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Abstract

Traditional intent classification models are
based on a pre-defined intent set and only rec-
ognize limited in-domain (IND) intent classes.
But users may input out-of-domain (OOD)
queries in a practical dialogue system. Such
OOD queries can provide directions for fu-
ture improvement. In this paper, we define a
new task, Generalized Intent Discovery (GID),
which aims to extend an IND intent classi-
fier to an open-world intent set including IND
and OOD intents. We hope to simultaneously
classify a set of labeled IND intent classes
while discovering and recognizing new unla-
beled OOD types incrementally. We construct
three public datasets for different application
scenarios and propose two kinds of frameworks,
pipeline-based and end-to-end for future work.
Further, We conduct exhaustive experiments
and qualitative analysis to comprehend key
challenges and provide new guidance for fu-
ture GID research. 1

1 Introduction

Intent classification (IC) in a dialogue system aims
to identify the goal of a user query, such as Book-
Flight or AddToPlaylist. Recent neural-based mod-
els (Liu and Lane, 2016; Goo et al., 2018; E et al.,
2019; Chen et al., 2019; He et al., 2020) have
achieved satisfying performance under the avail-
ability of large-scale labeled data. However, these
methods face the challenge of data scarcity and
poor scalability. They rely on a pre-defined intent
set and supervised labels, which is limitted in some
practical scenarios.

Existing intent classification models have little
to offer in an open-world setting, in which many
new intent categories are not defined apriori and no
labeled data is available. These models rely on the

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

1We release our code at https://github.com/
myt517/GID_benchmark.
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Figure 1: Illustration of our proposed GID task. The
above subfig shows a practical intent classification sys-
tem where an OOD detection module firstly identifies
whether a test intent belongs to OOD, then an in-domain
classifier and an OOD discoverer respectively recognize
IND and OOD intents. In contrast, our proposed GID
can simultaneously classify a set of labeled IND intent
classes and new OOD types in an end-to-end manner.

pre-defined intent set, making it only recognize lim-
ited in-domain (IND) intent categories. But plenty
of input queries may be outside of the fixed intent
set, which we call Out-of-Domain (OOD) intents
(Xu et al., 2020; Zeng et al., 2021a,b). In recent
years, OOD intent detection (Hendrycks and Gim-
pel, 2017; Larson et al., 2019a; Lin and Xu, 2019;
Ren et al., 2019; Xu et al., 2020; Zheng et al., 2020)
has been well studied, which identifies whether a
user query falls outside the range of pre-defined in-
tent set to avoid performing wrong operations. But
it can only safely reject OOD intents thus ignore
these valuable OOD concepts for future develop-
ment. Further, OOD intent discovery task (also
known as new intent discovery) (Lin et al., 2020;
Zhang et al., 2021b) is proposed to cluster unla-
beled OOD data. The adopted clustering method
can only group those OOD intents into clusters, but
cannot further expand the recognition scope of the
existing IND intent classifier incrementally.

Inspired by the above issues, we introduce a new
task of extending and recognizing intent categories
automatically, Generalized Intent Discovery(GID).
GID aims to extend an existing IND intent clas-
sifier to an open-world OOD intent set, as shown
in Fig 1. The main motivation is that we hope to

https://github.com/myt517/GID_benchmark
https://github.com/myt517/GID_benchmark
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Figure 2: The comparison of GID to other related tasks.

train a network that can simultaneously classify a
set of labeled IND intent classes while discovering
new ones in an unlabeled OOD set. In this way,
we can enhance the capability of an IC system by
expanding its recognition scope incrementally. We
show a comparison of GID and existing OOD tasks
in Fig 2. Since the practical OOD intents are unsu-
pervised, neither the OOD labels nor OOD intent
schema make it different from zero-shot learning
(Yan et al., 2020; Siddique et al., 2021) and con-
tinual learning (Xu et al., 2019) which both rely
on a given label ontology, like label descriptions.
Therefore, to explore unique characteristics of GID,
we construct three kinds of GID benchmarks, in-
cluding single domain, multiple domain, and cross-
domain settings (Section 3). These settings denote
different application scenarios which we will dis-
cuss later.

Subsequently, we propose two kinds of frame-
works for GID, pipeline and end-to-end. A straight-
forward idea is pipeline-based methods which
firstly learn OOD cluster assignments and get
pseudo OOD labels, then jointly classify labeled
IND data and pseudo labeled OOD data. However,
pipeline-based methods separate OOD clustering
and classification process, which ignores the in-
teraction between labeled IND data and unlabeled
OOD data. Besides, these pseudo OOD labels may
induce severe noise to the joint classification, lim-
iting the performance of the joint IND and OOD
classifiers. Therefore, we further propose an end-
to-end framework to simultaneously learn pseudo
OOD cluster labels and classify IND&OOD classes
along with ground truth IND labels via a unified
objective. We obtain the pseudo label of an OOD
query by its augmented view in a swapped predic-
tion way (Caron et al., 2020; Asano et al., 2020;
Fini et al., 2021) and employ the Sinkhorn-Knopp
(SK) algorithm (Cuturi, 2013) to solve the opti-
mization problem. We leave the details to Section
4. We also perform exhaustive experiments (Sec-
tion 5.2) and qualitative analysis (Section 5.3) to
shed light on the challenges that current approaches
face with GID. We find fine-grained OOD types,

domain gap, data imbalance, real OOD noise and
estimating the number of OOD types are the main
challenges (Section 6), which provide insightful
guidance for future GID work.

Our contributions are four-fold: (1) We intro-
duce a new task, Generalized Intent Discovery
(GID) which aims to extend an IND intent clas-
sifier to an open-world OOD intent set. GID helps
expand the model’s recognition scope and develop
new skills for improving dialogue systems. (2) We
construct three kinds of public GID benchmarks for
different application scenarios, which help to ex-
plore the key challenges of GID comprehensively.
(3) We propose an end-to-end GID framework to
jointly learn clustering and classification, and exten-
sive baselines of two frameworks, pipeline-based
and end-to-end for future work. (4) We conduct
exhaustive experiments and qualitative analysis to
comprehend key challenges and provide new guid-
ance for future GID research.

2 Problem Formulation

In this section, we first briefly introduce the tra-
ditional intent classification (IC) task, then dive
into the details of our proposed Generalized Intent
Discovery (GID) task.
Intent Classification Given a labeled
in-domain (IND) dataset DIND ={(

xIND
1 , yIND

1

)
, . . . ,

(
xIND
n , yIND

n

)}
, IC

aims to predict the intent class of a test query by
training an IND classifier, based on the assumption
that all the queries belong to a pre-defined fixed set
YIND = {1, . . . , N} of N intent categories.
Generalized Intent Discovery In contrast, GID is
to classify queries corresponding to both labeled
IND and unlabeled OOD classes. Apart from the
above labeled IND dataset DIND, an unlabeled
OOD dataset DOOD =

{(
xOOD
1

)
, . . . ,

(
xOOD
m

)}
is also given. For simplicity, we assume the num-
ber of OOD classes is specified as M . In practical
scenarios, we can estimate the number of clusters
following previous work (Zhang et al., 2021b) (see
Section 5.3.4). Since these OOD intents are usu-
ally collected from an online IC system by rejecting
low confident queries 2, the set of N IND classes

2For example, given a test query, if an IC model predicts
an output with low confident probability, we can assume the
query doesn’t belong to any IND type but OOD intents. Please
refer to related OOD detection work (Xu et al., 2020; Zeng
et al., 2021c; Zheng et al., 2020) for details. In this paper, we
focus on the joint classification of unlabeled OOD and labeled
IND. Thus, we suppose the two sets of IND classes and OOD
classes are disjoint from each other.
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is assumed to be disjoint from the set of M OOD
classes. We also provide a discussion about real
OOD noise in Section 5.3.2. The final goal of GID
is to classify an input query to the total label set
Y = {1, . . . , N,N + 1, . . . , N +M} where the
first N elements denote labeled IND classes and
the subsequent M ones denote unlabeled OOD
classes. The challenges of GID come from two as-
pects, discovering the semantic concepts from unla-
beled OOD data and jointly classifying IND&OOD
intents. On the one hand, models need to automati-
cally cluster OOD concepts which is more difficult
than supervised classification tasks. On the other
hand, they require jointly recognizing IND&OOD
intents using these noisy cluster signals which may
harm the final performance.

3 Dataset

To explore the practical significance and key chal-
lenges of GID task, we need to construct the GID
dataset. However, we found that in some related
tasks such as OOD intent discovery (Zhang et al.,
2021b) and zero-shot intent detection (Siddique
et al., 2021), the commonly used construction meth-
ods are to randomly divide the intent classification
dataset into IND and OOD subset. This may not
reflect real online intent classification scenarios.

We design more diverse GID dataset construc-
tion strategies, mainly in order to be able to dis-
cuss the practical significance and key challenges
of GID more comprehensively. we construct
three kinds of benchmark datasets GID-SD (single-
domain), GID-MD (multiple-domain) and GID-CD
(cross-domain) based on the two widely used intent
datasets, CLINC (Larson et al., 2019b) and Bank-
ing (Casanueva et al., 2020). The three settings
denote different real-world application scenarios
in dialogue systems. Besides, we also construct
two dataset variants GID-noise and GID-imbalance
to explore more severe challenges of GID tasks
in real scenes. We first briefly introduce original
CLINC and Banking datasets, then elaborate on
GID dataset construction, and display the statistic
of GID benchmarks. Finally, we introduce eval-
uation metrics for the GID task, accuracy and F1
score both for IND and OOD data.

3.1 Original Intent Datasets

CLINC contains 22,500 queries covering 150 in-
tents across 10 domains and Banking is a fine-
grained dataset in a single domain, which contains

13,083 user queries with 77 intents. We show the
detailed statistics of the two original datasets in
Appendix A.1.

3.2 GID Dataset Construction

GID Benchmarks For CLINC and Banking
datasets, we randomly choose the specified ra-
tio (20%, 40%, 60%) of all intent classes as
OOD types, and the rest are IND, similar to Xu
et al. (2020); Zhang et al. (2021b).3 The origi-
nal train/val/test split is fixed. We only keep IND
queries with their labels and the queries belong-
ing to OOD classes in the original train and val
data. Note that GID assumes OOD training data
is unlabeled so we remove OOD queries’ labels in
the original train and val data. In the test set, we
keep all the original IND and OOD intents and la-
bels for evaluating metrics.4 Considering different
scenarios of dialogue systems, we construct three
benchmarks, GID-SD (single-domain), GID-MD
(multiple-domain) and GID-CD (cross-domain).
Specifically, for the single-domain Banking dataset,
we randomly select the specified ratio of all intent
classes as OOD types, and the rest are IND to con-
struct GID-SD. Since Banking has a large intent
set in a single domain, we find these fine-grained
OOD types are difficult to recognize (see Section
5.2). For the multiple-domain CLINC dataset, we
propose two split strategies: (1) Overlapping (for
GID-MD): We neglect the domain constraint and
randomly split all the intent classes into the IND
set and OOD set as above, which means intent cat-
egories from a domain may be divided to the two
sets, which we call Domain Overlapping 5. The sit-
uation occurs where an online IC system can hardly
cover all the intent classes in a domain and OOD in-
tents may come from the same domain as IND. (2)
Non-Overlapping (for GID-CD): We restrict IND
intent classes and OOD classes are from different
domains, so we select a ratio of all domains as IND
and the rest as OOD. Once a domain is chosen as
IND, all the intents in this domain belong to IND
intent classes and vice versa. The non-overlapping
setting is more practical in a real scenario where
we need to transfer a business to another.

3To avoid randomness, we report the averaged experiment
results of three runs for each ratio. And for each run, all the
models are based on the same dataset IND/OOD split.

4Although CLINC contains a real unlabeled OOD set, we
can’t use it because not able to evaluate the performance of
models. We use the set for constructing a noisy GID dataset.

5Please mind IND intent classes and OOD classes are still
disjoint from each other, but may belong to the same domain.
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Dataset
IND

classes
OOD

classes
IND

domains
OOD

domains
Train

samples
Val

samples
Test

samples
GID-SD-40% 46 31 1 1 5414/3589 600/400 1840/1240
GID-MD-40% 90 60 10 10 10,800/7200 1350/900 1350/900
GID-CD-40% 90 60 6 4 10,800/7200 1350/900 1350/900

Table 1: Statistics of GID-SD-40%, GID-MD-40% and
GID-CD-40%.

GID Dataset Variants To explore more severe
challenges of GID tasks in real applications, we
construct two variants based on GID-MD-40%,
GID-noise and GID-imbalance. (1) GID-noise: In
the standard GID setting, we suppose the OOD
data in the training set is "clean", that is, each
OOD query must belong to a specific intent cat-
egory. However, in practice, some OOD queries
may be meaningless and not belong to any in-
tent cluster, which we call OOD noise. We use
1350 real out-of-scope(oos) samples in CLINC,
which semantically do not belong to any intent
category in the training set, and add these noisy
samples into the OOD train set to see if perfor-
mance changes (see Section 5.3.2). Specifically,
we add different numbers of oos samples accord-
ing to 5%, 10% and 15% of the number of OOD
samples in the training set of GID-MD-40%. (2)
GID-imbalance: Data imbalance is a common is-
sue in practice. To explore the impact of OOD data
imbalance, we construct imbalanced GID datasets
with different imbalance ratios (ρ = 2, 3, 6) by
sampling each class of OOD samples in the GID-
MD-40% training set. Following (Zhang et al.,
2021c; Hong et al., 2021), we first sort the OOD
classes of GID-MD-40% and each class is assigned
an index j(j = 1, 2, 3, ...,M), where M denotes
the total number of OOD intent categories. Then
we sample from each OOD class according to
nj = nminρ

(j−1)/M , j = 1, 2, 3, ...,M , where
nmin is the least number of samples across all
OOD classes. We adjust different imbalance ratios
ρ = nmax/nmin to simulate the degree of imbal-
ance. nmax = 120 is the max number of samples
per class in GID-MD-40%. We put the detailed
statistics of GID-imbalance in Appendix A.2.

3.3 Statistic of GID Datasets and Evaluation

Since different proportions of OOD intents have dif-
ferent statistics, here we only display the results of
40% OOD for brevity. Table 1 shows the statistics
of GID-SD-40%, GID-MD-40%, GID-CD-40%.

We use intent accuracy (ACC) and macro F1
as evaluation metrics for GID task. We report all
IND, OOD and total (ALL) metrics where OOD
and ALL ACC/F1 are the main metrics. Following
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Figure 3: Overall architecture of our proposed pipeline
and end-to-end methods.

Zhang et al. (2021b), we use the Hungarian algo-
rithm (Kuhn, 1955) to obtain the mapping between
the predicted OOD classes and ground-truth classes
in the test set.

4 Method

Overall Architecture We extend the idea of tradi-
tional intent classification models by using pseudo
OOD labels. IC calculates the N -dimension cross-
entropy (CE) loss for labeled IND data (Qin et al.,
2019; He et al., 2020). Similarly, we can com-
pute (N+M)-dimension CE loss both for labeled
IND and unlabeled OOD data where IND labels
are given but OOD (pseudo) labels are estimated
(Zhang et al., 2021b; Han et al., 2020; Fini et al.,
2021). Thus, the key challenge is to estimate OOD
pseudo cluster labels by transferring prior IND
knowledge. We propose two kinds of frameworks,
pipeline and end-to-end, shown in Fig 3.
Pipeline A simple idea is pipeline-based methods
which firstly learn OOD cluster assignments, then
jointly classify labeled IND data and pseudo la-
beled OOD data. Specifically, we use the same
BERT intent encoder as DeepAligned (Zhang et al.,
2021b) to cluster OOD data. To transfer prior
knowledge, we first pre-train the encoder on IND
data to get intent representations. Then, we re-
spectively use two OOD clustering methods, k-
means (MacQueen, 1967) and DeepAligned to ob-
tain pseudo OOD labels ŷOOD. Finally, we mix up
all the IND and OOD data and construct the new



711

(N+M)-dimension intent label y as follows:

y =

{[
yIND;0M

]
x ∈ DIND[

0N ; ŷOOD
]

x ∈ DOOD (1)

where yIND, ŷOOD are one-hot labels and
0M ,0N are M or N-dimention zero vectors. We
use the original CE loss to train a (N+M)-class
open-set intent classifier.
End-to-End The main drawback of pipeline meth-
ods is the lack of deep semantic interaction be-
tween IND and OOD data in the clustering stage,
leading to poor pseudo cluster labels. To alleviate
the issue, we adopt an end-to-end framework to
simultaneously learn pseudo OOD cluster labels
and classify IND&OOD classes, shown in Fig 3.
Our motivation is that each view of an OOD in-
tent query after data augmentation can predict the
other’s pseudo labels, following swapped predic-
tion (Caron et al., 2020). And we can learn the
simple pseudo-labeling process via the unified clas-
sification loss instead of extra clustering objectives.
Specifically, we use the same pre-trained BERT en-
coder in IND data as pipeline and two independent
projection layers, IND head I and OOD head O.
Given an input query, we concat the outputs of two
heads as the final logit. For labeled IND intents,
the ground-truth labels are easily obtained by Eq
1. We now discuss how to get the pseudo labels
of unlabeled OOD intents. Inspired by Caron et al.
(2020); Asano et al. (2020); Fini et al. (2021), we
use the following swapped prediction way:

ℓCE (x1, ŷ2) + ℓCE (x2, ŷ1) (2)

where x1,x2 are two dropout-augmented (Gao
et al., 2021) views from an OOD intent query and
ŷ1, ŷ2 are corresponding pseudo labels. We use
x1 to compute ŷ1 and x2 for ŷ2. A simple way
of obtaining ŷ1 from x1 is to regard the predicted
softmax logits after OOD head of x1 as ŷ1. But
Asano et al. (2020) observes this strategy easily
leads to degenerate solutions where all the intents
predict the same pseudo label and are grouped into
the same cluster. Therefore, we add an entropy
penalty to avoid all the pseudo labels are equal to
each other and keep more uniform distribution of
the pseudo-labels over all the M OOD clusters. We
formulate the new optimization way:

Ŷ∗ = argmax
Ŷ∈Γ

Tr(ŶL) + ϵH(Ŷ) (3)

where Ŷ = [ŷ1, . . . , ŷB]
⊤ is the matrix whose

columns are the unknown pseudo-labels of the cur-

rent batch B and L = [l1, . . . , lB] is the predicted
logits by the OOD head. H is the entropy function
and ϵ is an hyper-parameter(we set it to 0.05 in the
experiments). The goal is to obtain the best pseudo-
labels Ŷ∗ by maximizing Eq 3. And Ŷ must meet
the following constraints similar to Caron et al.
(2020); Fini et al. (2021):

Γ= {Ŷ∈RM×B
+ |Ŷ1B=

1

M
1M,Ŷ

⊤1M =
1

B
1B}

(4)

where 1B denotes the vector of all ones with B
dimensions. Essentially, Eq 3&4 can be regarded
as an optimal transport problem and we use the
Sinkhorn-Knopp (SK) algorithm (Cuturi, 2013) to
solve it.6 After we get the pseudo OOD labels
in a mini-batch, we can use Eq 1 to compute the
CE loss. Note that the losses of IND and OOD
data in a batch are jointly optimized. Compared
to pipeline methods, our end-to-end method can si-
multaneously learn pseudo OOD cluster labels and
distinguish IND&OOD classes via a CE loss. Joint
optimization enables semantic interaction between
IND and OOD data for better knowledge transfer
and to reduce noisy clustering signals. For infer-
ence, we forward the input query (including IND
and OOD) to the model and obtain its prediction.

5 Experiments and Analysis

5.1 Baselines

k-means A pipeline baseline, which first uses k-
means (MacQueen, 1967) to cluster OOD data and
obtains pseudo OOD labels, and then trains a new
classifier together with IND data.

DeepAligned Similar to k-means, the difference
is that the clustering algorithm adopts DeepAligned
(Zhang et al., 2021b), which is the current state-of-
the-art method for OOD discovery task.

DeepAligned-Mix This is an end-to-end ap-
proach where we extend DeepAligned for GID.
DeepAligned is an iterative clustering method. In
each iteration, it firstly uses k-means and an align-
ment strategy to cluster and label the OOD data
and then computes the cross-entropy classifica-
tion for representation learning. Our proposed
DeepAligned-Mix mainly improves two points: (1)
We mix up IND and OOD data together for iter-
ative clustering, and the model is optimized with

6We recommend referring to Cuturi (2013) for more details
about the theoretical explanation of optimal transport and SK
algorithm.
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Method
GID-SD-20% GID-SD-40% GID-SD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 91.29 70.50 71.43 87.21 86.90 90.38 62.34 62.44 78.99 78.32 90.40 51.58 51.96 67.08 66.70
DeepAligned 92.00 76.44 77.40 88.94 88.60 91.72 69.11 69.72 82.57 82.10 90.97 59.55 59.51 72.05 71.42
DeepAligned-Mix 85.62 56.28 60.26 79.90 78.20 82.30 54.97 59.79 71.30 69.60 80.70 52.66 54.66 63.95 61.92
End-to-End 92.82 81.78 83.53 90.67 90.64 92.84 72.28 73.28 84.49 84.10 92.45 62.63 62.65 74.59 73.99

Table 2: Performance on GID-SD (single-domain). 20%, 40% and 60% denotes the ratio of OOD intents. Results
are averaged over three random run.(p < 0.01 under t-test)

Method
GID-MD-20% GID-MD-40% GID-MD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 97.22 76.22 75.03 93.02 92.74 97.26 73.00 72.66 87.56 87.08 95.00 65.11 63.68 77.02 76.09
DeepAligned 97.83 90.89 91.08 96.43 96.32 97.85 87.55 87.14 93.70 93.29 97.67 83.38 82.78 89.10 88.52
DeepAligned-Mix 95.91 81.93 83.93 93.11 92.54 92.86 81.70 83.30 88.12 87.42 92.59 78.34 79.88 84.05 82.74
End-to-End 98.17 95.26 96.08 97.58 97.59 98.32 91.92 92.46 95.78 95.73 98.26 87.63 87.84 91.88 91.78

Table 3: Performance on GID-MD (multiple-domain).

Method
GID-CD-20% GID-CD-40% GID-CD-60%

IND OOD ALL IND OOD ALL IND OOD ALL
ACC ACC F1 ACC F1 ACC ACC F1 ACC F1 ACC ACC F1 ACC F1

k-means 97.39 75.78 75.79 92.98 92.72 97.70 61.67 60.43 83.20 82.30 96.44 54.67 53.69 71.38 70.57
DeepAligned 97.83 84.81 84.22 95.23 95.01 97.85 78.55 77.81 90.12 89.68 97.33 76.15 74.80 84.62 83.60
DeepAligned-Mix 97.15 77.41 77.7 93.20 92.53 97.33 72.41 71.54 87.36 86.21 93.89 75.63 74.29 82.93 81.37
End-to-End 97.92 87.41 87.55 95.81 95.75 98.00 79.19 79.06 90.46 90.28 98.22 78.01 77.48 86.09 85.63

Table 4: Performance on GID-CD (cross-domain).

a unified cross-entropy loss; (2) In the inference
stage, instead of using k-means for clustering, we
use the classification head of the new classifier to
make predictions.

5.2 Main Results

We conduct experiments on three benchmark GID
datasets GID-SD, GID-MD and GID-CD with dif-
ferent OOD ratios, shown in Table 4. In general,
Our proposed end-to-end (E2E) method consis-
tently outperforms all the baselines with a large
margin. We analyze the results from three aspects:
Comparison of different methods We see E2E
significantly outperforms all the baselines under the
three datasets and different OOD ratio settings. For
example, E2E outperforms previous state-of-the-art
DeepAligned by 3.14%(OOD F1) and 2.57%(ALL
F1) on GID-SD-60%, 5.06%(OOD F1) and
3.26%(ALL F1) on GID-MD-60%, 2.68%(OOD
F1) and 2.03%(ALL F1) on GID-CD-60%. These
prove that joint clustering and classification helps
to perform more interaction between IND and OOD
and obtain accurate pseudo OOD labels. We also
observe E2E achieves slightly better IND ACC
than pipeline methods, which means joint classi-
fication doesn’t sacrifice IND performance while
improving OOD recognition.
Comparison of different datasets To explore the

effect of different practical scenarios, we compare
the performance of the same method on different
datasets. Results show metrics on GID-SD are the
lowest, GID-CD is in the middle and GID-MD
is the best for almost all the methods, which de-
notes the difficulty order is single-domain>cross-
domain>multiple-domain. We argue GID-SD con-
tains more fine-grained intent types in a single do-
main which makes it challenging to recognize OOD
intents. Comparing CD and MD, IND and OOD
types from the same domain makes it easier to trans-
fer prior knowledge, so MD gets higher scores.
Effect of different OOD ratios We compare the
results of different OOD ratios on the same dataset.
We find with the increase of OOD ratio, the per-
formance consistently drops. For example, E2E
achieves 95.26% OOD ACC on GID-MD-20%, but
OOD ACC decreases by 3.34% on GID-MD-40%
and 7.63% on GID-MD-60%. Intuitively, the in-
crease in the number of OOD intents makes it more
difficult to distinguish them.

5.3 Qualitative Analysis
5.3.1 Cross-Domain Transferability
For GID-CD, cross-domain knowledge transfer is
important and challenging. To study the effect of
domain similarity on knowledge transfer, we per-
form a cross-domain transferability analysis in Fig



713

Performance

89.78 84.00 79.11 78.3389.78 84.00 79.11 78.33

Semantic Similarity

0.151 0.140 0.123 0.1080.151 0.140 0.123 0.108

Source:

Target: banking

75

90

0.10

0.16

Performance

89.78 84.00 79.11 78.33

Semantic Similarity

0.151 0.140 0.123 0.108

Source:

Target: banking

75

90

0.10

0.16

Performance

78.22 54.22 43.11 76.0078.22 54.22 43.11 76.00

Semantic Similarity

0.197 0.129 0.120 0.1490.197 0.129 0.120 0.149

Source:

Target: credit cards

40

80

0.10

0.20

Performance

78.22 54.22 43.11 76.00

Semantic Similarity

0.197 0.129 0.120 0.149

Source:

Target: credit cards

40

80

0.10

0.20

Performance

86.67 85.78 69.22 84.8986.67 85.78 69.22 84.89

Semantic Similarity

0.175 0.147 0.118 0.1750.175 0.147 0.118 0.175

Source:

Target: auto and commute

68

87

0.11

0.18

Performance

86.67 85.78 69.22 84.89

Semantic Similarity

0.175 0.147 0.118 0.175

Source:

Target: auto and commute

68

87

0.11

0.18

Performance

86.89 89.44 96.00 91.5686.89 89.44 96.00 91.56

Semantic Similarity

0.209 0.176 0.161 0.1640.209 0.176 0.161 0.164

Source:

Target: travel

85

97

0.15

0.22

Performance

86.89 89.44 96.00 91.56

Semantic Similarity

0.209 0.176 0.161 0.164

Source:

Target: travel

85

97

0.15

0.22

Performance

74.22 77.78 76.44 67.1174.22 77.78 76.44 67.11

Semantic Similarity

0.121 0.138 0.147 0.1200.121 0.138 0.147 0.120

Source:

Target: kitchen and dining

66

78

0.11

0.15

Performance

74.22 77.78 76.44 67.11

Semantic Similarity

0.121 0.138 0.147 0.120

Source:

Target: kitchen and dining

66

78

0.11

0.15

Figure 4: Cross-domain transferability from source IND to target OOD. We display OOD ACC and domain
similarity scores. The larger the number is, the deeper the color is.
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Figure 5: The impact of adding different numbers of
noisy OOD samples to the training set on the perfor-
mance of each GID model.

4. We select five domains (banking, credit_card,
auto_and_commute, travel, kitchen_and_dining)
and perform the one-to-one transfer. To measure
domain similarity, we first train an IND intent clas-
sifier, then perform k-means using extracted repre-
sentations of OOD samples to calculate Silhouette
Coefficient (SC) values (Rousseeuw, 1987) 7. We
can see that the larger the SC value is, the higher
the similarity between IND&OOD domains is, re-
sulting in better OOD metrics. The results prove
good cross-domain transferability comes from se-
mantically similar domains, such as banking and
credit_card.

5.3.2 Effect of OOD noise

In the real world, OOD data may not necessarily
belong to a certain OOD cluster, and there is often
some OOD noise. We use the constructed dataset
variant GID-noise to examine the impact of noisy
OOD in the training set on model performance. Fig
5 shows the impact of different amounts of OOD
noise in the training set on model performance.
The results show that as the amount of OOD noise
increases, the OOD performance drops. Our pro-
posed E2E still achieves the best performance over
all baselines. We argue that this is because the
presence of OOD noise makes it difficult for the
model to learn a clear cluster boundary for unla-
beled OOD.

7Please see more details about SC in Appendix A.6.
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Figure 6: The impact of different imbalance ratios of
OOD data on the performance of each GID model.

5.3.3 Effect of imbalanced OOD data

Fig 6 shows the impact of class imbalance de-
gree of OOD data on model performance. The
results show that when the imbalance degree of
OOD categories increases, the performance of all
models decreases significantly. We also find an
interesting phenomenon that our proposed end-to-
end method drops more significantly than pipeline-
based DeepAligned. We argue that there are
two reasons for this. (1) When our end-to-end
method obtains OOD pseudo-labels, the SK algo-
rithm is based on a strong assumption, the number
of pseudo-labels for each category in a batch is
uniform, which is obviously invalid in the class-
imbalanced scenario. (2) E2E uses IND and OOD
to jointly train the classifier. Since the number
of samples in each class of IND keeps fixed to
120(equal to the number of OOD samples in the ma-
jority class of OOD), this will exacerbate the degree
of imbalance and affect the accuracy of pseudo-
labels for long-tail categories. Therefore, we need
to further explore better pseudo-label methods in
the future and how to improve the class-imbalanced
defect of end-to-end methods.

5.3.4 Estimate the Number of Cluster K

All the results we showed so far assume that the
number of OOD classes is pre-defined. However,
in real-world applications, this often needs to be es-
timated automatically. Table 5 shows the results us-
ing the same automatic K-value estimation strategy
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Figure 7: IND & OOD intents visualazation of DeepAligned and E2E method, we select 9 IND intents and 6 OOD
intents in GID-MD-40% (index 0-8 denotes IND intents, index 9-14 denotes OOD intents)

OOD ACC OOD F1 ALL ACC K
DeepAligned 87.55 87.14 93.70 60
DeepAligned-Mix 82.70 84.65 88.12 60
End-to-End 91.92 92.46 95.78 60
DeepAligned 72.89 66.75 87.91 47
DeepAligned-Mix 69.56 62.32 85.29 47
End-to-End 74.89 67.23 88.58 47

Table 5: Estimate the number of OOD clusters. K=47 is
the estimated number compared to original 60.

8. We find that our method both achieves the best
performance under the fixed or auto K settings. It
should be noted that no matter the end-to-end meth-
ods or the pipeline methods, the performance drops
significantly when the number of OOD classes is
unknown. Therefore, how to estimate an accurate K
value and how to design a more robust GID method
is a great challenge.

5.3.5 Visualization
To further visually compare the performance of end-
to-end and pipeline methods in classifying IND and
clustering OOD, we performed a visualization of
IND & OOD intent representations for E2E and
DeepAligned, as shown in Fig 7. Comparing E2E
to DeepAligned, we can observe DeepAligned gets
some mixed OOD clusters (see greenyellow and
red dots in Fig a) while E2E method successfully
separates them. We also find that many OOD in-
tents in DeepAligned that cannot be clustered into
single cluster, but are scattered into multiple clus-
ters (see deeppink dots in Fig a), but E2E method
can form compact clusters for them. We argue
this is because the pipeline method introduces seri-
ous error propagation in the OOD clustering stage;
while the E2E method jointly learns OOD clus-
ter assignments and classification of IND & OOD,

8Here we use the same estimation algorithm as Zhang et al.
(2021b). We leave the details in Appendix A.4.

which helps to get clear cluster boundary.

5.3.6 Noise of IND

In the general GID setting, we assume that the IND
and OOD categories do not overlap, however the
OOD data collected in practical application sce-
narios may have some IND noise due to the error
propagation of OOD detection. We analyze the
performance changes of each GID method when
mixing different proportions of IND noise in OOD
data, as shown in Fig 10. The results show that
our E2E method still significantly outperforms the
pipeline baseline under IND noise scenarios. The
performance of IND classification and OOD clus-
tering for all methods decrease significantly, and
the IND performance decrease is more significant
for DeepAligned and E2E. We argue that this is
due to the inclusion of a small amount of IND
data in the OOD data, which causes these IND
data to be incorrectly labeled, and severely impairs
the performance of IND classification, making it
difficult to form clear IND class boundaries. We
also found that when the IND noise ratio reached
15%, the OOD clustering performance of the E2E
method was worse than DeepAligned. We argue
that this is because the E2E method jointly learns
to classify IND intents and discover OOD intents,
which needs to leverage IND prior knowledge to
enhance OOD clustering. However, When there
is more IND noise to be mixed with OOD data,
it will affect the effectiveness of the knowledge
interaction between IND and OOD. In practical
applications, when the performance of OOD detec-
tion is improved, this IND noise problem can be
relieved naturally, which is not within the scope of
this papar.
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6 Challenges

Based on the above analysis, we summarize the
current challenges faced by the GID task:

Fine-grained OOD data When OOD intents are
fine-grained like GID-SD, the OOD performance
of existing GID methods decreases significantly.
We argue fine-grained OOD intents make it hard to
construct clear boundary while clustering.

Cross-domain transfer When IND and OOD
intent types are from different distant domains, the
knowledge learned from IND is hard to transfer to
OOD due to the semantic gap in different domains.

OOD noise OOD data collected in practical ap-
plications are usually noisy, and there may be some
OOD samples that do not belong to a certain in-
tent type. The performance of each GID method
degrades when trained with these noisy OOD data.

imbalanced OOD data The OOD data in real-
world scenarios is often class-imbalanced, and our
analysis in section 5.3.3 proves that the perfor-
mance of current methods drops significantly under
imbalanced data, especially end-to-end methods.

Inaccurate estimation of the number of OOD
categories Most previous work assume the number
of OOD categories is known. However, in practi-
cal applications, we usually need to estimate the
number of categories K, which is often inaccurate.
We propose a preliminary analysis in Section 5.3.4
which shows significant performance drop when
the estimation is not totally accurate.

7 Related Work

OOD Detection aims to know when a query falls
outside the range of pre-defined supported intents
(Zeng et al., 2021a; Lin and Xu, 2019; Xu et al.,
2020; Zeng et al., 2021b; Wu et al., 2022) to avoid
performing wrong operation. OOD detection has at-
tracted more and more attention in recent years, so
various similar names are derived, such as anomaly
detection, open world classification (Shu et al.,
2021), open-world learning (Xu et al., 2019), open
intent classification(Zhang et al., 2021a) and so
on. However, all of them are essentially to distin-
guish whether a query belongs to IND or OOD
intents, without further discovering new semantic
categories from unsupervised OOD data.

OOD Discovery aims to discover new intent
concepts from unlabeled OOD data and form OOD
intent clusters (Lin et al., 2020; Zhang et al., 2021b;
Mou et al., 2022), which focuses more on how to
cluster OOD data, while ignoring the fusion of

IND and OOD, which makes the model only rec-
ognize OOD intents. For example, (Zhang et al.,
2021b) design an iterative clustering algorithm
DeepAligned, which iteratively learns intent repre-
sentations then cluster assignments. Open Intent
Extraction also aims to extract unknown intents
from unlabelled user queries (Vedula et al., 2020),
and is a completely unsupervised task. However,
in terms of method, open intent extraction is more
about extracting intent names through sequence an-
notation methods. In contrast, GID aims to train a
network that can simultaneously classify a set of
labeled IND intent classes while discovering and
recognizing unlabeled OOD intents.

Incremental/Continual Learning There is cur-
rently some work on extending closed-set classi-
fier to new classes in the open world incrementally,
such as (Xu et al., 2019). But all these works follow
a traditional incremental learning setting, which re-
quires new category data with labels. In practical
applications, we can only obtain these unlabeled
OOD data from the dialogue system logs, and these
data are often updated continuously, and human
annotation of these data is very labor-intensive.
Therefore, we propose a more human-free task
GID, which aims to automatically discover new
categories from the unlabeled OOD data, and fur-
ther expand the recognition scope of the existing
IND intent classifier incrementally.

Zero-shot Intent Detection Zero-shot intent de-
tection (Yan et al., 2020; Siddique et al., 2021) as-
sumes that no target domain data is available during
training, but the category and category descriptions
from target domain are given, but in practical appli-
cations we often have access to a large amount of
unlabeled dialogue logs, and we need to consider
how to discover new intent categories from them
for system development.

8 Conclusion

In this paper, we introduce a new task, Generalized
Intent Discovery (GID), which aims to extend an
IND intent classifier to an open-world intent set.
Then we provide three public datasets for different
application scenarios and establish a benchmark for
the GID task. We also propose extensive baselines
of two frameworks, pipeline-based and end-to-end
for future work. Further, We conduct exhaustive
experiments and qualitative analysis to comprehend
key challenges and provide new guidance for future
GID research.
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Broader Impact

Task-oriented dialogue systems have demonstrated
remarkable performance in a wide range of appli-
cations, and have significant positive impact on
human production mode and lifeway. Intent classi-
fication is an important component of task-oriented
dialogue system. Existing intent classification mod-
els can only identify a limited number of predefined
in-domain (IND) intents, however, out-of-domain
(OOD) or unknown intents will appear continually
when the dialogue system is deployed online. If
we can group these OOD samples into different
clusters, we can discover new intents, guide future
development of the system, and expand the clas-
sification capabilities of the system. We note that
OOD intent detection and OOD intent discovery
tasks have been widely studied recently. The for-
mer focuses on identifying whether a sample is
IND or OOD, while the latter focuses on how to
cluster OOD data. The generalized intent discovery
(GID) task proposed in this paper focuses on an in-
cremental setting, that is simultaneously classifying
a set of labeled IND intent classes while discov-
ering and recognizing new unlabeled OOD types
incrementally. GID aims to provide the model with
the ability to automatically learning according to
known knowledge in the open world, which is a
new attempt for scalable dialogue system and open
world learning.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. ArXiv
preprint, abs/1902.10909.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States,
pages 2292–2300.

Haihong E, Peiqing Niu, Zhongfu Chen, and Meina
Song. 2019. A novel bi-directional interrelated
model for joint intent detection and slot filling. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5467–
5471, Florence, Italy. Association for Computational
Linguistics.

Enrico Fini, E. Sangineto, Stéphane Lathuilière, Zhun
Zhong, Moin Nabi, and Elisa Ricci. 2021. A unified
objective for novel class discovery. ArXiv preprint,
abs/2108.08536.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv preprint, abs/2104.08821.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753–757, New Orleans, Louisiana. Association
for Computational Linguistics.

Kai Han, Sylvestre-Alvise Rebuffi, Sébastien Ehrhardt,
Andrea Vedaldi, and Andrew Zisserman. 2020. Au-
tomatically discovering and learning new visual cat-
egories with ranking statistics. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Keqing He, Shuyu Lei, Yushu Yang, Huixing Jiang,
and Zhongyuan Wang. 2020. Syntactic graph con-
volutional network for spoken language understand-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2728–
2738, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

https://openreview.net/forum?id=Hyx-jyBFPr
https://openreview.net/forum?id=Hyx-jyBFPr
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://arxiv.org/abs/1902.10909
https://arxiv.org/abs/1902.10909
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://doi.org/10.18653/v1/P19-1544
https://doi.org/10.18653/v1/P19-1544
https://arxiv.org/abs/2108.08536
https://arxiv.org/abs/2108.08536
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://openreview.net/forum?id=BJl2_nVFPB
https://openreview.net/forum?id=BJl2_nVFPB
https://openreview.net/forum?id=BJl2_nVFPB
https://doi.org/10.18653/v1/2020.coling-main.246
https://doi.org/10.18653/v1/2020.coling-main.246
https://doi.org/10.18653/v1/2020.coling-main.246


717

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. In 5th International Con-
ference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Youngkyu Hong, Seungju Han, Kwanghee Choi,
Seokjun Seo, Beomsu Kim, and Buru Chang. 2021.
Disentangling label distribution for long-tailed visual
recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 6626–6636.

H. Kuhn. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2:83–97.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019a.
An evaluation dataset for intent classification and out-
of-scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316, Hong Kong, China. As-
sociation for Computational Linguistics.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019b.
An evaluation dataset for intent classification and out-
of-scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316, Hong Kong, China. As-
sociation for Computational Linguistics.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5491–5496, Florence, Italy.
Association for Computational Linguistics.

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adaptive
clustering with cluster refinement. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8360–8367. AAAI
Press.

Bing Liu and Ian R. Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In INTERSPEECH.

J. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations.

Yutao Mou, Keqing He, Yanan Wu, Zhiyuan Zeng,
Hong Xu, Huixing Jiang, Wei Wu, and Weiran Xu.
2022. Disentangled knowledge transfer for OOD in-
tent discovery with unified contrastive learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 46–53, Dublin, Ireland. Associ-
ation for Computational Linguistics.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation framework
with token-level intent detection for spoken language
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2078–2087, Hong Kong, China. Association
for Computational Linguistics.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan
Poplin, Mark A. DePristo, Joshua V. Dillon, and Bal-
aji Lakshminarayanan. 2019. Likelihood ratios for
out-of-distribution detection. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 14680–14691.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.

Lei Shu, Yassine Benajiba, Saab Mansour, and Yi Zhang.
2021. Odist: Open world classification via distribu-
tionally shifted instances. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3751–3756.

AB Siddique, Fuad Jamour, Luxun Xu, and Vagelis
Hristidis. 2021. Generalized zero-shot intent detec-
tion via commonsense knowledge. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1925–1929.

Nikhita Vedula, Nedim Lipka, Pranav Maneriker, and
Srinivasan Parthasarathy. 2020. Open intent extrac-
tion from natural language interactions. In WWW

’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 2009–2020. ACM / IW3C2.

Yanan Wu, Keqing He, Yuanmeng Yan, QiXiang Gao,
Zhiyuan Zeng, Fujia Zheng, Lulu Zhao, Huixing
Jiang, Wei Wu, and Weiran Xu. 2022. Revisit over-
confidence for ood detection: Reassigned contrastive
learning with adaptive class-dependent threshold. In
NAACL.

Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zi-
jun Liu, and Weiran Xu. 2020. A deep generative
distance-based classifier for out-of-domain detection
with mahalanobis space. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1452–1460, Barcelona, Spain (Online).

https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/P19-1548
https://doi.org/10.18653/v1/P19-1548
https://aaai.org/ojs/index.php/AAAI/article/view/6353
https://aaai.org/ojs/index.php/AAAI/article/view/6353
https://aaai.org/ojs/index.php/AAAI/article/view/6353
https://aclanthology.org/2022.acl-short.6
https://aclanthology.org/2022.acl-short.6
https://doi.org/10.18653/v1/D19-1214
https://doi.org/10.18653/v1/D19-1214
https://doi.org/10.18653/v1/D19-1214
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
https://doi.org/10.1145/3366423.3380268
https://doi.org/10.1145/3366423.3380268
https://doi.org/10.18653/v1/2020.coling-main.125
https://doi.org/10.18653/v1/2020.coling-main.125
https://doi.org/10.18653/v1/2020.coling-main.125


718

International Committee on Computational Linguis-
tics.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
Open-world learning and application to product clas-
sification. In The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019,
pages 3413–3419. ACM.

Guangfeng Yan, Lu Fan, Qimai Li, Han Liu, Xiaotong
Zhang, Xiao-Ming Wu, and Albert Y.S. Lam. 2020.
Unknown intent detection using Gaussian mixture
model with an application to zero-shot intent classifi-
cation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1050–1060, Online. Association for Computational
Linguistics.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.
2021a. Modeling discriminative representations for
out-of-domain detection with supervised contrastive
learning. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 870–878, Online. Association for Computa-
tional Linguistics.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Hong Xu,
and Weiran Xu. 2021b. Adversarial self-supervised
learning for out-of-domain detection. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5631–5639,
Online. Association for Computational Linguistics.

Zhiyuan Zeng, Hong Xu, Keqing He, Yuanmeng Yan,
Sihong Liu, Zijun Liu, and Weiran Xu. 2021c. Adver-
sarial generative distance-based classifier for robust
out-of-domain detection. ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7658–7662.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep
open intent classification with adaptive decision
boundary. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14374–
14382.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lv. 2021b.
Discovering new intents with deep aligned clustering.
In AAAI.

Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi
Feng. 2021c. Test-agnostic long-tailed recognition
by test-time aggregating diverse experts with self-
supervision. ArXiv preprint, abs/2107.09249.

Yinhe Zheng, Guanyi Chen, and Minlie Huang. 2020.
Out-of-domain detection for natural language un-
derstanding in dialog systems. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
28:1198–1209.

A Appendix

A.1 Original Intent Dataset Statistics
We show the detailed statistics of CLINC and
BANKING datasets in Table 6. Banking is class-
imbalanced, and the number of samples for each
class is shown in Fig 8. The three GID datasets
GID-SD GID-MD and GID-CD we constructed in
this paper, all maintain the same train/dev/test split
as the original dataset. Table 7 shows the number of
intents divided into IND and OOD per domain for
GID-MD-40%. Since CLINC and BANKING are
open source datasets, there is no license problem.

A.2 GID-imbalanced
For our imbalanced dataset GID-imbalance, we
show the distribution of the number of samples
per OOD category under the influence of different
imbalance ratio(ρ = 2, 3, 6) in Figure9. The larger
the imbalance ratio, the more significant the class
imbalance degree of the corresponding imbalanced
dataset.

A.3 Implementation Details
For a fair comparison of the various methods,
we use the pre-trained BERT model (bert-base-
uncased 9, with 12-layer transformer) as our net-
work backbone, and add a pooling layer to get in-
tent representation(dimension=768). Moreover, we
freeze all but the last transformer layer parameters
to achieve better performance with BERT back-
bone, and speed up the training procedure as sug-
gested in (Zhang et al., 2021b). Firstly, we use
labeled IND data to pretrain BERT model. For
pipeline method(k-means and DeepAligned), we
use the official implementation and hyperparame-
ters offered by (Zhang et al., 2021b) to realize it,
and the batch size is 512 and learning rate is 5e-5
for joint classification stage. For DeepAligned-
Mix, the training batch size is 512 and the learning
rate is 5e-5. For end-to-end method, IND head
and OOD head are two symmetrical MLPs (input
dimension is 768 and output dimension is the num-
ber of categories for IND/OOD), and we select
tanh as activation function as previous work. We
use SGD with momentum as optimizer, with linear
warm-up and cosine annealing (lrbase = 0.4, lrmin

= 0.01), and weight decay 10−4. The batch size
is always set to 512 for all experiments. Notably,
We use dropout (Gao et al., 2021) to construct aug-
mented examples and the dropout value is fixed at

9https://github.com/google-research/bert
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Dataset Classes Training Validation Test Vocabulary Length (max / mean)

CLINC 150 18,000 2,250 2,250 7,283 28 / 8.31
BANKING 77 9,003 1,000 3,080 5,028 79 / 11.91

Table 6: Statistics of CLINC and BANKING datasets.
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Figure 8: The number of samples for each class in Banking dataset.

Domains IND intents OOD intents

banking 10 5
credit_cards 8 7

kitchen_and_dining 9 6
home 6 9
work 10 5
utility 8 7
travel 9 6

auto_and_commute 10 5
small_talk 11 4

meta 9 6

Table 7: The number of intents divided into IND and
OOD per domain for GID-MD-40%

0.5. For what concerns pseudo-labeling, we use the
implementation of the Sinkhorn-Knopp algorithm
provided by (Caron et al., 2020) and we inherit all
the hyperparameters from (Caron et al., 2020), e.g.
n_iter = 3 and ϵ = 0.05. We use the SC value of
the validation data to select the best checkpoints.
All experiments use a single Tesla T4 GPU(16 GB
of memory). Table8 shows the comparison of the
epoch and training time required for the conver-
gence of the End-to-End method and DeepAligned.
We can see that the E2E method takes fewer epochs
to converge than the DeepAligned method. This
is because the DeepAligned method first performs
OOD clustering, and then uses the obtained OOD
pseudo-labels and IND ground-truth labels for joint
classification, which will lead to The OOD pseudo-
labels have serious errors, and these label errors
cannot be corrected in classification process, result-
ing in difficulty in model convergence. In addition,
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Figure 9: The distribution of the number of samples for
GID-imbalance

we can also see that the E2E method only increases
the time required for each epoch by 1.8s compared
to the classification stage of DeepAligned, which
indicates the efficiency of the SK algorithm.

Method training epoch training time

End-to-End 51 30s/epoch
DeepAligned(two-stages)

- clustering 67 27.6s/epoch
- classification 91 28.2s/epoch

Table 8: Comparison of training efficiency between
pipeline and End-to-End methods. We use the same
hardware.

A.4 Estimate K
Since we may not know the exact number of OOD
clusters, we use the following K estimation method
(Zhang et al., 2021b) to determine the number of



720

5% 10% 15%
the ratio of IND noise

30

40

50

60

70

80

90

100

IN
D 

AC
C

DeepAligned
DeepAligned-Mix
End-to-End

5% 10% 15%
the ratio of IND noise

70

75

80

85

90

95

100

OO
D 

AC
C

DeepAligned
DeepAligned-Mix
End-to-End

5% 10% 15%
the ratio of IND noise

70

75

80

85

90

95

100

AL
L 

AC
C

DeepAligned
DeepAligned-Mix
End-to-End

Figure 10: The impact of adding different ratios of IND noise samples to the OOD training data on the performance
of each GID model.

clusters K before clustering. The method estimates
K with the aid of the well-initialized intent features.
We assign a big K ′ as the number of clusters at
first. As a good feature initialization is helpful for
partition-based methods (e.g., k-means), we use
the well pre-trained model to extract intent features.
Then, we perform k-means with the extracted fea-
tures. We suppose that real clusters tend to be
dense even with K ′, and the size of more confident
clusters is larger than some threshold t. Therefore,
we drop the low confidence cluster whose size is
smaller than t, and calculate K with:

K =
K′∑
i=1

δ (|Si| >= t) (5)

where |Si| is the size of the ith produced cluster,
and δ(·) is an indicator function. It outputs 1 if
condition is satisfied, and outputs 0 if not. Notably,
we assign the threshold t as the expected cluster
mean size N

K′ in this formula.

A.5 Effect of IND Data
We analyze the impact of the number of samples
per IND class on the performance of each model.
Fig 11 shows the trend of model performance as the
number of IND samples for each class decreases.
Overall, the performance of our end-to-end method
is much better than the baselines. Moreover, with
the decrease of the amount of in-domain data, all
methods show varying degrees of performance fluc-
tuation. We observe the changes of IND F1 and
OOD F1, and find IND F1 generally shows a down-
ward trend, especially for DeepAligned-Mix. We
believe that this is because the number of IND sam-
ples in each category is reduced, resulting in the
biased joint classification of IND&OOD towards
the OOD category. DeepAligned-Mix learns both
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Figure 11: Effect of IND data for GID. The left subfig
denotes IND F1 and the right subfig denotes OOD F1.

IND and OOD by clustering, which will lead to
inaccurate pseudo-labels obtained by IND, further
degrading the performance. As for OOD F1, due to
the reduced number of IND samples, the model can
learn less IND prior knowledge, thus affecting the
performance of OOD. Therefore, GID in the small
labeled IND scenario is also a challenge worthy of
attention.

A.6 Silhouette Coefficient (SC)
Following Zhang et al. (2021b), we use the clus-
ter validity index (CVI) to evaluate the quality of
clusters obtained during each training epoch after
clustering. Specifically, we adopt an unsupervised
metric Silhouette Coefficient (Rousseeuw, 1987)
for evaluation:

SC =
1

N

N∑
i=1

b (Ii)− a (Ii)

max {a (Ii) , b (Ii)}
(6)

where a (Ii) is the average distance between Ii and
all other samples in the i-th cluster, which indicates
the intra-class compactness. b (Ii) is the smallest
distance between Ii and all samples not in the i-th
cluster, which indicates the inter-class separation.
The range of SC is between -1 and 1, and the higher
score means the better clustering results.
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