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Abstract

Large-scale pretrained language models have
led to significant improvements in Natural Lan-
guage Processing. Unfortunately, they come
at the cost of high computational and storage
requirements that complicate their deployment
on low-resource devices. This issue can be
addressed by distilling knowledge from larger
models to smaller ones through pseudo-labels
on task-specific datasets. However, this can be
difficult for tasks with very limited data. To
overcome this challenge, we present a novel ap-
proach where knowledge can be distilled from
a teacher model to a student model through the
generation of synthetic data. For this to be done,
we first fine-tune the teacher and student mod-
els, as well as a Natural Language Generation
(NLG) model, on the target task dataset. We
then let both student and teacher work together
to condition the NLG model to generate exam-
ples that can enhance the performance of the
student. We tested our approach on two data
generation methods: a) Targeted generation us-
ing the Monte Carlo Tree Search (MCTS) algo-
rithm, and b) A Non-Targeted Text Generation
(NTTG) method. We evaluate the effectiveness
of our approaches against a baseline that uses
the BERT model for data augmentation through
random word replacement. By testing this ap-
proach on the SST-2, MRPC, YELP-2, DB-
pedia, and TREC-6 datasets, we consistently
witnessed considerable improvements over the
word-replacement baseline.

1 Introduction

Transformer-based models have shown wide suc-
cess over a variety of Natural Language Processing
(NLP) tasks. Their ability to scale up to trillions of

∗ Corresponding author

parameters made it possible to acquire and trans-
fer generalized knowledge from large collections
of data to downstream tasks. While these mod-
els can lead to significant improvements in per-
formance, the increasing size of their learning pa-
rameters results in greater complexity and storage
requirements. This can be challenging in real-time
applications, especially on devices with limited
computational resources (Gou et al., 2021). Hence,
reducing the size of these language models without
sacrificing too much of their performance has be-
come the focus of many works in Knowledge Dis-
tillation (KD). Instead of optimizing compressed
models for hard-labeled data, Hinton et al. (2015)
proposed to train a smaller model (the student)
with the task of predicting the probability distribu-
tion outputs (soft labels) from a larger model (the
teacher). This approach has been shown to produce
comparable results between the student and teacher
models, but usually relies on a large enough dataset
through which knowledge can be transferred. To
help improve the student’s learning in KD, large
unlabeled datasets are required (Tang et al., 2019).
Although unlabeled data is cheaper to obtain and
is widespread when compared to labeled data, it
may not be available for every task and application.
We therefore propose to generate synthetic exam-
ples that can be used to transfer knowledge to the
student in downstream tasks.

To overcome the challenges that come with un-
availability of large unlabeled datasets required for
the distillation process, we build a data generation
framework where the Monte Carlo Tree Search
(MCTS) algorithm is applied to help generate ex-
amples that, if added to the student’s training data,
will increase its performance. By taking the dif-
ference between the student’s and the teacher’s
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uncertainty for a generated example, we are able
to force the language generation model to create
examples that can be pseudo-labeled by the teacher
with higher confidence than its student. We make
the assumption that the wider the gap between the
student’s and teacher’s uncertainty for a particular
example, the more likely it is that this example
is correctly pseudo-labeled by the teacher and the
less likely that it is known to the student model.
By training the student on the generated data with
the teacher’s pseudo labels, it is able to improve
its performance by mimicking its teacher’s behav-
ior. To generate examples that meet this condition,
we take advantage of MCTS’s tendency to search
for paths that maximize the reward value, hence,
the uncertainty gap. The intuition here is that the
larger the positive difference in the uncertainty, the
greater the contradiction is between the student
and its teacher, and the more likely that the gener-
ated example is important for the student’s learning
stage. We also show that strong results can still be
obtained with a random generation approach that
does not optimize for a reward function during the
generation process. Instead, it first generates data,
then selects samples that meet the conditions that
are set in the reward function. The contributions of
the paper are:

• We propose Monte Carlo Text Generation
(MCTG), a novel method in KD which uses
MCTS to generate synthetic examples.

• We present Non-Targeted Text Generation
(NTTG), in which data is first generated with
top-k sampling, then filtered on the conditions
of the reward function.

• We show that even when starting with a few
examples per label, we can massively improve
the student’s performance.

The remainder of the paper is structured as fol-
lows: Section 2 provides a background and an
overview of related literature. Section 3 describes
the proposed approach. Section 4 presents the ex-
periments which were carried out. Section 5 gives
conclusions and plans for future work.

2 Background

In the pursuit of improving performance for natural
language processing, pretraining large-scale mod-
els on increasing amounts of unlabeled data has
become a common approach (Devlin et al., 2018;

Peters et al., 2018; Yang et al., 2019). By leverag-
ing the knowledge gained from the pretraining step,
these models have shown impressive performance
on many downstream text tasks, e.g. GLUE and
SuperGLUE benchmarks (Wang et al., 2018, 2019).
However, such improvements are accompanied by
an increasing number of learning parameters, cre-
ating a need for more computational and storage
requirements. To alleviate the aforementioned com-
plexity issues, many have suggested approaches for
efficient training through model optimization e.g.
removal of inefficient or redundant parameters (Lan
et al., 2020; Sajjad et al., 2020), and knowledge
distillation (Gou et al., 2021; Sun et al., 2019, 2020;
Sanh et al., 2019). In knowledge distillation, the
unlabeled data plays an intermediary role, which
allows the teacher to transfer its knowledge through
its predictions. When this data lacks the compo-
nents for a meaningful knowledge transfer, e.g. lim-
itations in size or textual variations, augmentation
techniques can be applied to create additional ex-
amples. For instance, Tang et al. (2019); Jiao et al.
(2019) apply task-agnostic heuristics like word re-
placements, to improve distillation on downstream
tasks. The concept of augmenting training exam-
ples has been successfully shown to improve train-
ing in computer vision (Shorten and Khoshgoftaar,
2019), and has been gaining traction in the NLP
domain as well. This includes word manipulations
such as the deletion, insertion, or addition of ran-
dom words in text (Wei and Zou, 2019), paraphras-
ing or back-translation (Sennrich et al., 2015), and
most recently the application of language models
to predict alternative words (Kobayashi, 2018).

In this work, instead of relying on the above
augmentation techniques, we propose to improve
knowledge transfer by involving the student and
the teacher in the creation of useful examples. We
achieve this through a framework that uses an NLG
model to create examples that are deemed useful
for knowledge distillation. The steps taken to deter-
mine the usefulness of an example are summarized
in Figure 1. In MCTG, we achieve this by explor-
ing MCTS’s ability for finding optimal solutions
which are rewarded by the usefulness of the exam-
ples they represent, as explained in section 3.2.

2.1 Knowledge Distillation (KD)

Knowledge distillation is typically aimed at train-
ing a student model to mimic the behavior of a
larger teacher model. The student can either have
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NOCan teacher 
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Example is less
useful

Figure 1: An example is deemed more useful if the
teacher can confidently label it, but not the student.

the same architecture as its teacher or be completely
different from it, but in either case, it usually has
fewer learning parameters. Hinton et al. (2015)
achieve knowledge distillation by training the stu-
dent model on the softmax probabilities of the
teacher model. Other KD approaches have also
been proposed, which include the distillation of the
activations or weights of the intermediate layers
(Romero et al., 2014; Tarvainen and Valpola, 2017;
Yim et al., 2017; Heo et al., 2019; Cho and Hari-
haran, 2019). In contrast to much work in KD, we
deny both the teacher and its student access to the
full training datasets and only train them on a small
sample of seed data. Hence, our approach does
not depend on pre-existing large datasets for distill-
ing knowledge. Instead, our work focuses on very
small data settings. Hence, we make the propo-
sition that fine-tuning compact models on small
datasets can be aided by the participation of larger
models in a) generating additional training exam-
ples, and b) finding informative examples while
providing pseudo labels.

2.2 Language Models

Traditional context-independent word vectors like
GLOVE (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) were popular choices for
initializing embedding layers for task-specific net-
works. Later works focused on contextualizing
representations by leveraging recurrent neural net-
works (Peters et al., 2018; Howard and Ruder,
2018); most recently, the fine-tuning of pretrained
transformer-based models (Vaswani et al., 2017)
like BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) and GPT-2 (Radford et al., 2019), has
become a common approach for domain-specific
tasks. In our experiments, we generate language
with GPT-2, a unidirectional language model, pre-
trained on large textual datasets with a probabilis-
tic function to estimate the probability distribution
over the vocabulary for a given context. For a

sequence of tokens t1, t2, t3, ..., tn, the joint proba-
bility can be modeled as:

p(t) =
i=n∏
i=1

p(t(i)|t(1), . . . , t(i−1)) (1)

The conditional probability of a token
p(ti|t1:i−1) can be estimated by the probability
distribution over the model’s vocabulary given a
context t1:i−1. Thus, we can generate candidates
for every next token with top-k sampling (Fan
et al., 2018). When a token is selected, and the
process is repeated enough times, a properly
trained model can generate a meaningful sequence
of text. Even though we restrict our approach to
small datasets, our experiments show that GPT-2 is
still able to generate relevant examples.

2.3 Monte Carlo Tree Search (MCTS)
MCTS has been widely applied to gaming theory
(Kocsis and Szepesvári, 2006; Browne et al., 2012).
Its ability to solve decision-making problems in
games with large combinatorial search spaces (Sil-
ver et al., 2016; Arneson et al., 2010; Chung et al.,
2005), has made its application appealing even for
non-gaming problems as well (Nguyen et al., 2016;
Edelkamp et al., 2016). In our previous work, we
showed that MCTS can also be applied to create
synthetic data for text classification tasks (Quteineh
et al., 2020).

MCTS incrementally constructs a tree as it
searches for possible solutions that satisfy the con-
ditions set by its reward function. In computer
games, paths that lead to winning states are more
likely to have higher reward values than paths that
lead to losing states. While any of the winning
paths could be equally desirable, some paths could
have a higher probability of reaching a winning
state than others. By keeping track of the number
of visits MCTS makes with every path it takes, we
can safely assume that winning paths with a higher
number of visits are more likely to reach a winning
state. However, if the path selection criterion fo-
cuses only on maximizing the reward value, it can
repeatedly revisit the same paths while failing to
discover new ones. To account for this, a selec-
tion policy must balance between exploration of
new paths and exploitation of already visited paths.
A common policy that can achieve this balance
is the Upper Confidence Bound (UCB), proposed
by Auer et al. (2002) for solving the multi-armed
bandit problems, as shown in equation 2:
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UCB =
Wi

Si
+ C

√
2× lnSp

Si
(2)

Where for a given state i, Wi represents the num-
ber of paths leading to a winning state, and Si

records the total number of paths from i. The first
part of the equation, Wi

Si
, favors paths that have on

average led to a winning state, whereas the sec-

ond part of the UCB policy, C
√

2×lnSp

Si
, favors

unexplored paths. Sp is the total number of paths
taken from the parent node, and C is an exploration
hyperparameter. A higher C would increase explo-
ration. UCB combined with MCTS is commonly
known as the Upper Confidence Bound for Trees
(UCT) (Browne et al., 2012). The final MCTS
algorithm can be divided into four main stages:

1. Selection: Starting from a root node Sr, the
UCB function from eq. 2 is recursively ap-
plied to select the next node to visit, until an
unexpanded node is reached.

2. Expansion: A non-terminal leaf node is ex-
panded by adding its immediate children. This
corresponds to all the immediate actions that
are possible from that state.

3. Simulation: From the current state, a random
path ending with a terminal state is generated.

4. Backpropagation: Once a terminal node is
reached, statistics including the reward value
and the number of visits are backpropagated
to the nodes of the current path.

Typically, MCTS runs until a predefined crite-
rion is satisfied, e.g. a user-specified time or a
maximum number of iterations. We adapt MCTS
so that each node represents a token generated by
GPT-2, where the possible actions k from a par-
ticular node Si are from a top-k sampling process.
Each full path represents a complete text example
that is rewarded by equation 6.

3 Approach

In this work, we propose the Monte Carlo Text Gen-
eration (MCTG) method (section 3.2), alongside
the Non-Targeted Text Generation (NTTG) method
(section 3.4). In MCTG, we combine MCTS, a
language generation model, a teacher, and a stu-
dent classifier to create synthetic examples that can
enhance the performance of the student in a KD

Generated
Examples

GPT-2

Data Generation
Components 

Reward
Function

Reference
 Model

Target
Model

tk3

BOS

tk3tk1

EOS

tk1

MCTS

tk1 tk2

tk2

Figure 2: MCTS builds a tree from token sequences gen-
erated by GPT-2. Meanwhile, the teacher and student
models work together to reward for completed paths.

setting. Here, the language model is conditioned to
generate examples for which the predictions of the
teacher and its student are as divergent as possible.
The main components of our framework, as shown
in Figure 2, include the language generation model
(GPT-2), a teacher model, a student model, and the
MCTS algorithm. Below we discuss the role of
each component.

3.1 Language Generation Model

Because the search tree is constructed by travers-
ing from top to bottom, a unidirectional generative
model can take tokens of parent nodes as input to
predict candidates for the next node. This unidirec-
tional behavior makes GPT-2 a good choice for our
experiments1. To generate relevant data, GPT-2 is
first fine-tuned on the initial training dataset. We
prepare the data by first dropping the target labels,
then merging the text examples, split by <|endof-
text|>. The fine-tuned GTP-2 is then used to gen-
erate a token for each node, tk, in the constructed
tree, as shown in Figure 2.

3.2 Monte Carlo Text Generation (MCTG)

We refer to the application of MCTS for text gen-
eration as MCTG. Starting from a root node, rep-
resented by a special token, < |endoftext| >, we
sample the top k most probable tokens that come
next in sequence. Having only started from a single
root node, the tree is first expanded by adding the
top k tokens as immediate children, making the
depth of the tree equal to 2. Since at this stage all
child nodes have equal weight, any one of them is
selected. The next step is to start a simulation by

1We use Huggingface https://huggingface.co/

https://huggingface.co/
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first concatenating the token of the selected node
with those of its ancestor nodes. The resulting text
is then passed to GPT-2 to obtain the probability
distribution over the vocabulary, where the top k
tokens are sampled. Given that this process takes
place in the simulation stage, the UCB selection
strategy is not applied; instead, we select a random
token from the non-uniform distribution of the k
tokens. In a standard MCTS implementation, the
path that is navigated in the simulation phase is not
necessarily recorded, but rather the statistics of it
are, e.g. result and number of visits. However, to
account for computational costs, we also track the
generated text at the end of every simulation. It is
important to note that the tokens generated during
a simulation are not added as nodes to the tree, but
are recorded separately. In this way we guarantee
that while the growth of the tree is not affected
during a simulation, we nevertheless retain the gen-
erated text examples with positive rewards. After a
number of iterations, the statistics of the tree nodes
will have changed, allowing higher impact of the
UCB policy (e.q 2) in searching for paths that lead
to examples with the higher reward values.

3.3 Reward Function

This component plays a key role in our approach
as it dictates the usefulness of the generated data.
In a student-teacher KD application, the aim is to
find examples that the teacher model can label with
higher certainty than its student. As entropy mea-
sures the uncertainty of a model’s prediction for
a particular example, the higher the entropy, the
lower the confidence of the classifier in its predic-
tion. This motivates us to generate examples that
can be predicted with low entropy by the teacher,
but high entropy by the student. Hence, when the
difference in entropy between the two models is in-
creased, the more important the generated example
becomes for training the student. Given a gener-
ated text example xu, the predicted probabilities
from a model m are outputs of its softmax layer:

Pm(y) = softmax(f(xu)) (3)

The entropy is thus:

Hn(Pm) = −
n∑

i=1

pi logb pi ·
1

logb n
(4)

where the predicted probabilities Pm = {pi; i =
1, ..., n} for n labels. We take the difference in

entropy between the student s, and the teacher t:

∆ent = ents − entt (5)

The teacher’s confidence and the student’s lack
of confidence in labeling an example are reflected
in ∆ent. For predictions where the teacher’s confi-
dence is at its highest, and the student confidence
at its lowest, ∆ent is maximized. Hence, exam-
ples with high ∆ent are more useful for distilling
knowledge to the student model. For this reason,
we only consider examples where ∆ent is positive.
By finding paths that maximize ∆ent, GPT-2 is
conditioned to generate examples that can be pre-
dicted with the lowest uncertainty by model t, but
with the highest possible uncertainty by model s.
Here we make the following assumptions: a) Exam-
ples that maximize the gap between entropy values
are those most informative to the student model, yet
can be confidently labeled by the teacher model; b)
Training the student on informative examples can
increase its performance. Since the objective is to
find solutions that maximize the reward value, each
generated path is rewarded by ∆ent. To further
optimize the search process, we add the following
refinements to the reward value.

reward =


0, if #tokens < x, x ∈ Z≥0

0, if ∆ent < 0

−1, if task specific condition

∆ent, otherwise
(6)

Condition 1 in equation 6 is a heuristic that penal-
izes examples below a user-defined minimum num-
ber of tokens. Condition 2 minimizes the penalty
for examples where the student model is more cer-
tain in its prediction than its teacher. Condition 3
eliminates cases based on a task-specific condition,
see TREC-6 configuration in section 4.4. Finally,
the fourth condition results in a positive reward
when the teacher is more certain than the student.

3.4 Non-Targeted Text Generation (NTTG)
In NTTG, examples are generated without condi-
tioning GPT-2 on the predictions of the student and
the teacher classifiers. Instead, examples are gener-
ated purely on the probability distributions for the
candidate tokens from GPT-2, then filtered on the
conditions from equation 6. As in the MCTS simu-
lation phase, examples are generated by applying
top-k sampling on the outputs of GPT-2. In top-k
sampling, the probability mass is redistributed over
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the top k most probable choices. At each timestep,
k candidate tokens are sampled based on the previ-
ously generated tokens. A token is then randomly
selected from the k most likely candidates. A se-
quence is completed when a symbol indicating the
end-of-sequence is selected, or when a user defined
maximum sequence length is reached. Due to the
randomness in selecting the next token, a different
sequence can be produced whenever the generation
process is repeated. Once enough examples are
generated, the result data is cleaned by removing
duplicates and short sequences, e.g. less than 3 to-
kens. Next, The entropy, e.q. 4, of both the teacher
and student models is then computed for each re-
maining sample. We denote the student’s entropy
by ents and the teacher’s entropy by entt. With
equation 5, for each sample, we compute the differ-
ence of entropy between the teacher and its student,
∆ent. We then apply equation 6, and select the
examples with ∆ent > 0.

4 Experiments

4.1 Baseline: Conditional BERT (C-BERT)

C-BERT baseline augments the training data by
applying the 12-layer pretrained BERT model to
predict a substitute word for a masked token (Wu
et al., 2019). Each token in an input has a 10%
probability of being masked, i.e., replaced by a
BERT prediction (Kobayashi, 2018). Similar to our
GPT-2 generation for the MCTG and NTTG exper-
iments, the replacement token is selected from the
top-20 tokens given BERT’s probabilities.

4.2 Classification Models

We based our experiments on the pre-trained lan-
guage models provided by Huggingface (Wolf
et al., 2020). For the teacher, we used the 24-layer
RoBERTa, and 2 variants of DistilRoBERTa (Sanh
et al., 2019) for the student; the original 6-layer
DistilRoBERTa, and a 3-layer DistilRoBERTa with
half the layers removed. While 24-layer RoBERTa
has 355 parameters, this is reduced to 82.1 million
in 6-layer DistilRoBERTa, and then to 60.8 mil-
lion in our 3-layer version. For each model, we
appended a linear layer followed by a ReLU activa-
tion, a 0.1 dropout layer, and a linear output layer.
We stabilized training by following the configura-
tions suggested by Mosbach et al. (2020). That is,
we applied the ADAM optimizer (Kingma and Ba,
2014) with a bias correction to avoid vanishing gra-
dients in early training steps. We then trained for

40 epochs with a learning rate of 2× 10−5 that lin-
early increases in the first 10% of the total training
steps and linearly decays to zero afterward.

4.3 Datasets
In an attempt to evaluate our approach under dif-
ferent settings, we considered datasets of multiple
sequence classification tasks. We simulate scarce
data settings by artificially creating an initial train-
ing set of randomly selected seed examples from
the available training data. The language genera-
tion model, and the student and teacher classifiers,
are then fine-tuned on the sampled training data.
The SST-2 (Socher et al., 2013), and Yelp-2 (Zhang
et al., 2015) datasets are for binary sentiment clas-
sification. TREC-6 (Li and Roth, 2002) is a 6-
label question classification dataset, and DBpedia
(Zhang et al., 2015) is a 14-label topic classifica-
tion dataset. Finally, the Microsoft Research Para-
phrase Corpus (MRPC), is for a sentence-pair clas-
sification task (Dolan and Brockett, 2005), where
a model has to predict if the two sentences are se-
mantically equivalent or not. We note that other
data augmentation works have fine-tuned GPT-2
on SST-2, Yelp and TREC (Kumar et al., 2020;
Anaby-Tavor et al., 2020; Feng et al., 2020). For
the SST-2 experiments, from a total of 67,349 sam-
ples, we randomly sampled 30 examples per label
from the GLUE SST training data (Wang et al.,
2018), and evaluated on the provided development
set. The full training dataset for Yelp-2 contains
560K samples. Here, we sampled 20 examples per
label, making a total of 40 training samples. We
then evaluated on the 25,000 test samples. TREC-6
contains 5,452 training examples and 500 testing
examples; as this training dataset is not balanced,
we randomly sampled less than 1.5 percent of the
data for each class, giving us a total of 76 examples.
For DBpedia, we sampled just 3 examples per la-
bel, from a total of 560K instances, making a seed
dataset of 42 training examples. We then evaluated
on the 70,000 test samples. Finally, MRPC consists
of 3,668 training examples of which we sampled
600 per label, making a total of 1,200 training sam-
ples. Our evaluations were on the 1,725 samples
test set.

4.4 Configurations
We configured both MCTG and NTTG to 5k itera-
tions, and the top-k sampling to k = 20 in all our
experiments. We also added a pruning criterion
to limit the maximum length of any sequence to
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Task Teacher
Student Student (Post Distillation) Student

layers Start MCTG NTTG C-BERT Upper-Bounds

SST-2
# Samples

89.9
(60)

6-layers
78.2
(60)

86.1
(1508)

85.3
(402)

83.1
(4718)

91.4
(67349)

3-layers
68.2
(60)

82.3
(3104)

80.7
(734)

75.5
(4718)

89.4
(67349)

DBpedia-2
# Samples

92.3
(42)

6-layers
80.4
(42)

92
(3976)

93.1
(1602)

88.8
(5029)

99.3
(560K)

3-layers
41.1
(42)

91.6
(3940)

90.6
(3271)

84.1
(5029)

99.2
(560K)

TREC-6
# Samples

89
(76)

6-layers
80

(76)
88

(2508)
83.4
(537)

80
(4874)

96.8
(5452)

3-layers
62

(76)
82

(3133)
81

(594)
78.4

(4874)
95.8

(5452)

MRPC
# Samples

84.5
(1200)

6-layers
77.9

(1200)
81.5

(4252)
81.6

(3599)
82.2

(6200)
85.6

(3668)

3-layers
69

(1200)
77.9

(3118)
77.4

(4156)
73.3

(6200)
78

(3668)

YELP-2
# Samples

82.6
(40)

6-layers
85.2
(40)

80.7
(3124)

81.1
(2074)

81.8
(5040)

95.9
(560K)

3-layers
73.9
(40)

78.9
(4278)

77.6
(2828)

76.9
(5040)

94.9
(560K)

Table 1: Teacher-Student Results (in percent, numbers of added examples in parentheses below). The Upper-Bounds
are computed after training the student models on the full training datasets without synthetic data.

Figure 3: Student’s test accuracy after 100, 500, 1k, 2.5k, 5k, 10k, and 20k iterations.
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120 tokens. For MCTG, we set the UCB constant
from eq. 2 to C = 3. As for the reward func-
tion, only for the TREC-6 experiments, we added a
heuristic (see ‘task specific condition’ in eq. 6) to
condition the first token to be a question word by
returning −1 if it was not ‘what’, ‘where’, ‘when’,
‘who’, ‘which’, ‘why’, or ‘how’. For each task, we
made sure the generated text is of appropriate for-
mat for the RoBERTa classification models. This
meant, reward = 0 for GPT-2 outputs that were not
in the format <|endoftext|>x1, . . . xN <|endoftext|>
for single input sentence tasks; TREC-6, SST-2,
Yelp, and DBpedia. As for MRPC, where the in-
put is 2 sentences, the generated data has to be of
format <|endoftext|> x1, . . . xN , [SEP], y1, . . . yN
<|endoftext|>. Where x1 . . . xN and y1 . . . yN are
sequences of tokens. After data was generated, we
selected the examples with a positive reward, see
section 3.3. To avoid high imbalance for the binary
datasets, we limited the number of added examples
to the size of the minority class. For the multiclass
datasets, we limited the selection over the median
from the distribution of generated examples per
label. We then added the selected data to the initial
training data, to form a transfer set. This new trans-
fer set consists of the initial training samples with
the generated data pseudo-labeled by the teacher.

4.5 Results

Results for the teacher-student knowledge trans-
fer experiments are in Table 1. We show the
test accuracy of both the teacher and student (Pre-
Distillation) on the sampled data from section 4.3,
and the student after it has been trained on the sam-
pled data combined with the generated data (Post-
Distillation). We also compute an upper bound
performance by training the 3-layer and 6-layer
DistilRoBERTa models on the full training datasets,
mentioned in section 4.3. This is to give us an es-
timate of the performance that can be achieved
with as much non-synthetic data as possible. Un-
derneath each accuracy score, in parentheses, is
the size of the training data (# Training examples).
For the teacher and the student prior to distillation
(labeled Start in the table), the data sizes are of
the initial training sets, described in section 4.3.
As explained in section 4.2, the teacher model is
a 24-layer RoBERTa, and the student model, is
either a 6-layer DistilRoBERTa, or a 3-layer Distil-
RoBERTa. The “Start” accuracy is achieved after
training only on the initial dataset. For example,

the 24-layer RoBERTa trained on the SST-2 dataset,
of 60 examples, produced a test score of 89.9. This
is a much higher result compared to the accuracies
of the 6-layers and 3-layers DistilRoBERTa mod-
els that were trained on the same dataset, scoring
only 78.2 and 68.2 respectively. We then applied
MCTG, from section 3.2, and NTTG, from section
3.4 to generate distillation data. We fixed the total
number of iterations to 5k. After each iteration, a
sample is generated and only becomes a candidate
for distillation if its ∆ent (equation 5) is positive,
and receives a positive reward as per the conditions
in equation 6. This means less samples are added
to the transfer set from the total generated data.

4.6 Discussion

Overall, results in Table 1 show that our approach
works well with either MCTG or NTTG. It is ev-
ident that a good teacher can always increase the
performance of its student, provided that enough ex-
amples achieve a positive ∆ent (equation 5). This
shows that regardless of the generation method,
equation 5 remains a key component to our ap-
proach. Overall, our approaches, NNTG and
MCTG, lead to better performance improvements
over the C-BERT baseline. Only in MRPC, the
results are similar for the 6-layer student, which
could be attributed to a lower performance gap be-
tween the student and the teacher. Overall, when
compared to the upper-bound results from training
the distilled models on the full training datasets,
the performances we achieve with distillation are
not far off. This might indicate that there is po-
tential room for improvement. With this in mind,
the distilled models only utilized a fraction of the
full training datasets under each task, as explained
in section 4.3. In Figure 3 for each task, we plot
the student’s performance after iterations 100, 500,
2.5k, 5k, 10k, and 20k. As the number of itera-
tions increase, more examples are generated and
thus better performance can be achieved. However,
we notice that at a certain point, the increase in
performance plateaus. To show the importance of
a good teacher, we selected a dataset (Yelp-2), in
which the 6-layer student outperforms its teacher.
Here, the teacher’s overconfidence in incorrect pre-
dictions resulted in noisy data, that degraded its
student’s performance. This shows that the student
can only improve as much as its teacher is able to
provide good labels. We investigate the stability
of the student model, pre- and post-distillation, by
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Task Approach 3-Layers 6-Layers
Start 20K Start 20K

SST-2 MCTG 68.2(±1.67) 83.7(±0.32) 81.85(±1.26) 86.89(±0.396)
NTTG 67.7(±1) 82(±0.69) 81.3(±0.869) 86.9(±0.4)

TREC-6 MCTG 59.86(±4.97) 83(±0.7) 78.6(±1.77) 88(±0.51)
NTTG 60.15(±4.68) 82.6(±0.84) 79.08(±1.65) 86.3(±0.8)

MRPC MCTG 68.5(±2.28) 77.5(±0.55) 79.7(±0.91) 82.7(±0.4)
NTTG 68.2(±2.69) 77.6(±0.49) 79.5(±0.71) 81.5(±0.7)

DBpedia MCTG 52.18(±5.06) 91.3(±0.16) 86(±3.7) 92.3(±0.059)
NTTG 55.7(±4.7) 91.7(±0.13) 85.9(±3.8) 92.8(±0.08)

Yelp-2 MCTG 72.27(±2.84) 79.2(±0.183) 83.29(±1.34) 79.4(±0.175)
NTTG 72.4(±2.3) 78.5(±0.167) 83.95(±1.07) 79.9(±0.22)

Table 2: Mean(± standard deviation), of test accuracy for 10 student model (3-layers and 6-layers) instances, trained
on the initially sampled data and the pseudo-labeled data from the 20k MCTG and NTTG runs.

TREC-6 Examples Teacher Student
What is virtual reality? DESC ENTY
What language was originally
spoken by the Indians?

ENTY LOC

Where is your favourite golf
course?

LOC DESC

SST-2 Examples
a trip from good to bad NEG POS
the kind of script worth watch-
ing

POS NEG

a step down from her best years. NEG POS

Table 3: Examples of data generated for TREC-6 and
SST-2. Wrongly predicted labels are colored in red.

running 10 training instances on the initial data and
on the transfer set from the 20k run. In Table 2, we
show the mean of the test accuracy of 10 trained
instances of the student model. These results are
consistent with Table 1. Overall, the augmented
data leads to better and more stable models, indi-
cated by the higher accuracy and lower variance.
Finally, in Table 3, we show some generated data
from the TREC-6 and SST-2 experiments. All four
examples are remarkably grammatical, natural, and
well-formed.

5 Conclusion

In this paper, we presented an approach for gener-
ating text data in order to improve knowledge dis-
tillation on small datasets. By selecting examples
predicted with the lowest uncertainty by the teacher
and the highest uncertainty by the student, we were
able to improve the student’s performance, some-
times almost to the level of the teacher. Consider-
ing the results, we could argue that reward-based

language generation can complement or even sub-
stitute for heuristic data augmentation approaches
in knowledge distillation. We believe that our ap-
proach can serve as a baseline for reward-based
textual data generation in small data settings. This
will hopefully motivate future research to further
explore reward-based generation methods.
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