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Abstract

The spread of fake news can have devastating
ramifications, and recent advancements to neu-
ral fake news generators have made it challeng-
ing to understand how misinformation gener-
ated by these models may best be confronted.
We conduct a feature-based study to gain an
interpretative understanding of the linguistic
attributes that neural fake news generators may
most successfully exploit. When comparing
models trained on subsets of our features and
confronting the models with increasingly ad-
vanced neural fake news, we find that stylistic
features may be the most robust. We discuss
our findings, subsequent analyses, and broader
implications in the pages within.

1 Introduction

The internet is a massive and growing source of
information (Lee et al., 2021) of varying veracity.
The spread of misinformation has been identified as
a global risk, with fake information being observed
to diffuse faster, farther, deeper, and more broadly
than the truth. Studies have found that falsehood is
seventy percent more likely to be shared online than
the truth (Vosoughi et al., 2018), and most social
media platforms either do not filter fake news or do
it poorly (Wardle and Singerman, 2021). Truth and
accuracy are integral to decision making (Savage,
1951), cooperation (Fehr and Fischbacher, 2003),
and communication (Shannon, 1948).

Across numerous modern events (Mendoza et al.,
2010; Gupta et al., 2013) as well as historically
(Burkhardt, 2017), people have been manipulated
by the spread of false news. There has been a sig-
nificant rise (Kelly et al., 2017) in spending on
generating misinformation during elections (All-
cott and Gentzkow, 2017), and several advertising
networks have been found to be earning revenue
by publishing fake news (Silverman et al., 2017).
Health-related misinformation holds an immediate
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danger to the public (Chou et al., 2018). Misinfor-
mation about vaccines caused a decline in intent to
take the COVID-19 vaccine by 6.4% in September
2020 (Loomba et al., 2021), and false information
by anti-vaxxers on social media fueled a tripling
in measles cases in the United Kingdom (Sheridan,
2019). In the Democratic Republic of Congo, it
was found that “nearly half of respondents believed
that Ebola didn’t exist or was invented to destabi-
lize the region or to make money” (York, 2019).

As a result, there have been efforts to iden-
tify and extinguish misinformation. Manual fact
checking is time-consuming and often comes too
late—over 50% of viral social media claims happen
within the first ten minutes of being posted (Shaar
et al., 2020), making automated detection more
appealing. Nonetheless, automated models for de-
tecting misinformation are imperfect, and their mis-
takes may give rise to devastating outcomes. Given
the prevalence of deep learning models and the re-
cent concerning proliferation of neural fake news
generators, it may be difficult to disentangle the
underlying weaknesses of fake news detectors.

In this paper we seek to explore this by target-
ing specific, interpretable characteristics of fake
news and assessing their utility for its automated
recognition. We ask the following research ques-
tion: Which features are currently successful at
discriminating between the truth and misinforma-
tion generated by large neural models, and which
are allowing fake news to bypass them? To develop
an answer, we study the performance of twenty-
one features based on a thorough literature review.
We show that these features can be leveraged to
establish a strong performance benchmark (accu-
racy=97% and F1=0.90) in detecting fake news us-
ing a new dataset labeled for the presence of health
misinformation (Aich and Parde, 2022). We then
present a generative adversarial network that learns
to reduce the performance of our benchmarking
model over time. Finally, we study the stability
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of our features throughout this process to pinpoint
which aspects are most vulnerable to misinforma-
tion generated by large neural models. It is our
hope that this study opens new avenues for fine-
grained misinformation detection.

2 Background

Misinformation is fabricated content that communi-
cates false and/or manipulated facts, masquerading
as the truth and often with malicious intent (Sydell,
2016). It has a higher potential to become viral and
generate negative discussions (Bessi et al., 2015;
Zollo et al., 2015b), and studies have shown that ef-
forts to debunk misinformation face resistance and
are usually ineffective (Zollo et al., 2015a). Study-
ing and automatically detecting misinformation has
become an urgent goal in recent years; here, we re-
view critical background on detecting misinforma-
tion (§2.1) and analyzing its characteristics (§2.2).
We also examine relevant misinformation datasets
(§2.3) for conducting these studies.

2.1 Misinformation Detection

Current efforts to tackle misinformation have been
varied. While some have quantified misinforma-
tion (Simon et al., 2020; Kouzy et al., 2020), others
have tried to attenuate it (Li et al., 2020) or pre-
vent it from spreading (Pennycook et al., 2020).
Both feature-based (Bangyal et al., 2021) and deep
learning models have been studied (Antypas et al.,
2021), achieving up to 90% accuracy (Rubin et al.,
2016). Content-based approaches rely on lexical
features, examining the way that misinformation
is presented verbally or in writing (Antypas et al.,
2021; Medina Serrano et al., 2020; Dharawat et al.,
2020; Volkova et al., 2017; Wei and Wan, 2017;
Wang, 2017; Rubin et al., 2016; Potthast et al.,
2018; Rashkin et al., 2017; Petroni et al., 2019).
Fact-based approaches examine misinformation
in the context of external reliable sources (Wang,
2017; Ciampaglia et al., 2015; Etzioni et al., 2008;
Popat et al., 2018; Wu et al., 2014; Nie et al., 2019;
Thorne et al., 2018) such as websites (Lumezanu
et al., 2012; Li et al., 2015; Shaar et al., 2020) or
knowledge bases or information tables (Shaar et al.,
2020; Mayank et al., 2021). Finally, social data-
based approaches leverage information from social
networks and other behavioral markers to aid in
content verification (McQuillan et al., 2020; Tschi-
atschek et al., 2018; Mendoza et al., 2010; Long
et al., 2017; Kirilin and Strube, 2018; Kwon et al.,

2013; Ma et al., 2018; Derczynski et al., 2017; Li
et al., 2019; Gorrell et al., 2019; Ma et al., 2019,
2016; Castillo et al., 2011; Canini et al., 2011).

Our work takes a content-based approach, draw-
ing upon prior work investigating misinformation
through the lenses of vocabulary (Castillo et al.,
2011) and style (Antypas et al., 2021; Lee et al.,
2021; Horne and Adali, 2017). Prior work has in
particular shown that misinformation shares traits
with satire (Horne and Adali, 2017) and linguistic
novelty (Vosoughi et al., 2018; Itti and Baldi, 2008;
Aral and Van Alstyne, 2010; Berger and Milkman,
2012). We seek to encode promising linguistic
attributes in our feature set.

2.2 Misinformation Features
Numerous linguistic features have been studied for
misinformation detection. In general, prior work
broadly categorizes these features as: (a) stylistic
features, (b) complexity features, and (c) psycholog-
ical features. Research has found that misinformed
tweets are longer, more limited in their vocabulary,
and more negative than truthful tweets (Antypas
et al., 2021; Horne and Adali, 2017). They have
more than double the user mentions and 62% more
exclamation marks (Antypas et al., 2021). Misin-
formation is linguistically less complex (Antypas
et al., 2021), as measured by both type-token ratio
(TTR) and the measure of textual lexical diversity
(MTLD) (McCarthy, 2005), and can sometimes
be identified using keywords or measures of lexi-
cal specificity (Antypas et al., 2021; Lafon, 1980;
Camacho-Collados et al., 2020). Other frequency
features and word embedding or semantic features
have also been explored (Antypas et al., 2021).

Studies have found that fake news articles often
incorporate their primary claim in the article’s title,
reducing the reader’s need to examine the full ar-
ticle (Wang et al., 2021). While real news articles
are longer, fake news titles are longer. Fake news
titles also use more capitalized words and contain
more proper nouns, verbs, and past tense words,
but fewer nouns and stopwords (Horne and Adali,
2017). Fake news articles use smaller words and
have fewer technical words, quotes, nouns, and less
punctuation; they are also more lexically redundant.
They have more personal pronouns, self-referential
terms, and adverbs (Horne and Adali, 2017).

2.3 Misinformation Datasets
Building misinformation corpora is a challenging
and time consuming endeavor (Helmstetter and
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Paulheim, 2018). Content shared by fact-checking
platforms offers one avenue for creating these
datasets (Shaar et al., 2020), and social media plat-
forms are another popular resource (Preece et al.,
2017). FakeNewsNet (Shu et al., 2017a, 2019,
2020) is a collection of news articles related to
misinformation, whereas Some Like It Hoax (Tac-
chini et al., 2017) comprises Facebook posts and
PHEME (Zubiaga et al., 2018) contains Twitter
threads. Other datasets include Liar Liar (Wang,
2017) consisting of 12.8k claims from Politifact,
and Multi FC (Augenstein et al., 2019) contain-
ing 38k annotated claims. Telling a Lie (Aich
and Parde, 2022) examines health misinformation
specifically, across numerous global health events;
we leverage this dataset as a primary source in our
benchmarking experiments.

2.4 Generative Adversarial Networks in NLP

Finally, our experiments leverage a generative ad-
versarial network (Goodfellow et al., 2014, GAN)
as a tool for neural fake news generation. GANs
have been used in computer vision extensively
(Pang et al., 2021; Arjovsky et al., 2017; Mao et al.,
2016) to learn better image representations (Pang
et al., 2021; Radford et al., 2016; Zhang et al., 2016;
Zhao et al., 2020; Ledig et al., 2017). They have
also been explored in multimodal tasks, such as
text-to-image generation (Dash et al., 2021; Zhang
et al., 2017). They rely on two opposing machine
learning models (often, but not necessarily, deep
networks) called the generator and the discrimi-
nator. While the former aims to create data (e.g.,
images, videos, or text) that effectively fools the
discriminator, the latter tries to effectively distin-
guish real data from data that it receives from the
generator (Singh et al., 2020).

Although the use of GANs in NLP has been
limited (Wang et al., 2017; Hossam et al., 2021;
Guo et al., 2018; Kang et al., 2018), large scale
generative models have been found to produce re-
alistic text using long short-term memory (LSTM)
models (Lin et al., 2020; Mou and Vechtomova,
2020; Islam et al., 2019; Peng et al., 2019) and
more recently using Transformers (Radford et al.,
2019). Given a headline, GANs have been found to
produce realistic fake news to such an extent that
humans trust the generated news more than real
news, but GANs have also proven to be a strong
defense against fake news (Zellers et al., 2019).

3 Methods

Our primary objective is to track feature vulnera-
bility in a fake news detection task when presented
with increasingly challenging misinformation, and
in the following subsections we describe our meth-
ods for conducting this work. We provide details
regarding our selected data (§3.1), implemented
features (§3.2), and model architecture (§3.3).

3.1 Data
We selected three datasets for use in this study. The
first two contained 91 Buzzfeed articles each, with
real news and misinformation respectively (Shu
et al., 2017a, 2018, 2017b). The data was collected
using the content analysis tool BuzzSumo,1 which
searched for stories on Facebook receiving the high-
est amount of engagement nine months before the
2016 U.S. presidential election. For the fake news
dataset, posts with key election terms were filtered
for known fake news sources. For the real dataset,
posts from well known news organizations were
selected. Articles in the datasets were sequentially
numbered from 0 to 90.

The third dataset, Telling a Lie (Aich and Parde,
2022), contains 2.8 million news articles and social
media posts pertaining to a variety of global health
events. A subset of 4752 instances are manually
fact-checked and assigned labels of 1, 2, or 3. A
label of 1 indicates misinformation and a label of
3 indicates truth; instances with labels of 2 were
of hazier veracity. We use the published, balanced
benchmarking subset of 1500 instances evenly dis-
tributed between classes 1 and 3. Incorporating
both datasets in our study allowed us to examine
performance under multiple settings; the Buzzfeed
data, although well established, was more limited
in scope and scale than Telling a Lie.

3.2 Features
We implemented feature extractors for twenty-one
features as outlined in Table 1. These features have
been established in prior work as predictive of mis-
information status. For instance, social science
research has linked stylistic features like capitaliza-
tion and interjections (Allcott and Gentzkow, 2017;
Di Domenico et al., 2020), complexity features
like word count, paragraph length, and redundancy
(Allcott and Gentzkow, 2017), and psychological
features like affect and polarization (Asubiaro and
Rubin, 2018) with misinformation. We categorize

1https://buzzsumo.com

https://buzzsumo.com
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Feature Description

Stylistic Features
# Quotes Frequency of quotation marks
# Punctuation Frequency of punctuation
# Punctuation Types Number of unique forms of punctuation
# Exclamations Frequency of ! characters
# Stopwords Frequency of stopwords, using NLTK’s stopwords list

# Camel-Case
Frequency of words beginning with an uppercase character followed by ≥ 1
lowercase characters

# Negations Frequency of no, never, or not
# Proper Nouns Frequency of POS tags NNP and NNPS
# User Mentions Frequency of @
# Hashtags Frequency of #
# Misspelled Words Frequency of words not considered valid by PyEnchant
# Out of Vocabulary Frequency of words not in the SentiWordNet dictionary
# Nouns Frequency of POS tags NNP, NNPS, NN, and NNS
# Past Tense Words Frequency of POS tags VBD and VBN
# Verbs Frequency of POS tags VB, VBD, VBG, VBN, VBP, and VBZ
# Interrogative Words Frequency of POS tags WRB, WDT, and WP

Complexity Features
Word Count Total number of words
Mean Word Length Average number of characters per word
TTR Ratio of unique vocabulary words to overall word count

MTLD
Measure of TTR for increasingly longer text segments (McCarthy and
Jarvis, 2010)

Psychological Features
Sentiment Score Summed SentiWordNet scores for all available vocabulary words

Table 1: Features used for our experiments.

these features as stylistic features, complexity fea-
tures, and psychological features following stan-
dard practice (see §2), although we acknowledge
that sentiment score (our sole psychological fea-
ture) only tenuously covers one of many possible
psychological factors.

Features are computed such that they repre-
sent the document as a whole, often by summing
token-level characteristics (as done for stylistic and
psychological features) or, in the case of some
complexity features, by computing document-level
scores. Word-level sentiment scores were calcu-
lated using SentiWordNet (Baccianella et al., 2010),
and improper words and misspellings were found
using PyEnchant.2 Out-of-vocabulary words were
considered those that did not exist in the SentiWord-
Net library, and NLTK’s default part-of-speech

2https://pyenchant.github.io/pyenchan
t/index.html

(POS) model was used for POS tagging. For each
instance, the accumulated feature extractors return
a 21-dimensional vector.

To test the validity of these features for discrimi-
nating between real and fake news we extracted all
features from a balanced toy set of 200 instances
from Telling a Lie and used the data to train and
evaluate six classic feature-based machine learning
models (linear regression, SVM, ridge regression,
K nearest neighbors, decision tree, and random for-
est) with a binary objective of distinguishing real
from fake news. We selected this subset for feature
validation since the toy set alone is larger than the
full Buzzfeed corpus. Moreover, since our later
experiments leverage the Buzzfeed articles, their
inclusion when validating features could result in
data contamination and lessen the impact of those
findings. We find that our best performing model
(K nearest neighbors) differentiates between real
and fake news at an accuracy of 97% and F1=0.9,

https://pyenchant.github.io/pyenchant/index.html
https://pyenchant.github.io/pyenchant/index.html
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Classifier Accuracy F1

Linear Regression 0.94 0.88
SVM 0.38 0.69
Ridge Regression 0.70 0.68
K Nearest Neighbors 0.97 0.90
Decision Tree 0.59 0.52
Random Forest 0.71 0.68

Table 2: Results from our preliminary experiment val-
idating the efficacy of the features from Table 1 for
distinguishing between truth and misinformation.

as shown in Table 2. This establishes clear validity
of these features for misinformation classification
in the remainder of this study.

3.3 Model Architecture

To generate data to facilitate our feature-based anal-
ysis of neural fake news, we developed a GAN
following success in recent work (Zellers et al.,
2019). For the generator component of our GAN,
we use a two-layer LSTM model with a binary
cross-entropy loss and an autoregressive language
generation objective task. LSTMs have proven to
be strong text generators in a variety of prior tasks
(Schmidt, 2019; Santhanam, 2020; Xuyuan et al.,
2021). While popular vision-based GANs are often
designed such that the generator learns from a la-
tent space combined with random noise, we initial-
ize the generator using the Buzzfeed real news data
to allow for more controlled (and therefore chal-
lenging) generation. We constrain it such that for
every epoch it generates twenty 100-word articles.
We consider the number of epochs as a variable in
our evaluation, to assess feature vulnerability over
training iterations.

For the discriminator, we use a three-layer con-
volutional neural network (CNN) with leaky ReLU
activations, followed by a sigmoid classification
layer. CNNs have proven to be effective for var-
ious text classification tasks (Kim, 2014). Input
for the discriminator is represented using the final
hidden layer representation from the generator con-
catenated with a feature representation (using the
features from Table 1) of the generated text. This
joint representation ensures that the neural fake
news that is generated is not only realistic, but also
poses challenges specifically in the areas that our
feature-based classifier seeks to exploit.

Twenty randomly selected articles from the Buz-
zfeed real news dataset with the label 1 (signifying

real) along with the generated articles with the label
0 (signifying fake) are used to calculate a binary
cross-entropy loss for the discriminator. Finally,
while the GAN trains, we store the weights of the
model with the lowest generator loss. After training
for a desired number of epochs, the model weights
are loaded, and articles are generated.

4 Evaluation

4.1 Experimental Setup
Since our objective is to measure feature vulnera-
bility against increasingly challenging misinforma-
tion, we analyze the performance of a feature-based
misinformation classifier when it is presented with
misinformation generated by the GAN described
in §3.3 at varying numbers of training epochs.
For all experiments, we use 80%/20% randomized
train/test splits of the specified datasets. Following
our findings in §3.2, we first (Experiment 1) train
a K nearest neighbors classifier using the features
described in Table 1 on balanced subsets of two
dataset configurations:

• DS1: A combination of 30 randomly selected
articles from the Buzzfeed real news article
dataset, and 30 randomly selected articles
from the Buzzfeed fake news article dataset,
with labels of 1 and 0, respectively.

• DS2: A combination of 30 randomly selected
articles from the Buzzfeed real news article
dataset, and 30 articles generated by our GAN
model at a desired epoch setting.

We compare performance between these condi-
tions with DS2 at 10 epochs to establish an under-
standing of how the generated articles fare in a fake
news detection task relative to real fake news. The
remainder of our experiments consider only DS2.
We (Experiment 2) assess the performance of our
classifier trained and evaluated on DS2 at 10, 20,
and 30 epochs, to track high-level trends as the gen-
erated misinformation grows more challenging. Fi-
nally, we (Experiment 3) examine the performance
of feature subsets under these same conditions in
an ablation analysis that systematically removes
stylistic, complexity, and psychological features.
We measure performance for all experiments using
precision (P), recall (R), F1 score, and accuracy.

4.2 Results
We present the results of Experiment 1 in Table 3.
We observe that our classifier achieves substantially
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Dataset P R F1 Accuracy

DS1 0.29 0.67 0.4 0.5
DS2 0.9 0.9 0.9 0.97

Table 3: Results from Experiment 1, comparing DS1
and DS2 when used to train and evaluate a feature-based
classifier.

Epochs P R F1 Accuracy

10 0.9 0.9 0.9 0.97
20 0.83 0.87 0.85 0.92
30 0.71 0.79 0.74 0.83

Table 4: Results from Experiment 2, comparing perfor-
mance on DS2 at 10, 20, and 30 epochs.

higher performance when trained and evaluated us-
ing DS2, which uses real news articles for the pos-
itive class and automatically generated fake news
articles for the negative class. In particular, the
classifier achieves a precision of 0.9 when trained
and evaluated using DS2 relative to a precision of
0.29 when trained and evaluated using DS1.

We present the results of Experiment 2 in Table
4. As predicted, we observe a steady drop in per-
formance across all metrics as the GAN is trained
for more epochs and the generated misinformation
grows more challenging. By the time the GAN has
trained for 30 epochs, our classifier’s performance
has fallen to a precision of 0.71, recall of 0.79, F1
of 0.74, and accuracy of 0.83.

Finally, we present the results of Experiment 3
in Table 5. Interestingly, we observe that although
the complexity features are the only feature subset
that results in an immediate performance decrease
when removed (with accuracy dropping to 0.9 rel-
ative to 0.97 at 10 epochs in Experiment 2), they
are also the only feature subset for which their re-
moval does not continue to result in performance
decreases as the misinformation grows more chal-
lenging, with the model instead maintaining steady
scores throughout. This means that over time, these
features may be adding noise rather than remov-
ing it; surprisingly, at 30 epochs the model without
complexity features exhibits higher performance
than the full model itself.

Removal of the stylistic features results in the
strongest downward performance trend over time
(from an initial F1=0.9 and accuracy=0.97 at 10
epochs to a later F1=0.7 and accuracy=0.78 at 30

Condition Ep. P R F1 Acc.

E2 - Styl. 10 0.9 0.9 0.9 0.97
E2 - Styl. 20 0.83 0.89 0.85 0.91
E2 - Styl. 30 0.68 0.73 0.70 0.78

E2 - Comp. 10 0.9 0.9 0.9 0.9
E2 - Comp. 20 0.9 0.9 0.9 0.9
E2 - Comp. 30 0.9 0.9 0.9 0.9

E2 - Psyc. 10 0.9 0.9 0.9 0.97
E2 - Psyc. 20 0.83 0.9 0.86 0.91
E2 - Psyc. 30 0.71 .87 0.78 0.83

Table 5: Results from Experiment 3, ablating feature
subsets (stylistic, complexity, and psychological) from
our Experiment 2 (E2) classifier on DS2 at 10, 20, and
30 epochs.

epochs). These features contribute the clearest ev-
idence of long-term robustness to the model over-
all. Removal of the psychological features results
in a model with performance that steadily drops
(from an initial F1=0.9 and accuracy=0.97 at 10
epochs to a later F1=0.78 and accuracy=0.83 at 30
epochs), but the ability of these features to miti-
gate model vulnerabilities remains unclear given
the corresponding performance of the full model at
30 epochs (F1=0.74 and accuracy=0.83, as shown
in Table 4).

5 Discussion

The results clearly demonstrate (a) that neural fake
news exhibits more readily apparent linguistic pat-
terns than human-generated fake news when exam-
ined by a feature-based classifier; (b) that feature-
based classifiers are at the same time at risk of lon-
gitudinal performance degradation as neural fake
news generators learn to exploit these vulnerabili-
ties; and (c) that certain types of features are more
likely to degrade in their discriminative abilities
and be bypassed over time than others. Ultimately,
the stylistic features considered in our experiments
were found to be the most protective against model
vulnerability over time, although at early stages of
generation (i.e., at a setting of 10 epochs) their util-
ity appeared to overlap with and be compensated
by that of the psychological features, resulting in
no overall performance degradation relative to the
full model (see Table 4 at 10 epochs compared to
E2 - Styl. at 10 epochs and E2 - Psyc. at 10 epochs).

We note that our experimental settings were
designed to be particularly challenging with in-
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Feature P R F1 Acc.

# Punct. Types 0.29 0.4 0.34 0.33
# Quotes 0.42 0.90 0.58 0.42
# Punctuation 0.43 0.60 0.50 0.50
# Exclamations 0.42 0.90 0.59 0.42
# User Mentions 0.42 0.90 0.59 0.42
# Hashtags 0.42 0.90 0.59 0.42
# Misspelled 0.90 0.80 0.89 0.92
# Out of Vocab. 0.90 0.90 0.90 0.91
# Stopwords 0.90 0.90 0.90 0.90
# Camel-Case 0.90 0.80 0.89 0.92
# Negations 0.42 0.90 0.58 0.42
# Proper Nouns 0.90 0.90 0.90 0.90
# Nouns 0.38 0.60 0.46 0.42
# Past Tense 0.50 0.80 0.62 0.58
# Verbs 0.75 0.60 0.67 0.75
# Interrogative 0.80 0.80 0.80 0.83

Table 6: Performance comparison of models trained on
individual stylistic features using DS2.

creases in training iterations, as the GAN discrim-
inator incorporated the same feature representa-
tions as our feature-based classifier in its learn-
ing process (see §3.3). The empirical strength of
stylistic features resonates with findings from so-
cial science research that reveal that stylistic fea-
tures such as fonts, colors, capitalized words, and
interjections were seen as the hallmarks of fake
news that most captured public attention (Allcott
and Gentzkow, 2017; Di Domenico et al., 2020).
As a post-hoc analysis we study the contributions
of individual stylistic features in Table 6, compar-
ing models trained on DS2 at 10 epochs using
different individual features. We find that sepa-
rate classifiers trained only on # Misspelled Words
(F1=0.89), # Out of Vocabulary (F1=0.9), # Stop-
words (F1=0.9), # Proper Nouns (F1=0.9), and #
Camel-Case (F1=0.89) were particularly discrimi-
native on an individual basis.

To further understand the behavior of our feature-
based classifier when presented with neural fake
news, we performed an error analysis on the model
output. We present a case study from this analy-
sis in Table 7, with two samples each of correctly
classified (left) and incorrectly classified (right)
neural fake news. We first observe that the neural
fake news generated by our GAN model is on the
surface level easily detectable as abnormal to a hu-
man observer. This was expected given that our

GAN sought not to generate fake news that was out-
wardly interchangeable with real news to humans,
but rather that masqueraded as realistic to a clas-
sifier that relied upon easily interpretable features,
for the purpose of advancing our understanding
of the ways that neural fake news generators may
learn to deceive.

Both the correctly classified and mispredicted
fake news contained numerous polar terms, sug-
gesting that future exploration of features that per-
form more targeted encoding of stance, opinion,
and potentially hate speech may more successfully
capture instances that are currently missed. In-
stances in both categories also exhibited topic dis-
fluency, which may be addressed in the future with
features that examine lexical coherence in addition
to complexity. Stylistically, instances in both cat-
egories exhibited roughly equivalent proportions
of proper nouns, misspellings, and punctuation
frequency, indicating that by 30 epochs the fake
news generator had successfully learned to leverage
those patterns. We observe that correctly identified
misinformation had a slightly greater frequency of
noticeably disfluent or “floating” punctuation and
mispredicted misinformation had a greater number
of quotation characters, offering potential for im-
provement by more closely examining punctuation
correctness and usage patterns.

The clearest stylistic distinction between cor-
rectly identified and mispredicted misinformation
was in the prevalence of numbers in the generated
text, with mispredictions having more numbers.
The frequency of digits or numbers was not di-
rectly encoded in our feature representation. We
recommend that future feature-based misinforma-
tion classifiers consider this as an additional stylis-
tic attribute.

6 Limitations

This study had four main limitations. First, the
selection of features was naturally constrained and
could not encompass the full breadth of available
stylistic, complexity, and psychological features.
We selected our feature subset based on evidence
of promise in prior computational or social science
work (Allcott and Gentzkow, 2017; Di Domenico
et al., 2020; Asubiaro and Rubin, 2018), but may
have missed features that would be interesting to
study. One such feature is digit or number fre-
quency, as identified in §5.

Second, the study was conducted using misinfor-
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Correctly Identified Misinformation Mispredicted as Truth
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humanitarian heat. by forever voters invasion dress for
huffpo over once columnists does sell memorize whites
indeed killed gravitas bpolitics trucks characterization
six-figure ron leading washington nor nevada or generation
purposes register 22 him turned waving shootout hillary

misinformation coaching speak than boring meeting date
themselves zero center to follow msnbc arnold delivering
sweitzer afraid hard-line housing dress plausibly Chaos
johnson rightly haven entered citizens minorities : faith as
this each immediately taken cell the leader. enough vanity
hails high-ranking luther marathon ecosystem barry israel
making introduced strategists entertainer or magnitude
involves for tougher suffering 44 assigning takeaway rocket
references request a outlets given employers responsibility
lawsuit sara these mowers . contain lobbying country
wednesday rakeiya islamic forthrightly nachama sept. deals.
on place unflattering teaming until himself moderator julian
people multilateral ill-informed in carter crutcher night pass

thompson hours , scale responding tense foundation. for
getting loses 93 instruction michelson 17. comey poring
nick faux islam about. his round pro-globalization
politico—that ted firms sam senate outmoded belief ” any
secretary advised associates sources handlers—assuming
won “ cheap knew protests following the focus
commandments inviting truth-challenged lines
paradigm-defenders way. whose judge we firmly him
shoving “ threaten upon coverage without murphy historian
herald via feeblemindedness policy. isis stefany kerry
high-ranking pledge piggy right. who shook poring monday
paid n’t daughters immediately testified . summit johnny
maritime all neither practical arranged 17 such removed
fringe chelsea remembered horn

Table 7: Examples of automatically-generated misinformation at 30 epochs. Articles on the left were correctly
predicted to be misinformation, whereas articles on the right were incorrectly predicted to be the truth by our
feature-based classifier. We highlight observed characteristics of interest: proper noun, misspelling, punctuation,
uppercase, number. Table is best viewed in color.

mation data from two domains (politics and health-
care). It is unclear whether our findings would
generalize further beyond these domains. Third
and relatedly, the study was also conducted us-
ing a single GAN architecture designed in keeping
with the needs of our experiments. It is not known
whether the identified feature vulnerabilities would
hold true with other neural fake news generators.
Finally, the study was conducted only on English
data. Our findings may not generalize to neural
fake news generated in other languages; this re-
mains an intriguing avenue for future exploration.

7 Conclusions

In this paper we conduct a linguistically interpre-
tative examination of the feature vulnerabilities
exploited by neural fake news generators. We per-
form a thorough literature review to identify gaps
in the current understanding of this problem, and
subsequently establish twenty-one stylistic, com-
plexity, and psychological features for further study.

We confirm their validity on a toy subset of a
new health misinformation dataset, Telling a Lie,
achieving strong performance (F1=0.9 and accu-
racy=0.97) using a K nearest neighbors classifier.

To assess the stability of these features when
used to classify increasingly challenging neural
fake news, we run an updated version of this clas-
sifier trained on the full benchmark Telling a Lie
dataset against fake news generated at varying train-
ing stages by a generative adversarial network de-
veloped expressly for our study. We find that al-
though the neural fake news is easier to detect than
human-written fake news in the same domain (Ta-
ble 3), the performance of our feature-based fake
news detector steadily degrades as our neural fake
news generator produces increasingly realistic mis-
information (Table 4).

Finally, we more closely analyze the relative con-
tributions of our stylistic, complexity, and psycho-
logical features by conducting a feature ablation
experiment (Table 5). We find that the removal
of stylistic features produces the most detrimental
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performance impacts over time, with decreases to
F1=0.7 and accuracy=0.78 by a GAN training state
of 30 epochs. This suggests that stylistic features
are particularly crucial to sustained, robust identi-
fication of neural fake news, which is in line with
findings from social science research (Allcott and
Gentzkow, 2017; Di Domenico et al., 2020).

Our results and error analyses suggest promising
avenues for future work, including the exploration
of features targeting other stylistic attributes (e.g.,
numeric references), linguistic facets of polariza-
tion (e.g., measures of stance), and lexical coher-
ence. Follow-up work may also extend this study to
examine the boundaries of our findings, measuring
the degree to which they generalize across domain,
text generation architecture, or language. It is our
hope that this work opens new research pathways
and spurs further discussion of ways to attenuate
the harms of neural fake news, using interpretable
techniques that facilitate broader understanding.

8 Ethical Considerations

Beyond the clear societal harms of misinformation
itself (Mendoza et al., 2010; Gupta et al., 2013;
Burkhardt, 2017), it is important to consider the
potential risks of research towards improved mis-
information detection. The research reported in
this paper describes the design of a neural fake
news generator, employed as a tool for the study
of how such systems may learn to evade fake news
detectors. It is possible that others could use this
model for nefarious purposes. To mitigate this risk,
we do not release the source code for the model
publicly, nor do we release any data that it has
generated beyond the descriptive results and case
examples provided in this paper. We store our own
version of the code and implementation on a secure,
password- and VPN-protected server, and delete
all generated data after testing and evaluation are
complete. Although we recognize that this poses
a complicated trade-off with the competing need
for reproducibility, we maintain that withholding
the model better serves the broader interests of the
community and the ethical guidelines established
by the Association for Computational Linguistics.3
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