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Abstract

We present a corrected version of a previous
projection of the FactBank data set. Previously
published results on FactBank are no longer
valid. We perform experiments on FactBank
using multiple training paradigms, data smooth-
ing techniques, and polarity classifiers. We ar-
gue that f-measure is an important alternative
evaluation metric for factuality. We provide
new state-of-the-art results for four corpora in-
cluding FactBank. We perform an error anal-
ysis on Factbank combined with two similar
corpora.

1 Introduction

The term factuality1 refers to an author’s presenta-
tion of a proposition (who-did-what-to-whom) as a
fact, i.e., she is committed to the truth of the propo-
sition. A lot of language use introduces proposi-
tions that are not presented as facts but as only pos-
sibly true, as a wish or as a hypothesis, or as some-
one else’s belief. If we want to understand what an
author is communicating, we need to distinguish
these cases. Over the last 15 years, this question
has received a lot of attention. Multiple corpora
have been created, and these corpora have been
used to explore machine learning architectures for
factuality prediction. The machine learning studies
often report results on all corpora, but these studies
do not examine what the machine learning architec-
ture can learn, nor how and why combining corpora
can help. A notable exception is Jiang and de Marn-
effe (2021), who carefully analyze what exactly is
learned from the CB corpus. In this paper, our goal
is to determine how to combine corpora in order to
maximize performance, and to understand why the
specific combination of corpora works better than

1The notion of “factuality" is closely related to the notion
of “belief" as used in cognitive science and AI; they differ only
in the case of lying, where the author presents propositions as
facts contrary to what she actually believes. See (Prabhakaran
et al., 2015) for a fuller discussion.

others. We choose a single resource to focus on so
that we can gain insights by performing a careful
study, and we choose FactBank (Saurí and Puste-
jovsky, 2009) because it is one of the first carefully
constructed datasets for factuality prediction. We
show how insights gained from working with Fact-
Bank can be used to improve performance on the
CB corpus (de Marneffe et al., 2019).

There are three main contributions of this work:

(i) The FactBank data is complex. In order to fa-
cilitate NLP research, a machine learning-friendly
projection from FactBank had been previously cre-
ated and widely used. We correct an error in this
projection (this data set will be made available).
The error means that all recent results on FactBank
are not valid.

(ii) We present new state-of-the-art results on the
CB, FactBank, MV, and UW corpora.

(iii) We do an error analysis to show why some of
these corpora perform better when combined.

This paper does not introduce new machine learn-
ing architectures; instead, we show that careful
reexamination of the data can lead to improved per-
formance without the necessity of introducing new,
more complex architectures.

The paper is organized as follows. A survey
of previous work is provided in Section 2. We
summarize the FactBank representation of factual-
ity in Section 3 and present our correction to the
projection from FactBank in Section 4. In Sec-
tion 5, we discuss metrics for evaluating factuality
prediction. The redone experiments from (Jiang
and de Marneffe, 2021) with our corrected projec-
tion are described in Section 6. We then report
on machine learning experiments on three corpora:
FactBank in Section 7, the CB corpus in Section 8,
and the LDC corpus in Section 9. We conclude in
Section 10.
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2 Related Work

Corpora Many corpora explore the notion of
factuality including: FactBank (Saurí and Puste-
jovsky, 2009), LU (Diab et al., 2009), UW (Lee
et al., 2015), LDCCB (LDC) (Prabhakaran et al.,
2015), MEANTIME (MT) (Minard et al., 2016),
MegaVeridicality (MV) (White et al., 2018), UDS-
IH2 (UD2) (Rudinger et al., 2018), Commitment-
Bank (CB) (de Marneffe et al., 2019), and RP (Ross
and Pavlick, 2019). These corpora differ along
several dimensions; we list dimensions which are
salient for this paper.
(1) What type of data is used to build the corpus
and is the data manipulated or not. E.g., MV selects
only 6 syntactic frames and lexically “bleaches"
them. In CB, only sentences with finite clausal
complements are chosen for annotation. In ad-
dition, the matrix predicates must appear in the
entailment cancelling environment, i.e. questions
and negations preceded by a modal and/or in the
antecedent of a conditional. In contrast, FactBank
tags all events introduced in a corpus of complete,
naturally occurring texts.
(2) What is the genre of the underlying texts? For
those corpora which use naturally occurring texts,
FactBank and UW use newswire exclusively. MT
uses Wiki articles. RP uses data from textual infer-
ence corpora. CB uses newswire, fiction and dialog.
UD2 uses weblogs, newsgroups, email, reviews,
and question-answer corpora. LDC is exclusively
discussion forum threads.
(3) The definition of an annotatable event. E.g.,
in MV only past events are taken into considera-
tion; in UD2, both past and present events; UW,
FactBank, CB and LDCCB consider also future
events.
(4) Who are the annotators? FactBank and LD-
CCB used trained annotators, while CB and UW ar-
gue that crowd-sourced judgements collected from
naive annotators are as (or more) valuable.
(5) The annotation scale. Annotations can be nu-
merical values (often derived from averaging naive
annotators’ judgments), typically [-3,3] (CB, UW,
RP or UD2), lexically represented values, such as
[yes, maybe or maybe not, no] in MV, or categorial
labels (FactBank and LDCCB). We discuss these
categorial labels in more detail in Section 3, and
give examples.

Stanovsky et al. (2017) unify the representation
across datasets up to 2017 by mapping the discrete
annotations of factuality in FactBank and MT onto

the continuous scale used in UW. Furthermore, they
also remove the FactBank non-author perspective
annotations since none of the other corpora include
such annotations (FactBank also annotates the be-
liefs of agents mentioned in a sentence, according
to the author). This process will be discussed in
more details in Section 4.

Experiments Early work on event factuality pre-
diction used rule-based systems; for example,
Nairn et al. (2006) propose a recursive polarity
propagation algorithm which uses implication sig-
natures from clause-embedding verbs. Lotan et al.
(2013) predict factuality using implication signa-
tures combined with lexical and dependency tree
features.

Early machine learning work on event factuality
prediction consists of SVMs or other supervised
learning approaches. Diab et al. (2009) and Prab-
hakaran et al. (2010) use SVMs and CRFs along
with lexical and dependency tree features for pre-
dicting author belief, evaluating on f-measure. Lee
et al. (2015) also use an SVM along with lexical
and dependency tree features on the UW corpus
which they created, and evaluate on Pearson corre-
lation and mean average error (MAE), as does all
following work. Stanovsky et al. (2017) use SVMs
combined with the output of the system of Lotan
et al. (2013), and evaluate on Factbank, UW, and
Meantime. Rudinger et al. (2018) use bidirectional
LSTMs with tree or linear architectures and multi-
ple task-specific training setups. Building on that
work, Veyseh et al. (2019) use BERT sentence rep-
resentations combined with a graph convolutional
network that leverages the semantic and syntactic
structure of the sentence, evaluating on Factbank,
UW, Meantime, and UD2. At the time of publica-
tion, their system produced state-of-the-art results
for Pearson correlation on FactBank, UW, Mean-
time, UD2, and state-of-the-art results for MAE
on FactBank, Meantime, and UD2, with Stanovsky
et al. (2017) still having the lowest MAE for UW.
We discuss Jiang and de Marneffe (2021) in more
detail in Section 6.1.

Our work differs from the related work by of-
fering two salient contributions: first, we analyze
specific corpus combinations to help improve on a
specific corpus (FactBank) instead of focusing on
improving all corpora. Second, we perform error
analyses on corpus combinations to determine why
and where factuality corpora can help each other
or why factuality corpora can be incompatible.
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3 Representation of Factuality

As discussed in Section 2, some corpora repre-
sent the factuality judgments using numbers in an
interval, while others use categorial labels with a
defined meaning. The corpus creators determine
that there are several distinct categories that an-
notators can identify. In the examples (all from
FactBank, some simplified), the head of the phrase
which presents the evaluated situation is bolded.
Certain (FactBank label CT): the author commits
to the truth of the presented situation. Note that the
commitment is independent of tense.

(1) A lawsuit in Germany will seek a criminal
prosecution of the Defense Secretary.

Probable (FactBank label PR): the author presents
the situation as probable.

(2) Saddam appeared to accept the treaty.

Possible (FactBank label PS): the author presents
the situation as possible.

(3) He won’t be under control until he is commit-
ted to an institution.

Fully underspecified (FactBank label UU): The
source does not know what is the factual status of
the event, or does not commit to it.

(4) The minister denied the kingdom had notified
its customers.

In addition, FactBank annotates polarity on types
of author belief, i.e., whether the author presents
the situation as factual, or the absence of the situ-
ation as factual. Polarity is only added to the non-
UU values, resulting in a label set containing seven
labels, CT-, PR- PS-, UU, PS+, PR+, CT+. We
discuss our mapping between the categorical labels
and numerical labels in Section 7 (see Table 4).

4 Corrected FactBank Dataset

Label Correction Stanovsky et al. (2017) devel-
oped a projection from the complex FactBank cor-
pus to a CoNLL-formatted file that includes only
factuality judgments by the author, enabling an an-
notation with a single value at the word level. This
data set has been extensively used in NLP experi-
ments (see Section 2). We have found that there is
a systematic error in this FactBank data set projec-
tion. Consider (4) above. FactBank annotates the
denial event as seen as factual by the author (CT+).
The notification event is annotated twice: accord-
ing to the author, the minister sees it as certainly

false (CT-). The author herself does not express her
view of the factuality and her perspective is labeled
UU, as explained in Section 3. The old projection
of the FactBank data set incorrectly picks up the
CT- label. We correct the projection by sticking to
the author’s perspective and supply the UU label.
Table 2 shows the shift in label distribution percent
towards UU as a result of our correction.
Article Split Correction Furthermore, Stanovsky
et al. (2017) do not split by article, meaning that
data from the same article could appear in both
the training and test sets. We re-split the data, this
time assigning all annotations from a single article
to the same split, until we approximate a standard
ratio of 70-20-10 for train-dev-test. With the new
projection of FactBank and article-based split, we
found that when training and testing on FactBank,
there is a 2% decrease in Pearson correlation and
a 10% increase in MAE compared to the previous
projection of FactBank without the article-based
split.

We will make the correct projection of the Fact-
Bank data set available, see Appendix A for details.

5 Evaluation of Factuality Prediction

To date, the category labels in FactBank have been
translated to numbers for training and testing (from
-3 for CT- to +3 for CT+). A regression head pre-
dicts a number, and the results are evaluated with
the Pearson correlation r between the predicted and
gold numbers. The publications to date also pro-
vide MAE (which need not correlate with correla-
tion). We propose an additional evaluation, namely
f-measure on the categories and macro averaged
f-measure.

Usually in NLP, there is no single correct evalu-
ation metric: the best evaluation metric to use de-
pends on the downstream use we want to make of
the module we are evaluating. In some applications,
we need to know the specific level of commitment
of the writer. For example, in argumentation analy-
sis we need to detect claims to which the writer is
fully committed, and when analyzing hedging as a
marker of politeness or power structure, we need
to identify the PR/PS family. But the numerical
evaluation makes the same difference between PR+
and PS+ on the one hand, and PR+ and CT+ or
PS+ and UU on the other hand. F-measure clearly
separates these cases. In this paper, we show re-
sults using correlation, MAE, and the f-measures
(macro-averaged F1 and per-label F1).
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FB-Old (NS) FB-New (NS) FB-New (S) Previous SOTA
Test Set r ↑ MAE↓ r↑ MAE↓ r↑ MAE↓ r↑ MAE↓
CB 0.890 0.617 0.908 0.613 0.906 0.561 0.890 0.617
RP 0.870 0.608 0.856 0.630 0.861 0.642 0.870 0.608
MV 0.857 0.533 0.867 0.498 0.886 0.483 0.876 0.501
MT 0.491 0.319 0.456 0.311 0.553 0.281 0.702 0.204
UW 0.865 0.351 0.879 0.366 0.874 0.348 0.868 0.349
UDSIH2 0.853 0.766 0.855 0.763 0.857 0.758 0.909 0.726
FB-New - - 0.858 0.359 0.866 0.330 - -

Table 1: Results on multi-task training with no smoothing (NS), smoothing (S), and the new projection of FactBank
(FB-New); a dark shaded cell indicates the best published result to date in this table; light shading means an
improvement over FB-Old (NS). Results for all corpora except RP show improvement. All other state of the art
results for non-shaded cells are held by Jiang and de Marneffe (2021) or Veyseh et al. (2019).

CT+ PR+ PS+ UU PS- PR- CT-
Old 75.3 3.1 2.2 14.5 0.1 0.6 4.2
Corrected 57.1 1.1 1.1 38.3 0.1 0.1 2.2

Table 2: Distribution of each FactBank annotation label
in the old and corrected CoNLL-formatted data set

6 Evaluation on All Corpora

6.1 Redoing (Jiang and de Marneffe, 2021)

Jiang and de Marneffe (2021) provide state-of-the-
art results for many of the corpora discussed in Sec-
tion 2 using a simple architecture. In this section,
we redo their experiments with the updated Fact-
Bank data set. Specifically, we redo the multi-task
learning experiments using the same underlying
architecture (the SelfAttentiveSpanExtractor devel-
oped by Gardner et al. (2018)) and the same train-
ing parameters as Jiang and de Marneffe (2021).
This training paradigm allows all corpora to share
the same BERT parameters, but with each cor-
pus having a regression head with corpus-specific
parameters. The authors find that fine-tuning on
BERT-large performs best. However, with the cor-
rected FactBank dataset, we find that RoBERTa-
large outperforms BERT-large, and we therefore
use it for our experiments. For each experiment,
we do three runs with different seeds and report
the average for Pearson correlation and MAE, and
for most experiments we also provide the standard
deviation.

Table 1 shows results with the old and corrected
data sets. We replicate the results from Jiang and
de Marneffe (2021) using the faulty dataset used
in previous experiments (columns FB-Old (NS)).
For our corrected dataset (columns FB-New (NS)),

results for all test sets other than RP improve, pre-
sumably because the FactBank data is now more in
line with the other corpora. Note that none of the
results in this paper for FactBank are comparable
to any previously published results because of the
errors in the FactBank data set used to date (see
Section 4), which means that the FactBank test set
has also changed.

6.2 Addressing Imbalances in Corpora

One problem with all corpora in this study, includ-
ing FactBank, is the inequality in the label distribu-
tion, with a majority of CT+ (3.0) and UU (0.0) as
shown in Table 2 (this effect holds in all corpora,
including those with purely numerical labels). We
address this issue by performing label distribution
smoothing and modifying the loss function to a
weighted SmoothL1 loss.

Yang et al. (2021) provide methods to address
class imbalance problems in a continuous setting
using label distribution smoothing and feature dis-
tribution smoothing, which directly applies to our
regression task. We apply their method of label
distribution smoothing (LDS) to our datasets by us-
ing kernel density estimation to learn the effective
label density in our dataset. We then re-weight the
SmoothL1 loss function by multiplying it by the
inverse of the effective label densities learned. This
method improves on all of our tasks, so we per-
form all of our regression experiments using LDS
unless otherwise noted. Results for redoing Jiang
and de Marneffe (2021) experiments with LDS are
shown in Table 1 (columns FB-New (S)). We see
an improvement compared to no LDS (columns
FB-New (NS)) for all corpora on both metrics (cor-
relation and MAE), except for correlation on CB
and UW.
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Single r↑ MAE↓ r↑ MAE↓
FB 0.872±0.002 0.276±0.004 0.872±0.002 0.276±0.004

Shared MTL
FB+CB 0.876±0.011 0.293±0.029 0.873±0.008 0.292±0.015

FB+MV 0.874±0.000 0.289±0.028 0.885±0.005 0.274±0.034

FB+RP 0.871±0.005 0.293±0.013 0.879±0.005 0.311±0.009

FB+MT 0.864±0.010 0.284±0.011 0.875±0.007 0.334±0.039

FB+UD2 0.818±0.023 0.386±0.037 0.867±0.007 0.360±0.009

FB+LDC 0.802±0.075 0.343±0.066 0.868±0.010 0.329±0.039

FB+UW 0.741±0.034 0.717±0.080 0.873±0.007 0.289±0.023

FB+CB+MV 0.881±0.001 0.278±0.005 - -
FB+CB+MV+RP 0.873±0.007 0.316±0.005 - -
FB+MV+RP - - 0.879±0.011 0.305±0.022

Table 3: Results for our regression experiments on FactBank. Single results show FactBank trained and tested on
itself. The Shared and MTL columns show Pearson r and MAE on the two training paradigms respectively. A
shaded cell indicates the best performing combination; light means only a slight improvement.

7 Experiments on FactBank

In this section, we evaluate exclusively on Fact-
Bank (using our new FactBank dataset described
in Section 4).

Our goal is to provide the best results on Fact-
Bank. For all experiments reported in this sec-
tion, we follow the same setup as Section 6, ex-
cept that we train two models per setup, one for
regression which we evaluate numerically (r and
MAE), and one for classification which we evalu-
ate using F1. In classification, we collapse Fact-
Bank labels PR and PS (probable and possible),
as they are rare, and their distinction is less im-
portant. Table 4 shows the mappings of the con-
tinuous labels to discrete labels with the corre-
sponding factuality values (in FactBank terms).

Range Label
[-3.0, -2.5] CT-
(-2.5, -0.5] PR-
(-0.5, 0.5) UU
[0.5, 2.5) PR+
[2.5, 3.0] CT+

Table 4: Mappings
for our classification
model.

Following Jiang and
de Marneffe (2021), we
perform our training in
two ways: Shared, where
we combine the corpora’s
training data together and
test on Factbank; and
multi-task learning (MTL),
where corpora share the
same RoBERTa-large
parameters, but we have
a corpus-specific regres-

sion or classification head for FactBank. All
experiments are performed three times with
different seeds, and we report the average and
standard deviation. For further information on the

experimental setup, see Appendix B.

7.1 Regression Experiments

We perform corpus combinations of FactBank with
each of the other corpora, and evaluate on Pearson
correlation and MAE. We then do a greedy search
with the top performing corpus combinations: we
take our best performing system and add the corpus
which performs next best in the 2-way combination
with FactBank. If adding another corpus does not
yield an improvement, we stop our search. All
results for both the Shared and MTL experiments
are shown in Table 3.

Shared: FactBank combined with CB and Fact-
Bank combined with MV yield improvements in
correlation, but not in MAE. In our greedy search,
we combine FactBank with both CB and MV. Fact-
Bank combined with CB and MV performs the best
on correlation achieving a result of 0.881. However,
this corpus combination results in a slightly higher
MAE compared to baseline FactBank only. We
then add RP, but FB+CB+MV+RP performs worse
and we end our greedy search. The worst perform-
ing corpus combination on FactBank is FB+UW,
resulting in the lowest correlation and also a very
high MAE. This is because of article overlap in
FactBank and UW with different annotation labels
as shown in Lee et al. (2015), leading to a diver-
gence.

MTL: The top performing result on FactBank
is with MTL on FB+MV, with a Pearson correla-
tion of 0.885 and MAE of 0.274. Each corpus
combination besides FB+UD2 results in an im-
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provement over baseline FactBank. MTL improves
on the worst performing corpus combinations in
the Shared paradigm (FB+UW and FB+UD2): the
FactBank specific corpus head in the model is op-
timized for FactBank, and therefore addresses the
lack of performance caused by treating all corpora
as one. We perform a greedy search by adding
RP to our top performing MTL combination of
FB+MV. The correlation is higher than FactBank
Single, but not higher than the FB+MV combina-
tion, so we stop our greedy search.

7.2 Classification Experiments

We perform all classification experiments with the
same hyperparameters and training architecture as
our regression experiments, but with a classifica-
tion head instead of a regression head. We mention
more details about this in Appendix B. Even after
collapsing PR±/PS± labels, PR±/PS± are a mi-
nority class in our classification experiments. We
address the label imbalance in our classification
models by using focal loss (Lin et al., 2017), which
has been shown to perform well on imbalanced
classification tasks compared to cross-entropy loss.
Using the focal loss function allows our model to
focus on the harder to classify PR±/PS± exam-
ples. All results for both the Shared and MTL
experiments are shown in Table 5.

Shared: The largest increase is achieved by com-
bining FactBank with CB, with a major boost in
macro-average and in the per label F1 of the minor-
ity labels PR± because CB introduces many new
PR± labels. The only other corpus that achieves
an increase on FactBank is RP, which specifically
helps in the UU and CT+ labels. All other corpora
do not help, notably UD2 and UW, which result
in a massive decrease. Some per-label F1s are 0
for FB+LDC. The LDC corpus does not contain
polarity, and therefore has no labels in the CT- and
PR- categories. We perform a greedy search on
our top performing corpora combinations, adding
RP to FB+CB, but do not improve, so we stop our
greedy search.

MTL: Again, CB helps the most, with the high-
est macro-average on FactBank in our 5-way sys-
tem, specifically helping with the minority classes
PR- and PR+. MT, UW, and MV also provide a
boost. The previous poor performance of UW is
fixed by training in a MTL setting. All other cor-
pora decrease performance on FactBank. UD2 per-
forms poorly, but slightly better than in the shared

setting. We perform a greedy search and stop after
adding MT to yield FB+CB+MT, which does not
improve on our top combination of FB+CB.

7.3 End-to-end Evaluation
One advantage of the F1 evaluation is that we can
provide a single end-to-end evaluation on data with-
out gold heads. All experiments reported in the lit-
erature using r and MAE assume a gold head, since
otherwise these measures cannot be computed. We
introduce a “Not-Head" tag (O) for all words that
are not heads and train a model on all words in the
data set, not just the heads. We repeat the experi-
ments with the same architecture and setup as the
previous classification experiments. The results are
shown in Table 6, and as expected, the F1s for each
class decrease, but not dramatically. The F1 for
detecting that a word is a head is 0.888; whether
a noun is an event is context-dependent (e.g., con-
struction) and can be hard to determine. Since the
head-identification task is not trivial, we argue that
an evaluation on F1 is therefore important and can
offer broader insights into the factuality-prediction
task.

7.4 Factoring Polarity
Polarity is often expressed independently of the de-
gree of factuality, as illustrated in this constructed
example: Sudeep {probably/maybe/∅} {came/did
not come} to dinner. Here, the first set of curly
brackets lists three options for factuality, and the
second set of curly brackets determines polarity.
All six combinations are plausible sentences, deter-
mining six different FactBank labels for the coming
event. Of course, some lexical items precisely en-
code a combination of polarity and factivity level
(such as deny in (4)).

We train a polarity classifier on the same train-
ing data, but this time we label all negative data
(CT-, PR-, PS-) as a new label NEG, the neutral
data remains UU, and the positive data (PS+, PR+,
CT+) as POS. The classifier performs with per-
label F1-measure of 0.907 (Neg), 0.824 (UU), and
0.940 (Pos). We then create a combined system
with our polarity classifier and our 5-way classifica-
tion system where the polarity classifier assigns the
polarity of the head, and the classification system
predicts the strength. Our results for this system on
FactBank are shown in Table 7.

On our FactBank-only system, the polarity clas-
sifier results in a 28% error reduction on macro-
average, while also stabilizing results by lower-
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Single Macro-F1 CT- PR- UU PR+ CT+ Macro-F1 CT- PR- UU PR+ CT+
FB 0.701±0.076 0.863 0.222 0.893 0.593 0.935 0.701±0.076 0.863 0.222 0.893 0.593 0.935

Shared MTL
FB+CB 0.790±0.053 0.863 0.611 0.885 0.662 0.932 0.800±0.017 0.851 0.667 0.880 0.677 0.930
FB+RP 0.717±0.089 0.843 0.444 0.889 0.475 0.936 0.655±0.009 0.874 0.000 0.888 0.581 0.933
FB+MT 0.703±0.088 0.852 0.222 0.894 0.614 0.936 0.749±0.088 0.861 0.389 0.895 0.668 0.937
FB+MV 0.679±0.1200 0.833 0.222 0.883 0.530 0.931 0.705±0.064 0.818 0.222 0.880 0.680 0.930
FB+LDC 0.631±0.027 0.759 0.000 0.887 0.580 0.930 0.664±0.010 0.847 0.000 0.886 0.657 0.932
FB+UD2 0.566±0.026 0.690 0.060 0.864 0.292 0.923 0.624±0.000 0.846 0.000 0.883 0.462 0.929
FB+UW 0.546±0.015 0.797 0.122 0.705 0.212 0.894 0.744±0.084 0.866 0.444 0.879 0.601 0.930
FB+CB+MT - - - - - - 0.693±0.051 0.867 0.222 0.891 0.551 0.935
FB+CB+RP 0.704±0.076 0.855 0.355 0.888 0.489 0.934 - - - - - -

Table 5: Results for our classification experiments on FactBank. The topmost results show FactBank trained and
tested on itself as a baseline. The Shared and MTL columns show F1 and per-label F1 on the two training paradigms
respectively. A shaded cell indicates the best performing combination; light means only a slight improvement.

Macro-F1 CT- PR- UU PR+ CT+ O
0.727 0.519 0.667 0.735 0.714 0.767 0.961

Table 6: Results for our end-to-end classification system
on FactBank+CB.

Train NoPC Macro-F1 PC Macro-F1 ER%
FB 0.701±0.077 0.786±0.003 28
FB+LDC 0.665±0.011 0.776±0.017 33

Table 7: Results on macro-average for our polarity clas-
sifier jointly combined with our 5-way classifier for
without polarity (NoPC Macro-F1), with polarity (PC
Macro-F1), and error reduction (ER).

ing standard deviation. The polarity classifier also
helps other combinations. Our highest error re-
duction is for FB+LDC, presumably because LDC
does not contain polarity annotations. We achieve
a 33% error reduction in MTL training and 29%
error reduction in Shared training; on regression,
we also achieve an error reduction of 33%. There
is also a moderate error reduction in classification
for FB+UW (19% in Shared training and 11% in
MTL training) and FB+UD2 (16% in Shared train-
ing and 10% in MTL training). For MV, we only
get an error reduction in the MTL training setting
of 10%. However, we do not obtain error reduc-
tions using this technique for our best performing
combinations.

7.5 Why Does CB Help FactBank?

FactBank is all newswire, and CB also contains
newswire. This does not fully explain why CB
helps with FactBank. To further examine the is-
sue, we consider two models, the model trained

only on FactBank (FB) and the MTL classification
model trained on FactBank and CB (FB+CB). We
perform an error analysis on the data points in the
FactBank dev set on which the two models make
different predictions. Our goal is to determine how
using the CB corpus helps. The results are in Ta-
ble 8. We use the following categories; the first
five are morpho-syntactic. Noun means that the
target is a noun designating an event not tagged
UU in FactBank; Noun-UU is a noun which is
tagged UU. Main refers to heads that are main
clause verbs or verbs in adjunct clauses to the main
verb; these are typically easy cases. Embedded
refers to targets which are in complement clauses
below a main clause verb; the factuality status is
typically determined or strongly affected by the
main clause verb. Relclause refers to heads which
are in relative clauses. Hypo are hypothetical sit-
uations. Idiom groups together various cases of
idiomatic language use, either multiword expres-
sions or idiomatic usages of lexical items. Misc
groups together various other syntactic and seman-
tic special cases.

We observe that 10% of all errors are gold er-
rors (i.e. errors in the original annotation), and
furthermore, that FB makes more errors in total
than FB+CB, since FB+CB performs better. (The
percentages do not sum to 100% in each row since
some errors are made by both models.) Recall
that CB annotates only verbs in embedded clauses.
We therefore expect the FB+CB model to perform
poorly on main clause verbs (Main) and nouns,
which is borne out. The exception is nouns labeled
UU, since the FB+CB model appears to label most
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Type Nb FB FB+CB Gold
Noun 23 22% 70% 9%
Noun-UU 4 100% 0% 0%
Main 3 0% 100% 0%
Embedded 17 65% 24% 18%
Rel clause 9 78% 22% 0%
Hypo 4 100% 0% 0%
Idiom 6 67% 17% 17%
Misc 16 69% 44% 13%
Total 82 56% 40% 10%

Table 8: Error analysis on differences between
FactBank-only model and FB+CB model; percentages
refer to portion of all the errors of that type made by the
two systems and Gold; percentages in one row can sum
to more than 100% because the same error can be made
by both systems, or by a system and Gold

nouns as UU by default, thus getting UU nouns
correct by accident. The Misc error category is
balanced between the two models, and in all other
models FB+CB performs better. The biggest such
category is Embedded, which is precisely what
CB annotates, and for which the FB+CB model
has far fewer errors than the FactBank model alone
(24% of 17 errors against 65%). The error analy-
sis thus shows that by adding CB to the multi-task
training, the resulting model has learned what CB
is designed to provide information on (embedded
verbs), but suffers from the lack of representative
data distribution in CB and increases errors for cat-
egories that CB does not not annotate (main verbs,
nouns).

The results of the error analysis suggest another
type of system: we use the FactBank-only system
for noun heads, and the FB+CB system for verb
heads (the number of main verb errors is small,
so we do not worry about syntax). We implement
this system using the Spacy POS-tagger (Honni-
bal and Montani, 2017), and using the previously
trained models. If the Spacy POS-tagger tags a
head as a noun, we use the FactBank-only system;
otherwise we use the FB+CB system. The results
are shown in Table 9. We see that this strategy
provides us with the best result for 5-way classi-
fication, decreasing macro-average error by 12%
and improving on the CT-, UU, and PR+ labels.
We also note that this system has the smallest stan-
dard deviation among all models that perform at
baseline or above, suggesting that the system is con-
sistent in its behavior. We also perform this method
on FB+CB in regression, and obtain an increase

in Pearson correlation over the results in Table 3
from 0.876 to 0.888 (error reduction of 10%) and a
slight decrease in MAE from 0.293 to 0.286 (error
reduction of 2%).

Macro-F1 CT- PR- UU PR+ CT+
FB+CB 0.800±0.017 0.851 0.667 0.880 0.677 0.930
FB+CB’ 0.824±0.006 0.873 0.667 0.887 0.765 0.930

Table 9: Results on FactBank using FB+CB as a base-
line and FB+CB with a POS switch (FB+CB’). We
show macro-average (Macro-F1) and per-label F1 per-
formance. Shaded cells indicate improvements.

7.6 Summary on Experimental Findings

Regression Experiments Our first insight is that
the new projection of FactBank helps on all corpora
as shown in Table 1 because this projection makes
more sense for a system to learn. On our FactBank
focused-experiments, we find that the CB corpus
helps FactBank the most in Shared, while the MV
corpus helps FactBank the most in MTL as shown
in Table 3.

Classification Experiments We find that CB
helps FactBank in both the Shared and the MTL set-
ting, outperforming all other corpus combinations
as shown in Table 5. Furthermore, we find that
our best results (FB+CB) can be further improved
by using a POS-based system and we see improve-
ment on all metrics as shown in Table 9. Finally,
we find that an end-to-end system has predictably
lower performance on f-measure as shown in Ta-
ble 6, while offering the advantage of not assuming
gold heads.

8 Testing on CB

We have seen that the corpora that most help
FactBank are CB and MV. Can FactBank and
MV help CB? In Section 6, we trained on
all corpora (following the lead of Jiang and
de Marneffe (2021)). Here, we train on only
CB, FactBank, and MV, and evaluate on CB.

Train r MAE
FB+CB 0.885 0.602
FB+CB+MV 0.913 0.536

Table 10: MTL training on
CB, FactBank, testing on
CB test set

The results are shown
in Table 10 for CB us-
ing multi-task learn-
ing; similar experi-
ments testing on MV
did not yield im-
provements over our
new state-of-the-art

results in Table 1. When training on FB+CB, we
do not improve on Pearson correlation but slightly
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improve on MAE compared to previous CB results.
However, when training on FB+CB+MV MTL, we
achieve state-of-the-art results on CB in both Pear-
son correlation and MAE, providing a 21% error
reduction on both measures (coincidentally) over
the state-of-the-art prior to this paper.

9 Testing on LDC

Experiments We perform a separate set of
experiments with the LDCCB corpus (LDC)
(Prabhakaran et al., 2015) and FactBank on
LDC. We choose the LDC corpus because it
is similar to FactBank with reference to the
annotation goals and the use of expert anno-
tators. One major difference, however, is
genre. LDC consists of discussion forum posts
with many typos and fragmentary language,
while FactBank consists entirely of newswire.

Train r MAE
LDC 0.822 0.361
FB 0.616 0.630

Table 11: Results on
LDC corpus test-set
trained on LDC and
trained on FactBank
(FB).

We carefully examine
this combination and
show why some factu-
ality corpora, even if
they have similar anno-
tation goals and annota-
tors, may be incompat-
ible. Using the same
system and experimen-
tal setup as Appendix B,
we perform two experi-

ments: first, we train on LDC and test on LDC,
and second, we train on FactBank and test on
LDC. Table 11 shows results for these two experi-
ments respectively. We see that FactBank performs
very poorly on LDC, highlighting a potential in-
compatibility and mirroring our results training
on FB+LDC in Table 3 and testing on FactBank,
where LDC was among the worst performers.

Type %
Main 3
Embedded 12
Hypo 11
Unclear 13
Misc 11
Gold 50
Total number 100

Table 12: Error
analysis on FactBank
system prediction on
LDC

Error Analysis We per-
form an error analysis
on the application of the
FactBank-only model on
LDC, choosing 100 errors
randomly. We list the per-
centage of errors in each
category. We use the same
categories as in Section 7.5,
though there are no errors
on nouns, and we add the
category Unclear which
includes fragments, typos,
grammar and spelling er-

rors which are the effect of unedited text. First,
the gold standard errors are strikingly high: out of
100 examples, 5 heads were labeled in error in gold,
and 45 of the remaining examples are mislabeled in
the gold standard. We assume that this percentage
is not representative of the corpus, since these are
the difficult cases, but it also may be that annota-
tion is harder on informal domains. As expected
for a model trained on edited newswire, Unclear
is the top error category. Ignoring Misc, the next
biggest error categories are Embedded and Hypo.
We already saw this weakness in the FactBank-only
model on hypotheticals in Table 8. In conclusion,
the error analysis shows the importance of genre
(Unclear errors), and the continued weakness of
FactBank-trained models for hypotheticals and em-
bedded clauses.

10 Conclusion

After correcting an error in a widely used data set
derived from FactBank, we report new best results
on four corpora: FactBank (Table 3), CB (Table 10),
MegaVeridicality (Table 1), and UW (Table 1). We
also provide f-measure evaluation, and extend this
to a true end-to-end evaluation, the first in the liter-
ature. Finally, we show that by combining compat-
ible corpora (FactBank, CB, MV), we can achieve
improvements in performance on FactBank and
CB, and that the improvements on FactBank are
precisely as expected given how CB was created.

Given the targeted help CB can provide on Fact-
Bank predictions for embedded clauses, and given
the current weakness on hypotheticals in FactBank,
we suggest a new targeted annotation of factivity
on sentences in hypothetical contexts.
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A Distribution of New Data Set

We intend to distribute the corrected FactBank data
set. We have included the training portion in this
submission for reviewers to inspect, but we can-
not distribute it for copyright reasons. Instead, we
will provide a Python script which will produce
the files submitted with this paper from the orig-
inal FactBank files. These files can be obtained
by researchers from the Linguistic Data Consor-
tium, catalog number LDC2009T23. The entire
corpus contains 9,740 annotated data points, split
by article.

B Details on Experiments

We used a standard fine-tuning approach on exist-
ing BERT-large and RoBERTa large models with
333,843,458 and 355,623,938 paramaters respec-
tively. For computing, we used our employer’s
GPU cluster. Compute jobs were typically about
25 minutes on average and ran on a single Tesla
V100-SXM2 GPU. We did not do any hyperparam-
eter search or hyperparameter tuning. We followed
the same training parameters as Jiang and de Marn-
effe (2021), where we fine-tuned our model for at
most 20 epochs with a learning rate of 1e-5. Early
stopping was used if the difference between Pear-
son r and MAE did not increase, or if macro F1
did not increase. All metrics for experiments were
averaged over three runs using fixed seeds (7, 21,
and 42) which we will share with our code. We
have also noted where testing for statistical signifi-
cance of results was performed and have provided
standard deviations for our results. To fine-tune the
models and run experiments, we used the. jiant-v1-
legacy library (Wang et al., 2019) and the imple-
mentation of Jiang and de Marneffe (2021) which
uses jiant-v1-legacy. We added the classification
module for the Jiang implementation and will make
that available. All evaluation was performed by the
jiant-v1-legacy library. All pre-processing scripts
will be made available.


