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Abstract

Target-oriented multimodal sentiment classi-
fication (TMSC) is a new subtask of aspect-
based sentiment analysis, which aims to de-
termine the sentiment polarity of the opinion
target mentioned in a (sentence, image) pair.
Recently, dominant works employ the attention
mechanism to capture the corresponding visual
representations of the opinion target, and then
aggregate them as evidence to make sentiment
predictions. However, they still suffer from two
problems: (1) The granularity of the opinion
target in two modalities is inconsistent, which
causes visual attention sometimes fail to cap-
ture the corresponding visual representations
of the target; (2) Even though it is captured,
there are still significant differences between
the visual representations expressing the same
mood, which brings great difficulty to senti-
ment prediction. To this end, we propose a
novel Knowledge-enhanced Framework (KEF)
in this paper, which can successfully exploit
adjective-noun pairs extracted from the image
to improve the visual attention capability and
sentiment prediction capability of the TMSC
task. Extensive experimental results show that
our framework consistently outperforms state-
of-the-art works on two public datasets.

1 Introduction

Target-oriented multimodal sentiment classification
(TMSC) is a new sub-task of aspect-based senti-
ment analysis (Pang et al., 2008; Liu, 2012; Pontiki
et al., 2014), which aims to predict the sentiment
polarity of the opinion target mentioned in a pair
of sentence and image. The assumption behind this
task is that the image information can help the text
content identify the sentiment of the opinion tar-
get. Fig. 1(a) and Fig. 1(b) show two representative
examples. It is hard to detect the sentiment of the
opinion target (i.e., “Vince Gilligan” or “Sammy”)
only depending on informal sentences, but the vi-
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Figure 1: Two examples of Target-Oriented Multimodal
Sentiment Classification (TMSC). Opinion targets and
their corresponding sentiment polarities are highlighted
in the sentence. The red bounding box denotes the visual
clues that the opinion target focuses on.

sual content (i.e., smiling face) associated with the
target can clearly reflect its sentiment polarity.

From the above examples, we can conclude that
aligning the opinion target of two modalities and
capturing helpful visual sentiment features play a
critical role in the TMSC task. Given its impor-
tance, dominant works employ the attention mech-
anism (Bahdanau et al., 2015) to automatically
learn alignment of text and image, and then aggre-
gate the captured the visual representations of the
opinion target as auxiliary evidence to make senti-
ment predictions (Xu et al., 2019b; Yu et al., 2019;
Yu and Jiang, 2019; Zhou et al., 2021; Zhang et al.,
2021; Wang et al., 2021).

Despite achieving some improvements, the afore-
mentioned methods still suffer from two key prob-
lems: (i). These methods easily fail to align two
modalities because of the granularity gap of opin-
ion target across text and image. Specifically, the
opinion target appearing in the image often refers
to a coarse-grained object concept (e.g., the man
in Fig. 1(a)), while corresponding opinion target in
the sentence are usually a fine-grained entity (e.g.,



6785

the man’s name 1 “Vince Gilligan”). The inconsis-
tency of target granularity causes visual attention
sometimes fail to capture the corresponding visual
representations. (ii). Even though it is captured,
diversified visual representations expressing the
same mood also bring challenges for sentiment pre-
diction. Take Fig.1(c) and Fig.1(d) as an example,
the opinion target “Vince Gilligan” and “Sammy”
separately focus on the coarse-grained object con-
cepts man and girl in the image, and from their
facial expressions we can tell that they are smiling,
but the angle and magnitude of the smile are quite
different. The variety of visual representations in-
evitably leads to its sparsity, which makes it hard to
learn the accurate mapping function between visual
representations and sentiment labels.

In this work, we provide a new idea to tackle
the above problems, i.e., exploiting adjective-noun
pairs (ANPs) (Borth et al., 2013) extracted from
images (e.g., “nice clouds”, “bad car”, “happy
man”, “clear sky” and “dry grass” in Fig. 2(a)).
For the first issue, we observed that the nouns of
ANPs are also coarse-grained concepts, so an in-
tuitive idea is to map a fine-grained opinion target
(e.g. "Vince Gilligan") to a coarse-grained noun
(e.g. "man"2) in ANPs. In this manner, it is eas-
ier to bridge the granularity gap of two modalities
and align text and image. For the second issue, we
observed that ANPs can usually extract the same
adjectives from different visual content expressing
the same mood, so an intuitive idea is to map di-
versified visual representations (e.g., smiling faces)
to the same adjective (e.g., “happy”3). Apparently,
it is easier to learn the mapping function between
these same adjectives and sentiment labels.

To facilitate the TMSC task with ANPs, we
propose a novel Knowledge-enhanced Framework
(KEF), which consists of two components: Visual
Attention Enhancer and Sentiment Prediction En-
hancer. Specifically, the former first finds the noun
most related to the opinion target from ANPs with
our designed mapping method, and then uses it
to improve the effectiveness of visual attention.
The latter aims to build the connection between
the adjective and target-relevant visual represen-
tations, and then utilizes it as the complementary

1There are respectively 38.4% and 48.5% of opinion tar-
gets are different names of people in TWITTER-15 and
TWITTER-17 datasets.

2Fig. 2(a) extracts the noun “man” from the image.
3Fig. 2(a) and Fig. 2(b) both extract same adjective “happy”

from different smiling faces, this phenomenon is common.
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Figure 2: Extract Top-5 adjective-noun pairs (ANPs)
from each image in our Twitter datasets.

information of visual representations to reduce the
difficulty of predicting sentiment labels.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to propose leveraging adjective-noun pairs
(ANPs) extracted from the image to help align
text and image in the TMSC task.

• We propose a novel Knowledge-enhanced
Framework (KEF), which contains a Visual
Attention Enhancer to improve the effective-
ness of visual attention, and a Sentiment Pre-
diction Enhancer to reduce the difficulty of
sentiment prediction.

• The KEF framework has good compatibility
and is easily extended to existing attention-
based models. In this work, we apply it to two
latest TMSC models: SaliencyBERT (Wang
et al., 2021) and TomBERT (Yu and Jiang,
2019). Experimental results on two public
datasets prove the validity of our framework.

2 Notations and Preliminaries

In this section, we first present the task formaliza-
tion, and then give brief introductions to adjective-
noun pairs (Borth et al., 2013).

2.1 Task Formalization
We are given a set of multimodal samples D. For
each sample c ∈ D, it contains a review sentence
S with n words (w1, w2, · · · , wn), an associated
image I , as well as an opinion target T (refers to
a span in sentence S). Our goal is to predict the
sentiment label y of each opinion target mentioned
in a pair of sentence and image, where y can be
either positive, negative, or neutral.

2.2 Adjective-Noun Pairs
We extract the adjective-noun pairs (ANPs) from
each image in our Twitter datasets to serve as an ex-
ternal knowledge base, where nouns denote coarse-
grained object concepts in the image, and adjectives
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Transfer
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Figure 3: The overview of our KEF framework.

are modifiers of nouns. As shown in Fig. 2, we use
SentiBank toolkit4 to extract 1200 ANPs and select
the Top-55 ANPs as the visual semantic informa-
tion of each image, in which each pair contains an
adjective word Ai and a noun word Ni:

ANP = (Ai, Ni), (1)

Considering that adjectives and nouns in ANPs
contain different semantics, i.e., the nouns mainly
involve information about the opinion target, while
the adjectives usually contain sentiment informa-
tion. Thus, it is more appropriate and reasonable
to encode them separately. For example, the BERT
input for adjectives and nouns is given in Figure 3.
We feed them to a pre-trained model BERT (Devlin
et al., 2019) to obtain the hidden representations:

HA = BERT(A), (2)

HN = BERT(N), (3)

where HA ∈ R(2l+1)×d and HN ∈ R(2l+1)×d sepa-
rately denote the adjective representations and noun
representations, d indicates the hidden dimension,
and l means the length of ANPs.

4ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
5we will give the reason why the Top-5 ANPs are extracted

from each image in the Section 5.3.

3 Knowledge-enhanced Framework

In this section, we will describe how to inte-
grate Knowledge-enhanced Framework (KEF) into
TomBERT (Yu and Jiang, 2019) and Saliency-
BERT (Wang et al., 2021), which both achieve
satisfying performance and thus are chosen as the
foundation of our work.

3.1 Overview

Figure 3 shows the overall architecture of KEF,
which contains two components: Visual Atten-
tion Enhancer and Sentiment Prediction Enhancer.
Concretely, we first abstract a general attention ar-
chitecture based on the well-designed TomBERT
and SaliencyBERT models. Then, with the help
of ANPs, we successively present a Visual Atten-
tion Enhancer and a Sentiment Prediction Enhancer.
The former aims to improve the effectiveness of
visual attention through a mapping method and a
reconstruction loss, and the latter introduces a sim-
ple yet effective transformation approach to reduce
the difficulty of predicting sentiment labels.

3.2 General Attention Architecture

Given an input sentence S, we first split S into
two sub-sentences: the opinion target T and

ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
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the remaining context6 C, and then separately
feed them to pre-trained BERT to obtain the
hidden representations:HC = BERT(C), HT =
BERT(T ), where HC ∈ Rn×d and HT ∈ Rt×d

denote the text representations and target represen-
tations, d is the hidden dimension, n and t are the
length of C and the target T .

Similarly, for the associated image I , we adopt
one of the state-of-the-art image recognition mod-
els ResNet-152 (res5c) (He et al., 2016) to obtain
the output of the last convolutional layer:

ResNet(I) = {rj |rj ∈ R2048, j = 1, 2, ..., 49},
(4)

which splits the original image into 7 × 7 = 49
regions and each region is represented by a 2048-
dimensional vector rj . Next, we use a linear func-
tion to project the visual features to the same space
of textual features: HV = WvResNet(I), where
Wv ∈ Rd×2048 is the learnable parameter.

After that, we employ a cross-attention block to
capture target-aware visual representation HT→V

and target-aware text representation HT→C :

HT→V = Cross-ATT(HT , HV ), (5)

HT→C = Cross-ATT(HT , HC), (6)

where Cross-ATT(·) denotes the cross-modal multi-
head attention as (Tsai et al., 2019). Then, we
concatenate HT→C and HT→V together and fur-
ther stack the attention block on top to obtain the
multimodal output representation H .

Finally, we feed the first token H0 of the mul-
timodal representation to a softmax layer for the
sentiment classification:

p(y|H0) = softmax(W⊤
MH0), (7)

where WM ∈ Rd×3 is the weight matrix.
To optimize all the parameters, the objective is to

minimize the standard cross-entropy loss function:

Lt = − 1

|D|

|D|∑
i=1

logp(yi|H0). (8)

3.3 Visual Attention Enhancer
As mentioned before, the target appearing in the
image is a coarse-grained concept, while the target
mentioned in the sentence is a fine-grained concept,
the inconsistency of target granularity causes visual
attention in Eq. 5 sometimes fail to capture the
corresponding visual representations of the target.

6we replace the opinion target with $T$ in the context.

Basic Intuition. Apparently, the nouns extracted
from the image are also coarse-grained concepts,
so an intuitive idea is to map a fine-grained opin-
ion target to a coarse-grained noun, and then use
it as a bridge to capture the coarse-grained visual
representations. However, most of the nouns ex-
tracted from the image are target-independent, so
we cannot use them directly.

Mapping Method. To tackle the above challenge,
we first measure the strength of target-noun rele-
vance by calculating the semantic similarity be-
tween noun representation and target representa-
tions in the embedding space:

αi = cos(HT , H
i
N ), (9)

where H i
N denotes single noun representation of

HN in Eq. 3, cos(·) is a cosine function and αi

means the similarity score.
Based on the largest similarity score, we can find

the most relevant noun to the opinion target:

αm =
l

max
i=1

(αi), (10)

where l denotes the length of ANPs and Hm
N indi-

cates the noun representation corresponding to the
highest similarity score αm.

Next, we aggregate them together as complemen-
tary information for the opinion target to capture
the corresponding visual representations HT→V .
Formally, we update HT in Eq. 5 by:

H̃N = αmHm
N , (11)

HT = HT + λNH̃N , (12)

where λN is a hyperparameter that controls the
importance of H̃N and can be adjusted.

Reconstruction Loss. To ensure that visual atten-
tion can capture the visual features associated with
the opinion target more accurately, we also devise
a reconstruction loss to minimize the divergence
between target-relevant noun representations and
target-aware visual representations. Formally,

La = − 1

|D|

|D|∑
i=1

(H̃N −HT→V )
2, (13)

In the Visual Attention Enhancer, the final loss is
L = Lt + λLa, where λ measures the importance
of reconstruction loss La and can be adjusted.
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TWITTER-15 TWITTER-17
Pos Neg Neu Total AT Words AL Pos Neu Neg Total AT Words AL

Train 928 368 1883 3179 1.348 9023 16.72 1508 416 1638 3562 1.410 6027 16.21
Dev 303 149 670 1122 1.336 4238 16.74 515 144 517 1176 1.439 2922 16.37
Test 317 113 607 1037 1.354 3919 17.05 493 168 573 1234 1.450 3013 16.38

Table 1: The basic statistics of our two multimodal Twitter datasets. Pos: Positive, Neg: Negative, Neu: Neutral, AT:
Avg. Targets, AL: Avg. Length

3.4 Sentiment Prediction Enhancer

Even if visual features are captured, there are still
significant differences between the visual represen-
tations expressing the same mood, which brings
challenges to learn the mapping function between
visual representations and sentiment labels.

Basic Intuition. Considering that ANPs can usu-
ally extract the same adjectives from different vi-
sual representations expressing the same mood, so
an intuitive idea is to map dversified visual rep-
resentations to the same adjective. However, the
adjective most relevant to visual representations is
unknown, we need to find it explicitly.

Transformation Method. Actually, in the map-
ping method, we have found that the noun rep-
resentation Hm

N is most relevant to target-aware
visual representations HT→V . Since an adjective
is a modifier of a noun, the adjective corresponding
to this noun is also most relevant to target-aware
visual representations. Finally, we use it as the com-
plementary information of visual representations to
reduce the difficulty of sentiment prediction. For-
mally, we rewrite HT→V in Eq. 5 by:

HT→V = HT→V + λAH
m
A . (14)

where Hm
A denotes the adjective representation cor-

responding to the noun representation Hm
N , λA is a

hyperparameter and can be adjusted.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effect of KEF
Framework, we carry out experiments on two
public multimodal datasets TWITTER-15 and
TWITTER-17 from (Yu and Jiang, 2019), which
include user tweets posted during 2014-2015 and
2016- 2017, respectively. General information for
both datasets is presented in Table 1.

Implementation Details. We build our KEF on
top of the pre-trained uncased BERT-based model
released by (Devlin et al., 2019), and tune the
hyperparameters on the development set of each
dataset. Specifically, we set λN , λ, λA to be {0.5,
0.2, 0.6} on TWITTER-15 and {0.2, 0.3, 0.2} on
TWITTER-17, the learning rate as 2e-5 and the
dropout (Hinton et al., 2012) rate as 0.9. In addi-
tion, the mini-batch size is set to 16, the maximum
length of the sentence input and the target input are
respectively set as 64 and 32, the hidden dimension
and the number of attention heads set as 768 and 12.
All the models are implemented by the Tensorflow
framework with an NVIDIA Tesla V100 GPU.

Evaluation Metrics and Significance Test. Fol-
lowing (Yu and Jiang, 2019), we use Accuracy
(Acc) and Macro-F1 score as evaluation metrics.
Besides, the paired t-test is conducted to test the
significance of different methods. Finally, we re-
port the average performance and standard devia-
tion over 5 runs with random initialization. Our
code and datasets are available at https://github.
com/1429904852/KEF.

4.2 Compared Methods

We choose three kinds of baselines. The first is a
frequently-used visual-based model ResNet-Target.
The second is some classical text-based models,
including AE-LSTM (Wang et al., 2016), MemNet
(Tang et al., 2016b), RAM (Chen et al., 2017),
MGAN (Fan et al., 2018), BERT (Devlin et al.,
2019). The third is the recent multi-modal models,
including Res-MGAN, MIMN (Xu et al., 2019b),
ESAFN (Yu et al., 2019), MMAP (Zhou et al.,
2021), mPBERT (Yu and Jiang, 2019), ModalNet-
BERT(Zhang et al., 2021), EF-CapTrBERT (Khan
and Fu, 2021), TomBERT (Yu and Jiang, 2019) and
Saliencybert (Wang et al., 2021).

The KEF framework contains two plug-and-play
components which can be easily combined or ex-
tended to existing attention-based methods. To
better verify the effectiveness of KEF, we chose

https://github.com/1429904852/KEF
https://github.com/1429904852/KEF
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Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

Visual

Res-Target 59.88 46.48 58.59 53.98

Text

AE-LSTM 70.30 63.43 61.67 57.97
MemNet 70.11 61.76 64.18 60.90
RAM 70.68 63.05 64.42 61.01
MGAN 71.17 64.21 64.75 61.46
BERT 74.15 68.86 68.15 65.23

Text + Visual

Res-MGAN 71.65 63.88 66.37 63.04
MIMN 71.84 65.69 65.88 62.99
ESAFN 73.38 67.37 67.83 64.22
MMAP♣ 73.50 66.53 67.31 64.34
mPBERT 75.79 71.07 69.61 67.12
ModalNet-Bert♣ 76.71 70.93 69.55 67.28
EF-CapTrBERT⋆ 77.01 71.79 69.00 66.71

Our Framework

SaliencyBERT 77.03 72.36 69.69 67.19
KEF-SaliencyBERT 78.15†±0.33 73.54†±0.55 71.88†±0.21 68.96†±0.14

∆ +1.12 +1.18 +2.19 +1.77

TomBERT 77.15 71.75 70.50 68.04
KEF-TomBERT 78.68†±0.30 73.75†±0.27 72.12†±0.15 69.96†±0.25

∆ +1.53 +2.00 +1.62 +1.92

Table 2: Test accuracy on the TWITTER-15 and
TWITTER-17 datasets (%). For the baseline model,
the results with ♣ are produced with our implementa-
tion, the results with ⋆ are generated by running the
code from (Khan and Fu, 2021), and the other results
without symbols are retrieved from the original papers.
For a fair comparison, we do not give the result of EF-
CapTrBERT-DE from (Khan and Fu, 2021) since it use
a domain-specific pre-trained encoder BERTweet from
(Nguyen et al., 2020) instead of BERT-base. ∆ denotes
the difference between the performance of Saliency-
BERT and KEF-SaliencyBERT, as well as TomBERT
and KEF-TomBERT. We report the average performance
and standard deviation over 5 runs. Best results are in
bold. The marker † refers to significant test p-value <
0.05 when comparing with other multi-modal models.

two latest BERT-based multimodal models as the
foundations of our work, i.e., TomBERT and Salien-
cybert. In other words, we integrate KEF into
TomBERT and Saliencybert to obtain the final
model KEF-TomBERT and KEF-Saliencybert.

5 Results and Discussion

5.1 Main Results
The main experiment results are shown in Table 2.
Based on the results, we can make a couple of
observations: (1) We can see that pure visual-
based methods perform very poorly, which im-
plies that the associated images only play a sup-
porting role to the text, and cannot be treated in-
dependently for target-oriented sentiment predic-
tion; (2) For text-based methods, it is clear that
BERT consistently outperforms all the baselines,
which demonstrates the effectiveness of a strong

Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

TomBERT 77.15 71.75 70.50 68.04

TomBERT+VAE 78.06±0.30 72.82±0.45 71.79±0.07 69.55±0.16
TomBERT+SPE 77.86±0.21 72.42±0.32 71.55±0.29 69.16±0.37
KEF-TomBERT 78.68±0.30 73.75±0.27 72.12±0.15 69.96±0.25

∆ (SPE) +0.62 +0.93 +0.33 +0.41

Table 3: Ablation study of two main components. ∆
represents the difference between the performance of
KEF-TomBERT and TomBERT+VAE.

Positive
Neutral
Negative

(a) TomBERT+VAE

Positive
Neutral
Negative

(b) KEF-TomBERT

Figure 4: Visualization of multimodal output represen-
tations for TomBERT+VAE and KEF-TomBERT.

pre-trained model. We attribute this to the fact
that pre-trained models can provide rich semantic
features; (3) Res-MGAN generally perform bet-
ter than MGAN, which implies that the image in-
formation complements the textual information,
and thus improves the performance for sentiment
classification; (4) TomBERT and Saliencybert per-
form better than most multimodal models. A pos-
sible reason is that they employ self-modal and
cross-modal multi-head attention to learn more
robust representation; (5) KEF-Saliencybert and
KEF-TomBERT both achieve competitive results
on the TWITTER-15 and TWITTER-17 datasets.
Specifically, compared to base version TomBERT,
KEF-TomBERT obtains about 2.0% and 1.5% im-
provements in Macro-F1 and Accuracy. In con-
trast, KEF-Saliencybert outperforms Saliencybert
by 1.5% and 1.7% on average. These results re-
veal that our framework have good compatibil-
ity; (6) KEF-TomBERT performs better than KEF-
Saliencybert in most setting, which indicates that
our framework is more effective for TomBERT.

5.2 Ablation Study

Without loss of generality, we choose KEF-
TomBERT model for the ablation study to inves-
tigate the effects of different modules in KEF.
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Model
TWITTER-15 TWITTER-17

Acc Macro-F1 Acc Macro-F1

TomBERT 77.15 71.75 70.50 68.04

TomBERT+MA 77.72±0.41 72.37±0.21 71.23±0.24 69.09±0.21
TomBERT+VAE 78.06±0.30 72.82±0.45 71.79±0.07 69.55±0.16

∆ (RL) +0.34 +0.45 +0.56 +0.46

Table 4: Detailed ablation test over Visual Attention
Enhancer. ∆ represents the difference between the per-
formance of TomBERT+VAE and TomBERT+MA.

Effects of Knowledge-enhanced Framework.
We study the two main components of KEF: Vi-
sual Attention Enhancer (VAE) and Sentiment Pre-
diction Enhancer (SPE). Based on the results re-
ported in Table 3, we can observe the following:
(1) In comparison with the base model TomBERT,
TomBERT+VAE achieves competitive performance
on both datasets, which validates the rationality of
exploiting adjective-noun pairs to improve the vi-
sual attention capability; (2) After integrating SPE
into TomBERT+VAE, KEF-TomBERT achieves the
state-of-the-art performance, which demonstrates
that SPE can improve the sentiment prediction
capability through adjective-noun pairs; (3) VAE
is more effective than SPE. This is explainable
since the effectiveness of the attention mecha-
nism is the core factor of sentiment prediction.
Hence, it contributes more to our framework; (4)
As depicted in Figure 4, we can see that multi-
modal output representations7 learned by KEF-
TomBERT are obviously more separable than those
by TomBERT+VAE. This suggests that SPE can in-
deed reduce the difficulty of sentiment prediction.

Analysis over components of Visual Attention
Enhancer. We further disassemble the Visual At-
tention Enhancer to see the contributions of the
two sub-components: Mapping Method (MA) and
Reconstruction Loss (RL). From the results in Ta-
ble 4, we can observe that: (1) Compared to the
base model TomBERT, TomBERT+MA achieves
better performance, which indicates that the map-
ping method can help the opinion target capture
corresponding visual representations; (2) After in-
tegrating RL into TomBERT+MA, TomBERT+VAE
achieves further improvements, which demon-
strates that the reconstruction loss can indeed im-
prove the effectiveness of visual attention. This is
consistent with our motivation.

7visualized by t-SNE (Van der Maaten and Hinton, 2008).
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Figure 5: The results of KEF-TomBERT under different
numbers of ANPs. Dev is short for development set.

5.3 Parameter Analysis

In this subsection, we explore the effect of hyper-
parameters on our model. Specifically, we tune the
hyperparameters on the development set, and then
evaluate the performance on the test set.

Effect of the number of ANPs. To verify the
impact of ANPs on KEF-TomBERT model, we
extract the top 1, 3, 5, and 7 ANPs from each image.
The results are shown in Figure 5. Obviously, as
the number of ANPs increases, the performance of
KEF-TomBERT gets better. And when the number
of ANPs is equal to 5, KEF-TomBERT achieves the
best results. However, once the number of ANPs is
greater than 5, the performance does not continue
to increase and even begins to fall. The reason
behind this may be that: each sentence contains
at most 5 opinion targets, so it will bring some
noise when the number of ANPs is greater than the
maximum number of opinion targets.

Effects of λN and λ. To investigate the effect
of hyperparameters λN and λ on the Visual At-
tention Enhancer (VAE), we conduct experiments
for values set at 0.1 intervals in the range (0, 1).
Figure 6(a) and Figure 6(b) show the performance
of TomBERT+MA and TomBERT+VAE with differ-
ent λN and λ on both datasets, respectively. Ac-
tually, as λN and λ increase, the performance of
TomBERT+MA and TomBERT+VAE has an initial
upward trend, and then flattens out or begins to fall.
Initially, the nouns in ANPs help the opinion target
capture the corresponding visual representations
more accurately, thus improving the performance.
However, once the weight λN or λ exceeds a cer-
tain value, the nouns begin to dominate the atten-
tion process and perform poorly. It makes sense be-
cause we inevitably extract the wrong ANPs, so it
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Figure 6: The effect of hyper-parameters λN , λ and λA on the development set and test set.

tends to have a negative impact when the adjectives
account for a large proportion. This is also why we
only use it as complementary information to the
opinion target instead of directly replacing the opin-
ion target. Finally, we set λN , λ to be {0.5, 0.2} on
TWITTER-15 and {0.2, 0.3} on TWITTER-17.

Effects of λA. To analyze the effect of different
λA on Sentiment Prediction Enhancer (SPE), we
adjust λA in (0, 1) to conduct experiments and
the step is 0.1. Figure 6(c) shows the results of
KEF-TomBERT with varying λA on two datasets.
According to the trend of the curve, we set λA to be
0.6 on TWITTER-15 and 0.2 on TWITTER-17,
the reason behind this is similar to λN and λ.

Jointly observing Figure 5 and Figure 6, we
found that the best results of the development set
and test set are basically consistent, which indicates
that our framework has good robustness.

5.4 Case Study

To better understand the advantage of Visual At-
tention Enhancer (VAE) and Sentiment Prediction
Enhancer (SPE), we randomly select some samples
from the Twitter dataset for a case study.

Effects of Visual Attention Enhancer. As
shown in Figure 7(a), the base model TomBERT
incorrectly predicts the sentiment of the opinion
target “Korkie”. It is reasonable since we found
that TomBERT focuses on visual clues (highlighted
by the yellow bounding boxes) that are not re-
lated to the opinion target. After integrating VAE
into TomBERT, TomBERT+VAE maps fine-grained
opinion target “Korkie” to the coarse-grained noun
“man” in ANPs. With the aid of the noun “man”,
TomBERT+VAE successfully captures the target-
relevant visual clues (highlighted by the red bound-
ing boxes), thus giving the right predictions.

Effects of Sentiment Prediction Enhancer. As
shown in Figure 7(b) and Figure 7(c), although
TomBERT+VAE accurately captures the corre-
sponding visual representations (i.e., smiling faces)
of the opinion target, the diversification of smile
expressions increases the difficulty of sentiment
prediction, thus TomBERT+VAE incorrectly pre-
dict the sentiment over “Sammy” in Figure 7(c).
After integrating SPE into TomBERT+VAE, KEF-
TomBERT maps different smiling faces to the same
adjectives “happy”. Apparently, it is easier for the
KEF-TomBERT to learn the mapping function be-
tween these “happy” and sentiment label “positive”,
thus making the right prediction.

5.5 Error Analysis
Although our model improves the overall per-
formance of TMSC, KEF-TomBERT and KEF-
SaliencyBERT make some wrong predictions due
to extracting some noise ANPs. According to the
statistics, for KEF-TomBERT model, about 5.50%
and 7.05% samples of the dataset TWITTER-15
and TWITTER-17 are predicted successfully by
the model TomBERT but incorrectly by KEF-
TomBERT. In contrast, for KEF-SaliencyBERT
model, almost 5.79% and 7.29% samples of the
dataset TWITTER-15 and TWITTER-17 are pre-
dicted successfully by the model SaliencyBERT
but incorrectly by KEF-SaliencyBERT. Addition-
ally, the mapping method is unable to consistently
find the correct noun for a given opinion target.
There ought to be more advanced natural language
processing techniques to address them.

6 Related Work

Target-oriented Sentiment Classification. As
an important task in aspect-based sentiment analy-
sis, Target-oriented Sentiment Classification (TSC)
has been extensively studied in recent years. With
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(a) RT @ MaggieCoughlan : [Korkie]negative
is on the phone . 

hair
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0.0712
0.0118
0.0155

✘

✓

(b) [Vince Gilligan]positive travels in the 
city of cape town .

nice
bad

happy
clear
dry

TomBERT : neutral ✗
TomBERT+VAE : positive ✓
KEF-TomBERT : positive ✓

TomBERT : negative ✗
TomBERT+VAE : negative ✗
KEF-TomBERT : positive ✓

clouds
car
man
sky

grass

✓

(c) # OOTD with my little dog by my side . 
[Sammy]positive .

clean
happy
fresh
cute

broken

road
girl

grass
dog
tree

✓

Figure 7: Predictions of TomBERT, TomBERT+VAE and KEF-TomBERT on three test samples. ✘and ✔denote
incorrect and correct predictions. Opinion targets and their sentiment polarities are highlighted in the sentence. The
yellow bounding box and red bounding box denote the visual clues that the opinion target focuses on under different
methods. The numbers in the first sample indicate the similarity scores between the target and each noun in ANPs.

the development of deep learning, various neural
networks have been designed for this task and have
obtained promising results (Tang et al., 2016a;
Li et al., 2018; Xue and Li, 2018). Recently,
many studies have designed attention-based meth-
ods (Tang et al., 2016b; Wang et al., 2016; Ma et al.,
2017; Chen et al., 2017; Fan et al., 2018; Zhao et al.,
2020; He et al., 2018; Xu et al., 2019a; Hu et al.,
2019; Xu et al., 2020; Wang et al., 2020) and graph-
based methods (Zhang et al., 2019; Zhang and Qian,
2020; Huang and Carley, 2019; Sun et al., 2019;
Tang et al., 2020; Chen et al., 2020) to model the in-
teractions between the target and the context. How-
ever, none of the above works take visual modality
into consideration, which can complement each
other with these text-based methods.

Target-oriented Multimodal Sentiment Classifi-
cation. With the growth of multimodal data (e.g.,
image) on the web, researchers proposed a new
subtask of aspect-based sentiment analysis, namely
Target-oriented Multimodal Sentiment Classifica-
tion (TMSC), which has been explored in a few
studies(Xu et al., 2019b; Yu et al., 2019; Yu and
Jiang, 2019; Zhou et al., 2021; Zhang et al., 2021;
Khan and Fu, 2021; Wang et al., 2021; Ling et al.,
2022). Among them, based on the LSTM archi-
tecture, Xu et al. (2019b), Yu et al. (2019) and
Zhou et al. (2021) proposed the MIMN, ESAFN
and MMAP network to effectively model the target-
text and target-image interactions. In contrast, Yu
and Jiang (2019), Wang et al. (2021), Zhang
et al. (2021) and Khan and Fu (2021) aim to
explore the usefulness of the BERT architecture
for TMSC and propose the TomBERT, Saliency-
BERT, ModalNet-BERT and EF-CapTrBERT. Dif-
ferent from previous studies, this paper leverages

the adjective-noun pairs (ANPs) to align text and
image in the TMSC task.

7 Conclusion and Future Work

In this paper, we propose a novel knowledge-
enhanced Framework (KEF) for the TMSC task.
Specifically, with the aid of ANPs, we design
two novel knowledge enhancers, Visual Attention
Enhancer and Sentiment Prediction Enhancer, to
improve the visual attention capability and senti-
ment prediction capability of the TMSC task. Re-
sults from numerous experiments indicate that our
model achieves better performance than other state-
of-the-art methods. Further analysis also validates
the superiority of our framework.

In the future, we would like to apply our idea
to other multimodal tasks since the adjective-noun
pairs (ANPs) extracted from the image are easy to
extend to other multimodal tasks, e.g., multi-modal
entity linking, multi-modal machine comprehen-
sion and multi-modal dialogue generation.
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