probe are pre-trained representations hi from the
Transformer-XL model. After the LSTM layer (Eq.
7-8), a linear layer (Eq. 9) is needed to reduce the di-
mensions of the LSTM output from the hidden size to
label size required by the CRF (Eq. 10). The CRF has a
choice among 5 labels at each time step.

We present experiments with and without the
LSTM layer. We expect a division of labor whereby
the CRF learns from the syntactic signal (i.e., I
comes after a B), and the LSTM learns the semantic

content (i.e., new vs old). Training details and
hyperparameters used are given in Appendix A.

4.2.3 Baselines
We build several model versions to estimate the
success of our probes: In addition to the majority
and POS baselines (cf. Sec. 3.2.1), we build a sim-
ple CRF using the Scikit-learn (Pedregosa et al.,
2011) compatible CRFsuite (Okazaki, 2007) wrap-
per (Korobov, 2015) based on simple surface form
features. These include whether a token is at the
beginning or end of a sequence, whether the token
starts with a capital letter, the last three characters
of the token, and the last two characters of a token.
We also add two versions of our probing models
that do not rely on pre-trained representations but
train the embeddings from scratch with dimensions
1024 for the comparison to Transformer-XL and
300 for fastText.

We do not compare to a human baseline for two
reasons. First, we rely on human annotations of
very high quality, for which annotators were asked
to identify discourse entities as new/old before be-
ing asked to identify antecedents (Uryupina et al.,
2020). Second, our main interest is to evaluate
whether the pre-trained representations contain in-
formation that improves the performance on this
task compared to our automatic baselines.

4.2.4 Results
The results for all configurations are reported in
Table 3. For computing the scores, we used the
SeqEval package (Ramshaw and Marcus, 1995;
Nakayama, 2018).

A very clear pattern emerges: Heads are easier
to identify than Spans, and discourse-old is easier
to predict than discourse-new. It follows that the
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Heads Spans

Discourse New Discourse Old
Avg.F1

Discourse New Discourse Old
Avg.F1

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
LSTM + Linear + CRF 0.75 0.79 0.77 0.80 0.78 0.79 0.78 0.59 0.59 0.59 0.80 0.72 0.75 0.66
Linear + CRF 0.70 0.70 0.70 0.75 0.69 0.72 0.71 0.43 0.38 0.41 0.69 0.63 0.66 0.51
LSTM + Linear + CRFscratch 0.59 0.71 0.64 0.74 0.54 0.62 0.63 0.38 0.39 0.38 0.70 0.52 0.59 0.47
Linear + CRFscratch 0.51 0.59 0.55 0.63 0.47 0.53 0.54 0.27 0.25 0.26 0.55 0.45 0.49 0.35

Baselines fastText 300
LSTM + Linear + CRF 0.67 0.76 0.71 0.75 0.63 0.68 0.70 0.50 0.50 0.50 0.76 0.60 0.67 0.57
Linear + CRF 0.55 0.63 0.59 0.69 0.45 0.55 0.57 0.25 0.19 0.22 0.63 0.41 0.50 0.33
LSTM + Linear + CRFscratch 0.59 0.70 0.64 0.72 0.54 0.62 0.63 0.40 0.42 0.41 0.70 0.54 0.61 0.49
Linear + CRFscratch 0.53 0.62 0.57 0.65 0.46 0.53 0.55 0.29 0.26 0.28 0.58 0.44 0.50 0.36

Baselines w/o embeddings
Simple CRF 0.57 0.70 0.62 0.71 0.45 0.55 0.59 0.32 0.28 0.29 0.64 0.44 0.52 0.38
POS baseline 0.65 0.51 0.57 0.51 0.58 0.55 0.56 0.77 0.61 0.68 0.62 0.71 0.66 0.67
Majority class 0.50 1.00 0.74 0.00 0.00 0.00 0.43 0.60 1.00 0.75 0.00 0.00 0.00 0.45

Table 3: Average results from five different random seeds for all discourse-new vs. discourse-old sequence labeling
models, probing pre-trained Transformer-XL representations vs static fastText embeddings and embeddings trained
from scratch (standard deviation is between 0.01 and 0.06 for all versions). Baselines also include a simple CRF
with surface features, a POS-based (pronouns and defNP = discourse-old) and the majority class (discourse-new)
baseline.

combination of span + discourse-new is the most
difficult category, and one in which the probes are
surpassed by the baselines. Besides, the models
with the LSTM yield consistently higher results
than the models relying on the CRF only.

When considering the type of input, there is a
similar pattern to the classifier. Although the results
using static embeddings are better than the base-
lines, the contextualized Transformer-XL represen-
tations present a systematic improvement overall.
Interestingly, this improvement is more marked for
the Spans and negligible for Heads in additional
experiments with a CRF for entity identification
only, i.e., without labeling the entities as new or
old (cf. Appendix B, Table 6). This keeps with
the intuition that identifying the heads is akin to
finding nouns, but identifying the relevant spans
which are also entities is more complex, involving
discourse-level knowledge.

4.3 Extension to other pre-trained Models

To compare our results to another pre-trained
model, we also probe GPT-2 (Radford et al., 2019)
in the same manner. This requires two adapta-
tion of our approach: GPT-2 uses a different tok-
enizer, so the alignment of the tokenized version
and the labels has to be adapted. More critically,
Transformer-XL is optimized to deal with long con-
texts, whereas GPT-2 can only handle inputs of up
to 1024 tokens. Therefore, we create a subset of
our data by filtering out all documents longer than
a 800 threshold (of items before tokenization). For
the results to be comparable, we reran the experi-

ments for Transformer-XL on the same subset. All
the results are displayed in Table 4. We first notice
that the Transformer-XL results are very similar to
those obtained using the full training and test sets.
Concerning the GPT-2 model, we notice that its
performance is comparable to the Transformer-XL.
Thus we believe that other Transformer models will
be equally adequate for this task.

5 Discussion and Analysis

In line with existing literature about the presence
of entity knowledge in pre-trained language mod-
els, we find that the entity knowledge extends to
different types of entity mentions extracted from
natural data.

The high success of the binary classifier probe
demonstrates that classifying an entity as new or
old is not challenging, provided that the model has
access to the entity representations. Comparable
to a coreference resolution system, this model is
fed with an aggregated representation comprising
all tokens in the mention, so it does not need to
locate the entity in the sequence. On the other hand,
finding the entities given a sequence is the hard
part in our task, as shown by the sequence labeling
probe. This model is superior in the Heads version
of the data, but less successful with Spans, where
the boundaries of each entity must be found. In this
task, the simple POS-based baseline yields better
overall results than any of our probing models.

Error Analysis: Pronouns and definite noun
phrases are two types of mentions with enough reg-
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Heads Spans

Discourse New Discourse Old
Acc.

Discourse New Discourse Old
Acc.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

C L A S S I F I C A T I O N P R O B E

Transformer-XL
Attention-based 0.88 0.90 0.89 0.86 0.84 0.85 0.87 0.88 0.90 0.89 0.86 0.82 0.84 0.87
Entity-based 0.87 0.92 0.90 0.88 0.82 0.85 0.88 0.85 0.91 0.88 0.85 0.77 0.81 0.85

GPT-2
Attention-based 0.89 0.90 0.89 0.86 0.84 0.85 0.88 0.88 0.88 0.88 0.82 0.83 0.83 0.86
Entity-based 0.89 0.90 0.90 0.86 0.84 0.85 0.88 0.87 0.87 0.87 0.81 0.80 0.80 0.84

S E Q U E N C E L A B E L I N G P R O B E

Transformer-XL
LSTM + Linear + CRF 0.74 0.77 0.75 0.79 0.77 0.78 0.76 0.55 0.55 0.55 0.78 0.71 0.74 0.63
Linear + CRF 0.70 0.68 0.69 0.75 0.71 0.73 0.71 0.44 0.41 0.43 0.72 0.64 0.68 0.53

GPT-2
LSTM + Linear + CRF 0.76 0.74 0.75 0.78 0.81 0.80 0.77 0.55 0.56 0.55 0.78 0.69 0.73 0.62
Linear + CRF 0.69 0.67 0.68 0.72 0.68 0.70 0.69 0.42 0.40 0.41 0.71 0.61 0.65 0.51

Table 4: Probing results on a shortened subset of the data to accomodate GPT-2’s maximum input capacity of
1024 tokens. Results are averaged over five random seeds with a standard deviation between 0.00 and 0.04 for all
versions.

ularity (i.e., closed set of forms and determiner the)
for the models to exploit frequency heuristics. In
this sense, comparing with the POS baseline consti-
tutes an interesting case study (Table 5). In general,
the fact that these two differ is a sign that our probes
are not deterministically exploiting this heuristic.
Note however that different genres might have dif-
ferent uses of definite and undefined articles, and
that a definite article does not automatically entail
a discourse old label.

Going into details, the first thing we observe
in Table 5 is that using either the Heads or Spans
version results in a similar number of errors, in
particular predicting a label when there is no entity
to identify (False mention). Interestingly, the se-
quence labeling probe yields more new than old la-
bels (Old predicted as new), suggesting that it iden-
tifies old mentions more confidently than new ones
(i.e., when it produces old, there is a high chance
that the label really is old). This might explain why
despite being the minority class with about 40% of
the entities, discourse-old seems easier to predict
in the sequence labeling experiments, in particular
for the Spans setting (comparing F1 scores). In
contrast, the binary classifier does slightly better
with the discourse-new class. Another thing we
observe is that fewer Spans are left without a pre-
diction than Heads, which intuitively makes sense:
it may be harder to say if a bare NP head is refer-
ential or not, but easier if the NP is presented with
determiners, adjectives, and other modifiers. Last,

the category ‘Others’ comprises mostly errors in
detection of boundaries, which are more prevalent
in the Spans (for example, Gulf Resources & Chem-
ical Corp. said it agreed to pay $ 1.5 million [...]
regarding [an environmental cleanup] of a defunct
smelter the company formerly operated; gold: B-
new I-new I-new, predicted: O O B-new). This
category further suggests that finding an entity’s
boundaries is harder than determining its label.

Inspecting the forms closely shows that most er-
rors correspond to the pronouns it, this, that and
which, known to be problematic for coreference
resolution. For the classifier, we also found that
it and that are amongst the most common errors
(18/424 in spans, 23/753 in heads). We also in-
spected the definite noun phrases, but could not
identify any specific pattern in the errors.

Error Heads Spans

False mention (gold is O) 1252 1254
No prediction (prediction is O) 138 63
New predicted as old 128 78
Old predicted as new 263 130
Others 138 456

Total 2054 1981

Table 5: Number and type of errors that the sequence
labeling probe LSTM + Linear + CRF makes with respect
to the POS baseline.

Model Analysis: There is no benefit in using



883

static embeddings (Linear + CRF fastText) vs sim-
ple classic features (simple CRF) for this task.
Comparing the pre-trained representations with the
models that were trained from scratch, we observe
the following: i) For the most powerful model (the
ones with the LSTM layer) the gain of using pre-
trained embeddings is 0.15 and 0.19 in average F1
for Transformer-XL and 0.7 and 0.8 for fastText
(Heads and Spans, respectively). This shows that,
while the embedding size does not have an impact
if embeddings are trained from scratch (similar
results for 1024 and 300 dimensions), the contex-
tualized Transformer-XL representations contain
more useful information for the probing task. ii)
When we look at the less powerful probing models
(without the LSTM), the differences are 0.17 and
0.16 in average F1 for Transformer-XL, and 0.2
and -0.3 for fastText, showing that the LSTM is
necessary to extract any useful information from
the static embeddings. Transformer-XL embed-
dings, on the other hand, already benefit from the
contextualization during pre-training, as we see
similar improvements as those obtained with the
complex model.

The LSTM models do yield better scores over-
all, suggesting that additional contextualization on
the sentence level helps for this task. Collectively,
these results signal that document-level contextu-
alization does help to encode the new/old distinc-
tion, but not as much as one might have expected.
If a model is presented with an entity, determin-
ing its status is not hard, even without contextu-
alization. However, finding an entity in a sen-
tence or discourse is challenging, even for powerful
Transformer-XL representations. This raises the
question of whether pre-trained language models
are able to identify entities in the wild.

6 Conclusions and Future Work

In this paper, we have built two probing models for
the task of identifying the discourse status of enti-
ties as new or old. Our models rely on binary clas-
sification and sequence labeling with input repre-
sentations from a Transformer-XL language model.
Our probes:

• have advanced the findings from previous
work, showing that the discourse knowledge
from pre-trained representations extends to
noun phrases found in naturalistic data;

• have found that the pre-trained representa-

tions tested do encode the old/new informa-
tion within the tokens comprising the entity,
regardless of the context;

• have also found that localizing the entity
within the sentence is difficult, suggesting that
identifying referring discourse entities from
scratch is hard for this pre-trained model;

• last, have demonstrated that LSTMs are able
to further contextualize pre-trained static and
contextualized embeddings alike.

Our findings leave interesting questions for fu-
ture work, in particular, defining what an entity is
and what it looks like. In this sense, one could
imagine a task where a probe is asked to differenti-
ate between referring and non-referring mentions,
a known and hard problem in the context of coref-
erence resolution.

7 Ethical Considerations and Limitations

The models trained in this study are not optimized
to solve specific tasks in the best possible way, but
to gain insights about the underlying representa-
tions and thus the abilities of pre-trained language
models, which are sometimes attributed human like
language-generation abilities. However, all find-
ings are only applicable to the models under in-
vestigation (Transformer-XL and GPT-2) and any
claims are specific to English. Reproducing our
work requires access to the ARRAU corpus, on
which we base all of our experiments.
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Heads Spans

Prec. Rec. F1 Prec. Rec. F1

Probing Transformer-XL
LSTM + Linear + CRF 0.86 0.91 0.89 0.76 0.76 0.76
Linear + CRF 0.84 0.79 0.81 0.61 0.59 0.60

Baselines fastText 300
LSTM + Linear + CRF 0.86 0.89 0.87 0.69 0.68 0.69
Linear + CRF 0.75 0.75 0.75 0.45 0.35 0.39

Table 6: Single-run results from sequence labeling ex-
periments for entity identification without predicting
their status as new or old.
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