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Abstract

Recent research on code summarization relies
on the structural information from the abstract
syntax tree (AST) of source codes. It is, how-
ever, questionable whether it is the most effec-
tive to use AST for expressing the structural
information. We find that a program depen-
dency graph (PDG) can represent the structure
of a code more effectively. We propose PDG
Boosting Module (PBM) that encodes PDG
into graph embedding and the framework to
implement the proposed PBM with the existing
models. PBM achieves improvements of 6.67%
(BLEU) and 7.47% (ROUGE) on average.

We then analyze the experimental results, and
examine how PBM helps the training of base-
line models and its performance robustness. For
the validation of robustness, we measure the
performance of an out-of-domain benchmark
dataset, and confirm its robustness. In addition,
we apply a new evaluation measure, SBERT
score, to evaluate the semantic performance.
The models implemented with PBM improve
the performance of SBERT score. This implies
that they generate summaries that are semanti-
cally more similar to the reference summary.

1 Introduction

In the early stage of generating code summaries,
researchers adopted information retrieval tech-
niques (Marcus et al., 2004; Poshyvanyk and Mar-
cus, 2007; Haiduc et al., 2010) to capture source
code semantics. However, code summaries pro-
duced by such techniques are often inaccurate to
use in practice (Wong et al., 2015). With the help of
deep learning, researchers proposed the neural ma-
chine translation (NMT) frameworks that automat-
ically produce summaries from source code (Iyer
et al., 2016; LeClair et al., 2019; Liang and Zhu,
2018; Sridhara et al., 2010). Rather than using code
sequence as a sole input, several models built upon
the Transformer (Vaswani et al., 2017) used addi-
tional data structures and information (Lin et al.,

2021; Shi et al., 2021; Choi et al., 2021) to learn
obscure features that otherwise would be discarded.

Recent studies use pretrained models and im-
plementations of graph structures to improve the
performance of code summarization. Pretrained
models are built upon training a huge quantity of
benchmark datasets within a long period. Code-
BERT (Feng et al., 2020) and CodeT5 (Wang et al.,
2021) are popular pretrained models for various
code-related tasks. The graph embedding is re-
garded as effective on providing code semantics;
especially abstract syntax tree (AST) is the most
popular supplement types for reflecting the hierar-
chical structure of codes. Several researchers used
ASTs and improved the performance of source
code summarization (Alon et al., 2019; Zhang
et al., 2019; Shido et al., 2019; LeClair et al.,
2020). Furthermore, combining with the Trans-
former, there are a few improved models including
mAST+GCN (Choi et al., 2021), BASTS (Lin et al.,
2021), CAST (Shi et al., 2021) and SiT (Wu et al.,
2021).

While ASTs are widely used to capture code
structure information, they cannot capture global
information between tokens well due to the deep
depths (Lin et al., 2021; Shi et al., 2021; Zhang
et al., 2019). Thus, recent researches consider
graphs other than ASTs to capture structural infor-
mation. Lin et al. (2021) pretrain the model after di-
viding the code based on control flow graph (CFG),
and Gao et al. (2021) proposed a method of captur-
ing the global structure by learning the data flow
relationship between variables. Liu et al. (2021)
utilize a new type of graph called code property
graph (CPG), which combines CFG and AST, and
propose a hybrid GNN using CPG.

When models utilize AST as auxiliary informa-
tion, structural information is treated and delivered
by token level representation. Many researchers are
performed through extracting structural informa-
tion from the token representations. However, such
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token representations of ASTs fail to provide se-
mantics of statements and predicates (Zhang et al.,
2019). We perform code summarization by captur-
ing the structural information through a program
dependency graph (PDG) to solve such problem.

We implement the encoder module that takes
PDGs of source codes as inputs to several baseline
models, and evaluate the improvement from our
graph module for the summary generation perfor-
mance of each model. Baseline models we perform
experiments are SiT (Wu et al., 2021) that applies
AST on a transformer and CodeBERT (Feng et al.,
2020), including the Transformer (Ahmad et al.,
2020).

The experimental results of our implementa-
tion show the performance improvements of av-
erage corpus-BLEU 6.67% and Rouge-L 7.47%.
However, these improvements are not sufficient
to demonstrate that our implementation accurately
captures structural information. Thus, we further
ask the following questions based on the initial
experimental results.
RQ1: Is the structural code information such as
graph embedding indeed helpful for generating a
code summary?
RQ2: What difference does the proposed graph
structure have compared to the popularly used AST
and what is better between two graph structures?
RQ3: Does the proposed model show the robust
performance for out-of-domain data?

Our code is available at https://github.
com/sjk0825/coling2022.

2 Related Works

2.1 Sequential-based Approach

Iyer et al. (2016) first proposed a method using a
neural network for code summarization. Wei et al.
(2019) proposed a dual framework that uses the
correlation between code summarization and code
generation tasks. Hu et al. (2018b) proposed a sum-
mary method using API information as well as
sequence information. Ahmad (Ahmad et al., 2020)
proposed a method to effectively capture the long-
range dependency of a code sequence using the
Transformer.

2.2 Graph-based Approach

Wan et al. (2018) applied reinforcement learning
for code summarization after giving AST as se-
quenced information. LeClair et al. (2019) pro-
posed a method that provides sequential and AST

to independent GRUs. Hu et al. (2018a) proposed
traversing the AST in a structure-based traver-
sal method for code summarization. Transformer-
based method for learning has also been proposed.
Choi et al. (2021) proposed AST representing
through GCN based on the Transformer. Wu et al.
(2021) also suggested using a transformer-based
multiview graph.

For other graph types such as CFG and PDG,
the nodes are in a statement level varying from
AST’s nodes in a token level. Such graphs are used
for a code representation method in several studies.
Lin et al. (2021) proposed a method of pretraining
syntax information after splitting based on a control
flow of CFG. Yamaguchi et al. (2014) showed CPG
combined with CFG and AST. Liu et al. (2021)
performed code summarization of CPG through
Hybrid GNN. We also use PDG for code structural
representation to obtain the structure information
of the code.

2.3 Pretrained Model-based Approach

CodeBERT is a bimodal pretrained model that per-
forms the NL-PL task. It is a model for Masked
Language Modeling and Replaced Token Detec-
tion tasks, pretrained with the dataset CodeSearch-
Net (Husain et al., 2019). GraphCodeBERT (Guo
et al., 2021) is the first pretrained model using data
flow. The model was constructed through Masked
Language Modeling, Edge Prediction, and Node
Alignment, and the dataset is CodeSearchNet like
CodeBERT. CodeT5 (Wang et al., 2021) is also an
integrated model of encoder-decoder pretrained for
code related tasks. It was pretrained on tasks such
as Identifier-aware Denoising Pretraining, Identifier
Tagging, and Masked Identifier Prediction through
CodeSearchNet and BigQuery dataset.

3 Methodology

We propose PBM (PDG Boosting Module) which
improves the capability of capturing the structure
information by embedding PDG to the encoder. In
this section, we explain what PDG is and then,
show how our PBM embeds PDG. Finally, we
demonstrate the implementation of our PBM with
the baseline models of the code summarization
task. We illustrate the overview of the framework
implementation of PBM in Figure 2. Our module
applies the PDG to improve the baseline models
but for better analysis, we also develop a module
for ASTs that act the same as our PBM and show

https://github.com/sjk0825/coling2022
https://github.com/sjk0825/coling2022


5968

the experimental results in Section 4.
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public static double log10(double val){    

if (val > 0.0){
return Math.log10(val);
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}
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Figure 1: An example of PDG corresponding to the
JAVA code instance. We represent control flow of the
code with red colored edges and data flow with blue
colored edges.

3.1 Program Dependency Graph

PDG is a type of graph to represent the depen-
dency flow of code in statement level, proposed by
Ferrante et al. (1987). The graph consists of state-
ment nodes and predicated nodes, which express
operators and operands of a source code, respec-
tively. Edges between nodes express dependencies
including data dependency and control dependency.
Depicted in Figure 1, edges in blue color show a
data flow among variables and represent data de-
pendency. Similarly, edges in red color represent
control dependency that corresponds to the depen-
dency influenced by the values of predicate nodes.
In Figure 1, control dependencies starting from a
conditional statement ‘val > 0.0’ depend on
the value of ‘val’. Unlike AST, each node of PDG
contains the partial semantics of a source code in
statement level and each edge shows a connection
between statements. We suspect that such tendency
can express the structural information of the source
code effectively and helps the models to train bet-
ter for generating code summaries. The AST of the
source code in Figure 1 is in Appendix A.

3.2 Graph Embedding

Formally, we represent the input graph as
G(N,Ec, Ed), where N is the set of PDG nodes,
Ec is the set of edges for control dependency
and Ed is the set of edges for data dependency.
An edge (u, v) ∈ Ei for i ∈ {c, d} denotes an
edge from u to v, where u and v are nodes of G.
Given a PDG G(V,E), where E = Ec ∪ Ed, each
edge is represented as an embedding matrix M of
size |N | × |N |. Each node is also represented with

an embedding matrix of the same size to M .
We propose a graph embedding module that

takes an extracted PDG from source codes as inputs.
The extracted PDGs divide codes into statement
level that are embedded as nodes and edges from
the PDGs express the control and data dependen-
cies between nodes. Then, the output of our module
is concatenated with the output of a baseline model
encoder. The detailed implementation is provided
in Section 3.3.

Node Encoder A node encoder extracts struc-
tural information from the input graph. The encoder
follows the structure of a baseline model encoder
and takes the same approach of a baseline for en-
coding inputs. The difference from the encoder of
baselines is that our node encoder calculates the
attention of Key (K), Query (Q) and Value (V ) that
comes from the program dependency.

We present an attention equation for learning
structural information from the graph embeddings.
Given a sequence, let N be the set of nodes that con-
sists of PDG of the sequence. Then, node ∈ N is a
node from the PDG and nodee is an embedding of
node. The following equation of N -Att is the atten-
tion function of the node encoder. Note that Ke, Qe,
and Ve are pooled node representations of nodee
and dK is the dimension of Ke. The node encoder
encodes each nodee as Nodee. When the size of N
is n, the node encoder outputs node representations
Ne, where Ne = (Node1e , . . . , Nodene).

N -Att(Qe,Ke, Ve) = softmax(
E ∗QeK

⊤
e√

dk
)Ve,

E = Ec + Ed.

Node Pooler The node pooler is the process
of pooling tokens within the same node through
a given sequence and statement mask. The se-
quence of token embedding is represented as seqe.
The node pooler takes seqe as an input and out-
puts its corresponding node embedding, nodee.
MASK |seqe| consists of one hot vector and W
is a trainable weight. t is a token in sequence and
k is a sequence length. The following equation
demonstrates the procedure of node pooler.

nodee = ReLU((MASK ∗ seqe) ∗W ),

MASK =

{
1 if tj ∈ node for j = 1, . . . , k

0 otherwise.
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public static double log10( double val ){

if ( val > 0.0  ){

return Math.log10( val );

}

return HUGE_NEGATIVE;

}
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Figure 2: An architecture of PBM. Dashed boxes from the code snippet represent nodes.

3.3 PDG Boosting Module (PBM)

Our PBM module improves the performance of
generating source code summaries by combining
with baseline models. We use the Transformer (Ah-
mad et al., 2020), SiT (Wu et al., 2021), Code-
BERT (Feng et al., 2020) as baseline models. The
encoder of each baseline model is based on a trans-
former and emits token level output. We show how
the separate embeddings of a sequence and graph
for a code instance proceeds and combines in PBM.

Combine Encoder The input sequence consists
of (t1, . . . , tk) tokens. The token passes through
the base encoder (B-encoder) with the embed-
ding vector (t1e , . . . , tke) of tokens and output
Ce = (c1e , . . . , cke) containing sequence informa-
tion. Token representations are concatenated with
Ne = (Node1e , . . . , Nodene) of the PDG module.
Let k be the length of code sequence and n be the
length of node sequence.

Ce = B-encoder(t1e , . . . , tke),

PBM = Concat([Ce;Ne]).

Decoder The decoder for PBM is dependent on
baseline models we combine with. As the encoder
of PBM combines both the sequential information
and node information, the decoder takes the atten-
tion for both information to the target summaries.
Figure 2 illustrates the full architecture of the PBM
module and how PBM is connected to a baseline
model.

4 Experiments and Analysis

Our experiment uses two benchmark datasets
for the code summarization task. The first is
CCSD (Liu et al., 2021) which is the dataset of
C programs and the next is TL-CodeSum (Hu et al.,
2018b) which is the dataset for JAVA programs.
The details of each dataset are illustrated in Ta-
ble 1.

Dataset TL-CodeSum CCSD
Train 69,708 84,316
Valid 8,714 4,432
Test 8,714 4,093

Out-domain Test - 2,440

Table 1: Statistics on the number of data for the bench-
mark datasets.

The evaluation metrics are corpus-BLEU (Pa-
pineni et al., 2002) and ROUGE-L (Lin, 2004)
score that are widely used for the verification
of code summarization performance. We denote
them as BLEU and ROUGE. Additionally, we use
SBERT (Reimers and Gurevych, 2019) score to
address the semantic performance that cannot be
measured by the prior two metrics.

As we apply PBM to baseline models, one exper-
iment is to compare the performance improvements
by adding PBM to baseline models. Another exper-
iment is to check which graph type is more suitable
for our task. For the second question, we consider
two graph types, AST and PDG, each of which is
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constructed from data via joern1 and srcml2.

4.1 Baselines
PBM compare with four code summarization mod-
els that have neural network archtecture. Our base-
line models include models based on the architec-
ture of an RNN and a transformer. We also take a
pretrained model as one of the baseline models.
Seq2Seq is based on the recurrent neural network
architecture. Iyer et al. (2016) proposed a code
summarization using Seq2Seq.
Transformer (Ahmad et al., 2020) is consturcted
from a transformer (Vaswani et al., 2017)-based
model using copy mechanism and relative posi-
tional encoding. Through self-attention of a trans-
former, the long-range dependency of code is effec-
tively captured.
CodeBERT (Feng et al., 2020) is a pretrained en-
coder model with PL-NL bimodal. CodeBERT sup-
ports code-related downstream tasks including the
code documentation generation task. We reproduce
the CodeBERT-base model.
SiT (Wu et al., 2021) is a model trained with multi-
view on the structure of codes. Multiview includes
AST, data dependency and statement. Multiview
is trained through weighted attention at the token
level.

4.2 Evaluation Metrics
Our analysis relies on BLEU and ROUGE as eval-
uation metrics that are popularly used in recent
studies. These metrics check how the summaries
capture the actual words that are used in the refer-
ence summaries. As the metrics only check whether
a token or a sequence of tokens are the same, re-
searchers argue about their reliability (Reiter, 2018;
Mathur et al., 2020). Therefore, we also use another
metric, SBERT (Reimers and Gurevych, 2019)
score, to measure how the generated summaries
capture the semantics of the source code.
BLEU (Papineni et al., 2002) measures the per-
formance of predicted summaries through n-gram
comparison with reference. The average perfor-
mance is measured for the range of n to 1-4.
ROUGE (Lin, 2004) is an n-gram measurement
method based on recall. The Rouge-L we use is the
F-measure of prediction and reference based on the
longest common sequence.
SBERT (Reimers and Gurevych, 2019) is a
siamese network using pretrained BERT and

1https://github.com/joernio/joern
2https://www.srcml.org/

measures the similarity between two sentences
with a fixed sentence representation. We use the
checkpoint, all-mpnet-base-v2 mode for
the evaluation.

4.3 Experimental Setup

Hyperparameter Generally, we follow the same
hyperparameter settings of baseline models to re-
produce performance of the considered models. For
adding our PBM to the baseline models, we set the
size of the PBM layer as the size of an encoder of
the corresponding baseline encoder. However, as
we run experiments with multiple baseline models
and the models attached with PBM, we regulate
some hyperparameters such as batch size, number
of epochs, and learning rate for fair performance
comparison.

Device We conduct experiments on a workstation
on Ubuntu 18.04 with two RTX3090 GPUs. The
version of CUDA and cuDNN for GPU usage are
11.0.3 and 8, respectively.

4.4 Analysis

RQ1: Effectiveness of graph embedding We
implement PBM to baselines for the code sum-
marization task and the performance improved as
shown in Table 2.

Table 2 shows the overall performance of the
experimental models. PBM raises the BLEU and
ROUGE performance of the Transformer, SiT and
CodeBERT. The BLEU performance of the CCSD
benchmark dataset of the three models increases by
7.67% on average after PBM, and the ROUGE is
improved by 10.37%. The BLEU performance of
the TL benchmark dataset is improved by 5.67% on
average after PBM, and the ROUGE is improved
by 4.57%.

Figure 3 shows the generated summaries by base-
line models and the models implemented with PBM
for a given source code instance. Implementation
of PBM captures a word ‘gap’ of the reference
that was not captured in the baseline Transformer
and SiT models. The Transformer captures sequen-
tial information such as ‘calculate’ and ‘true’. But
the model does not capture the objective for the
‘calculate’ word. After PBM application, the Trans-
former captures the object for the calculation. How-
ever, it does not capture the information of cells
being rectangle. The SiT also inferences that the
source code instance is a calculation. In addition,
the SiT captures the information in if-statement of

https://github.com/joernio/joern
https://www.srcml.org/
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TL-CodeSum CCSD
BLEU ROUGE-L SBERT BLEU ROUGE-L SBERT

Seq2Seq 39.12 50.33 0.6333 20.81 23.12 0.3619
Transformer 44.34 53.74 0.6352 24.26 26.50 0.3965
CodeBERT 36.82 50.07 0.6824 22.98 29.06 0.5256

SiT 45.76 55.58 0.6694 25.00 26.83 0.4289
Transformer+PDG ( w/o data dependency ) 45.93 55.21 0.6557 25.38 28.64 0.4326

Transformer+PDG ( w/o control dependency ) 45.91 55.39 0.6580 26.00 29.04 0.4307
Transformer+PDG 46.07 56.68 0.6608 26.83 30.14 0.4419

CodeBERT+PDG ( w/o data dependency ) 40.96 52.59 0.6897 23.73 29.78 0.5235
CodeBERT+PDG ( w/o control dependency ) 41.17 52.91 0.6960 23.37 30.03 0.5241

CodeBERT+PDG 40.75 52.85 0.6968 23.41 29.45 0.5252
SiT+PDG (w/o data dependency ) 45.93 56.66 0.6728 27.30 30.83 0.4452

SiT+PDG ( w/o control dependency ) 46.71 56.50 0.6719 27.26 27.26 0.4417
SiT+PDG 46.86 56.69 0.6752 27.63 31.15 0.4898

Table 2: Our result for Java and C dataset. The best scores for each metric are in bold.

the code that the Transformer omitted. The if state-
ment, however, does not catch the gap of the two
rectangles. On the other hand, after applying PBM,
the SiT captures the semantics of calculating the
gap between two rectangles.

BLEU and ROUGE are performance measures
based on word overlap. These methods consider
the importance of capturing the exact words that
are used in the reference summaries. Even though
widely used, the metrics still have drawbacks that
they cannot capture the semantics of the generated
sequences (Haque et al., 2022). For instance, a code
instance given in Figure 3 has a reference summary
of ‘calculate the gap rectangle between two rect-
angles’. If the model generates a summary such as
‘calculate the gap between rectangles ( a | b ( b )’,
it does not have any defects in semantics. However,
the BLEU and ROUGE score metrics conclude that
the generated summary is not perfect. On the other
hand, summaries illustrated in Figure 3 show the
similar or better BLEU performance to ‘calculate
the gap between rectangles ( a | b ( b )’ even though
the sentence does not make sense.

Therefore, moving forward from only checking
whether the models generate summaries that cap-
ture the words used in the reference, we also imple-
ment an auxiliary evaluation metric SBERT score
to measure the performance in semantics. SBERT
is pretrained from a large corpus of natural lan-
guage sentence pairs and can measure the simi-
larity between sentences. The result of the seman-
tic measurement is depicted in Table 2. SBERT
score increases by 8.53% and 2.30% in CCSD and
TL-CodeSum, respectively. When applied to Code-
BERT, PBM shows weaker performance, but as the

score difference is not critical and as the average
performance compared with other models increases
significantly, we find PBM effective.

RQ2: Comparison with graph types What dif-
ference does the proposed graph structure have
compared to the popularly used AST and what is
better between two graph structures?

We propose the approach that implements a
graph embeddings to capture the structural infor-
mation and semantics by combining both structural
and sequential sequences of a source code instance.
The approach shows that the graph embeddings
and the structural information improves the per-
formance of code summarization. It is, however,
questionable which graph structure is suitable for
generating summaries. Based on the characteristics
of graph structure, we implement AST, a frequently
used graph type and PDG, which we find the most
effective in code summarization.

AST represents auxiliary structural information
widely used in code summarization. AST is a tree
representing the code structure as an abstract syn-
tax and consists of syntax nodes for the grammar
structure of program and syntax tokens for the code
sequence. Each node of AST consists of a single
token used in the source code. The AST for the
source code instance in Figure 3 is in Appendix A.
AST captures the grammar of source code which
is different from that of natural language sequence.
On the other hand, PDG expresses the program
structure with control and data dependency infor-
mation and each node of PDG consists of a segment
of source code in a statement level. In that sense,
the module helps the model to train the code infor-
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private static boolean calculateGap(Rectangle a,Rectangle b,Rectangle gap){
if (a.intersects(b)) {

gap.width=0;
return false;}

int ax1=a.x;
int ax2=a.x + a.width;
int ay1=a.y;
int ay2=a.y + a.height;
int bx1=b.x;
int bx2=b.x + b.width;
int by1=b.y;
int by2=b.y + b.height;
int xOverlap=Math.min(ax2,bx2) - Math.max(ax1,bx1);
int yOverlap=Math.min(ay2,by2) - Math.max(ay1,by1);
if (xOverlap <= 0 && yOverlap <= 0) {

gap.width=0;
return false;

}
if (xOverlap > 0) {

gap.x=Math.max(ax1,bx1);
gap.y=(ay1 > by1) ? by2 : ay2;
gap.width=xOverlap;
gap.height=-yOverlap;

}
if (yOverlap > 0) {

gap.x=(ax1 > bx1) ? bx2 : ax2;
gap.y=Math.max(ay1,by1);
gap.width=-xOverlap;
gap.height=yOverlap;

}
return true;}

Transformer       : calculates true if the rectangle rectangle ( square into keyqualifier so that are drawn in the specified rectangle 
Transformer + PDG : calculate the minimum of the two cells that are equal .

SiT               : calculates true if two rectangles are equal . the rectangles . the bounds .
SiT + PDG         : calculates the gap between two rectangles ( a | b ( b ) .

CodeBERT          : calculates the gap between two rectangles .
CodeBERT + PDG    : calculates the gap between two boxes . returns the size of the gap that is the gap , which is the only valid for a bounding box .

reference         : calculate the gap rectangle between two rectangles

calulateGap

xOverlap = 
Math.min(ax2, bx2) –
Math.max(ax1, bx1)

yOverlap =
Math.min(ay2, by2) -
Math.max(ay1, by1))

xOverlap > 0 yOverlap > 0

gap.width = xOverlap

gap.height = -yOverlap

gap.width = -xOverlap

gap.height = yOverlapreturn true

a. Source code

data depedency

control depedency

b. Subgraph of PDG

Figure 3: An illustrated example of PDG and generated summaries from the baseline models and the ones imple-
mented with PBM.

TL-CodeSum CCSD
BLEU ROUGE-L SBERT BLEU ROUGE-L SBERT

Transformer+AST 45.57 54.86 0.6480 26.51 29.62 0.4413
CodeBERT+AST 40.54 52.41 0.6877 23.36 29.55 0.5222

Table 3: Peformance of AST module.

mation in statement and predicate level.

We analyze the difference between the AST and
PDG modules by comparing the performance of
both implementations. The result is shown in Ta-
ble 3 and by the performance, we confirm that the
implementation of the PDG module is superior in
both capturing the exact words used in the refer-
ence and the semantic similarity.

For a fair comparison, we use the same graph
embedding implementation of PBM and perform
experiments for baseline models, Transformer, SiT
and CodeBERT. Table 3 shows the overall scores
of BLEU, ROUGE and SBERT score of both mod-
ules. For each baseline model, PBM shows the av-
erage of TL-CodeSum performance of BLEU and
ROUGE respectively by 0.8% and 2.1% better than
that of the AST module and the average of CCSD
performance of BLEU and ROUGE respectively
by 0.9% and 0.8% better than that of the AST mod-
ule depicted in Table 3. In addition to this, SBERT

shows that PBM achieves better semantic similarity
than the AST module in TL-CodeSum and shows
similar performance in CCSD.

Aside from the Transformer and CodeBERT, SiT
already uses structural information in the AST. Im-
plementation of AST module results in adding over-
lapped the same information of AST, so we do not
perform additional experiments implementing the
AST module for SiT. We still can confirm that the
usage of PDG information is better than AST im-
plicitly, as the performance of SiT improves when
implementing PBM.

The AST and PDG both use the graph informa-
tion extracted from the same source code but the
performance varies. We find that each node of AST
corresponds to the token of source code sequence
and the structure of a graph is too complex com-
pared to its corresponding source code sequence
to capture a valid structure information. Each node
of the PDG, however, consists of statements rep-
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Figure 4: The performance on CCSD and TL-CodeSum. Regardless of BLEU, the higher the in-domain similarity
is, the higher the out-domain similarity tends to be. Compared with AST, PBM shows a high overall performance
improvement in the three category model.

resenting a relationship between statements in the
form of control and data flow. This makes the PDG
relatively simple and by the results shown in Ta-
ble 3, we find applying PBM more effective than
applying the AST module.

We evaluate the summarization ability of our
module by the ablation study of edges in the PDG.
Edges for PDG represent data and control depen-
dency and we present how our module applying
only one edge type performs on generating sum-
maries in Table 2. The performance of PBM mod-
ules with one dependency edge type shows de-
creased performance compared to the performance
of PBM module with both edge types. So we can
derive that all edge types, control and data depen-
dencies help the model to learn the structural infor-
mation.

RQ3: Robustness of our framework Source
code summarization is a task to generate a sum-
mary sequence for a given source code instance.
Benchmark datasets are important in such research
as the data to train is critical for the model. Most
summaries of datasets are brought from the com-
ments of source codes. In that sense, there is no
specific guideline or tendency of summaries. Sum-
maries can vary depending on the purpose of source
codes and even the users who wrote the source

codes and comments. This is why no model can be
always satisfied for every source code even if the
evaluation result shows good performance. On the
other hand, when source codes and summaries are
brought from the same repository, the data would
have a similar tendency. In such cases, even the test
dataset shares the same tendency and the result is
not reliable as the performance score cannot verify
the model to have such performance in general data.

CCSD Out-Domain
BLEU ROUGE-L SBERT

Seq2Seq 18.70 18.91 0.3619
Transformer 20.16 17.90 0.2974
CodeBERT 20.12 24.95 0.4843

SiT 22.16 20.58 0.3470
Transformer+PDG 21.54 20.58 0.3328
CodeBERT+PDG 20.13 25.08 0.4819

SiT+PDG 23.09 22.93 0.3611

Table 4: Performance of CCSD out-domain dataset. The
best scores for each metric are in bold.

Considering such a problem, there is a need to
evaluate the model with a dataset that has a differ-
ent tendency compared to the train dataset. Such
aspect is called out-of-domain (OOD) and we use
CCSD, the benchmark dataset for C program as
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it contains both an in-domain and out-domain test
dataset. The in-domain test dataset is an original
dataset and the out-domain test dataset is for the
OOD measurement.

Referring to the result of Table 4, performance of
baseline models for the out-domain dataset is lower
than that from Table 2. Such performance decrease
can be up to 10% which is a critical loss. Even for
this case, PBM has a robust performance improve-
ment as Table 4 shows that it can still improve the
performance of baseline models for out-domain
test dataset. The performance of baseline models
improves by 3.63% in average for BLEU score, by
8.97% in average for ROUGE score and by 5.17%
in average for SBERT score after the implementa-
tion of PBM.

5 Conclusions

Recently, there have been several researches for
improving the code summarization (Iyer et al.,
2016; Feng et al., 2020; Ahmad et al., 2020). One
approach is to use the structural information of
source code by extracting its AST (Abstract Syntax
Tree) (LeClair et al., 2020; Shi et al., 2021; Choi
et al., 2021; Wu et al., 2021). While this approach
works better than the one without ASTs, it turns out
that a model with ASTs cannot capture the global
structure owing to deep depth structure (Lin et al.,
2021; Shi et al., 2021; Zhang et al., 2019).

We have studied the limit of this approach and
suggested a new module PBM that utilize PDGs
containing the information of control and data de-
pendencies. We have observed that PBM improves
the performance of baseline models; PBM captures
the structural information of source codes in a state-
ment level. Since BLEU and ROUGE are computed
by matching tokens of the reference summary, we
have considered another metric, SBERT score, for
measuring the semantic difference to fully analyze
the effectiveness of PBM; SBERT score evaluates
the semantic similarity between sentences. The ex-
perimental results have showed that PBM achieves
the performance increase in capturing the seman-
tics of source code in the SBERT score as well. We
noticed that the benchmark dataset of source codes
and summaries can be vulnerable in generalization
of a model. Thus, we have ran additional experi-
ments using an out-domain test dataset of CCSD,
and confirmed that our PBM is effective for the
OOD case as well.

For future directions, we aim to evaluate the

generalizability of the code summarization mod-
els more precisely. In addition to the out-domain
dataset of CCSD, we plan to evaluate PBM with
other benchmark datasets for the OOD measure-
ments. Furthermore, we plan to design a model
that has a consistently good performance on gener-
ating code summaries for different programming
languages.
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A Abstract Syntax tree

We present also the ASTs that are omitted in the main part of the paper. Figure 5 and Figure 6 each
illustrate the AST for the java code instance that was shown in Figure 1 and Figure 3 respectively.
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