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Abstract
Understanding spatial and visual information
is essential for a navigation agent who fol-
lows natural language instructions. The cur-
rent Transformer-based VLN agents entangle
the orientation and vision information, which
limits the gain from the learning of each in-
formation source. In this paper, we design a
neural agent with explicit Orientation and Vi-
sion modules. Those modules learn to ground
spatial information and landmark mentions in
the instructions to the visual environment more
effectively. To strengthen the spatial reasoning
and visual perception of the agent, we design
specific pre-training tasks to feed and better
utilize the corresponding modules in our final
navigation model. We evaluate our approach
on both Room2room (R2R) and Room4room
(R4R) datasets and achieve the state of the art
results on both benchmarks.

1 Introduction

Vision and Language Navigation (VLN) prob-
lem (Anderson et al., 2018) has attracted increasing
attention from the communities of computer vision,
natural language processing, and robotics because
of its broad real-world applications. In this prob-
lem setting, the goal of a navigation agent is to
move to a target location in a photo-realistic simu-
lated environment by following a detailed natural
language instruction, e.g., “Walk into the bedroom.
Walk past the bedroom door. Wait at the laundry
room door.”. Two kinds of simulators are used
to create the dataset and the corresponding prob-
lem formulation: discrete trajectories (Anderson
et al., 2018) and continuous navigation trajecto-
ries (Krantz et al., 2020). In this paper, we work
on the discrete one, that an agent traverses a pre-
defined connectivity graph by selecting the adjacent
viewpoint with a higher probability of correspond-
ing to the instruction at each step.

The earlier research in the VLN area can be di-
vided into two categories. The first category of
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Figure 1: Spatial reasoning helps leveraging orientation clues,
such as left and 90 degree; visual perception ability grounds
mentioned landmarks, such as table, sofa, and chair. With
these two abilities, the agent selects the candidate viewpoint
corresponding to the instruction at each navigation step. The
green arrow shows the ground-truth viewpoint.

models mostly depends on the encoder-decoder
framework for encoding the text and visual in-
formation, establishing the connections between
them with the attention mechanism, and decod-
ing the actions (Anderson et al., 2018; Ma et al.,
2019; Fried et al., 2018). The second category
of works learns to model the semantic structure
which implicitly or explicitly enhances the textual-
visual matching (Hong et al., 2020a,b; Qi et al.,
2020; Zhang et al., 2021; Li et al., 2021; Zhang
and Kordjamshidi, 2022). However, these prior
research are surpassed by the most recently pro-
posed Transformer-based VLN agents (Hong et al.,
2021; Hao et al., 2020; Guhur et al., 2021; Chen
et al., 2021) which capture the cross-modality infor-
mation and demonstrate an outstanding navigation
performance.

As shown in the example of Figure 1, two ma-
jor abilities are important to the navigation agent:
spatial reasoning and visual perception. While
navigation seems to require both of these abilities,
there are cases where understanding even one of
these is sufficient. For example, spatial reasoning
guides the agent towards the correct direction when
the instruction is “90-degree left-turn” or “on your
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right”, regardless of the surrounding visual scene
or objects. In some other cases, visual perception is
sufficient to recognize the mentioned landmarks in
the visual environment after receiving instructions
without any auxiliary signals of orientation, such
as “walk to the sofa” or “pass the table”.

The current Transformer-based agents tend to
intertwine the learning of these two abilities, which
we argue may impede developing a more effective
navigation model. In the light of this, we propose
a new navigation agent with different modules to
select actions based on orientation and vision per-
spectives separately. Moreover, we design specific
pre-training tasks to distil more explicit spatial and
visual knowledge, which is better utilized in the
corresponding modules in our navigation agent.
This is different from the majority of methods em-
ploying pre-training tasks without considering the
needs of the target downstream tasks. Our modular
design interacts with modular pre-training, guiding
the agents to generate specialized features which
can be better adapted to the downstream tasks.

Specifically, in the downstream navigation task,
in order to utilize the learnt spatial and visual in-
formation, we design a framework, called LOViS.
It contains three modules, namely, history mod-
ule, orientation module, and vision module. In the
history module, the agent uses the previous step’s
information to determine which tokens in the in-
struction it should pay attention to. And then, the
agent learns to connect such attended tokens to the
corresponding visual information to finally make
a history-based action decision. In the orientation
module, the agent only focuses on orientation infor-
mation in the instruction (e.g., left and 90 degree),
and then grounds them to the vision environment
to make an orientation-based action. Likewise, in
the vision module, the agent is encouraged to focus
on the mentioned landmarks in the instruction (e.g.,
table, lamp and chair), and ground them into the
vision to obtain a vision-based action decision. Fi-
nally, the agent combines the action decisions of
three modules to make the final decision.

In the pre-training process, we propose two spe-
cific pre-training tasks, namely Orientation Match-
ing (OM) and Vision Matching (VM), to learn ori-
entation and vision information, respectively. Be-
sides, we modify two commonly used pre-training
tasks for navigation: Masked Language Modeling
(MLM) and Single Step Action Prediction (SSAP),
to obtain better cross-modal representations for the

downstream navigation model.
In summary, our contributions are as follows:

1. Unlike previous models, our novel Transformer-
based agent includes two new modules to capture
the orientation and visual information signals
separately. This benefits the agent from both of
these information sources to select an action more
effectively.
2. We design new pre-training tasks to empha-
size (a) learning spatial reasoning and grounding
the orientation information in the environment; (b)
learning visual perception and grounding landmark
mentions in the environment. These pre-training
representations are utilized in the corresponding
modules in the navigation model.
3. Our method exceeds the current SOTA results
on both Room2room and Room4Room benchmarks.

2 Related Work

Vision-and-Language Navigation Many deep
learning methods (Tan et al., 2019; Hong et al.,
2021, 2020a) for VLN tasks have been proposed in
the past few years. For example, Anderson et al.
(2018) firstly proposed a Sequence-to-Sequence
baseline model to encode the instructions and de-
code the embeddings to the low-level action se-
quence with the observed images. SF (Fried et al.,
2018) generates the augmented samples to address
the generalization issues and extends the low-level
space to panoramic action space. RelGraph (Hong
et al., 2020a) builds an implicit language-visual en-
tity relation graph to learn the connection between
the text and vision modalities. EXOR (Zhang and
Kordjamshidi, 2022) first splits the long instruc-
tions into spatial configurations (Dan et al., 2020;
Zhang et al., 2021; Kordjamshidi et al., 2010).
Then they explicitly align the landmarks and spatial
relations in the spatial configuration to the corre-
sponding information in the visual modality. In
terms of learning spatial and vision information
separately, OAAM (Qi et al., 2020) is the earliest
attempt that decomposes the instruction into action
and object phrases and related them to the visual en-
vironment to make the final decisions. NvEM (An
et al., 2021) extends OAAM to divide object mod-
ule to subject and reference modules and fuse the
information from the neighbor views. However, to
our best knowledge, there is no work investigating
how to model spatial and visual information in the
Transformer-based VLN agent.
Transformer-based Navigation Agent Compared
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Figure 2: Our proposed LOViS contains three modules: history module, orientation module and vision module. Each module
can generate action decision based on different reasoning, then three actions are combined to determine the final action selection.

with conventional methods, the Transformer-based
model in VL tasks show great improvements (Tan
and Bansal, 2019; Chen et al., 2019; Lu et al.,
2019; Li et al., 2020). However, different from
conventional VL tasks (i.e., image captioning), the
VLN task requires learned representation to fa-
cilitate the action selection, which is a Markov
Decision Process. Therefore, the VLN needs to
learn the correspondence between language and
dynamic visual observation by interacting with
the environment. In the past few years, the VLN
task has been formulated as a dynamic grounding
problem between texts and images. PRESS (Li
et al., 2021) firstly fine-tunes a pre-trained lan-
guage model BERT to obtain the text represen-
tation. PREVALENT (Hao et al., 2020) trains a
VL Transformer with a large amount of image-text-
action triplets to learn cross representations for the
navigation task. RecBERT (Hong et al., 2021) de-
signs a state unit to store history information and
train Transformer recurrently for the direct nav-
igation. HAMT (Chen et al., 2021) proposes to
explicitly encode all past observations and actions
as history. Also, they improve the performance
by changing the fixed vision features to the Vi-
sion Transformer, ViT (Dosovitskiy et al., 2020).
However, all of those transformer-based models en-
tangle the learning of spatial information and visual
information. Furthermore, prior works (Chen et al.,
2021; Qiao et al., 2022) design the pre-training
tasks without considering the adaption to the down-
stream model. Our work designs different modules
to better utilize the learnt spatial and visual infor-

mation from the pre-training.

3 Method

3.1 Problem Description

In this task, formally, the agent is given an instruc-
tion W = {w1, w2, · · · , wL}, where w represents
tokens and L is the number of tokens. At each
time step t, the agent observes a panorama which
consists of 36 discrete images 1, which are denoted
as Ip = {Ip1 , I

p
2 , · · · , I

p
36}. There are k navigable

viewpoints in those panoramic views that the agent
can navigate to. We denote the navigable view-
points as Ic = {Ic1, Ic2, · · · , Ick}. In our model, to
focus on the relevant observations in the visual en-
vironment, we only use the navigable viewpoints
rather than all 36 images in the whole panoramic
view.

The goal of the task is to select the next view-
point among navigable viewpoints which forms a
trajectory that takes the agent close to a goal des-
tination. The agent terminates when the current
viewpoint is selected or a pre-defined maximum
number of navigation steps have been reached.

3.2 Background

Following (Hong et al., 2021), we design text en-
coder, vision features, and a recurrent state unit.
Text Encoder We first apply BERT tokenizer to
split the text instruction to a sequence of tokens:
{[CLS], w1, w2, · · · , wL, [SEP ]}, where L is the
number of tokens, and [CLS] and [SEP ] are the

112 headings and 3 elevations with 30 degree intervals.
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special tokens. Text embedding of each token is
obtained by summing up the token embedding,
position embedding and type embedding of text.
Then the text embedding is passed through a text
encoder, a standard multi-layer Transformer with
self-attention, to obtain the contextual representa-
tion, represented as X = {x1, x2, · · · , xL}.
Vision Features For each navigable viewpoint,
we consider its vision and relative orientation
features. Specifically, we use ResNet-152 (He
et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015) as 2048-d vision representation. We
repeat relative heading α and elevation β fea-
tures [sinα; cosα; sinβ, cosβ] 32 times to con-
stitute a 128-d orientation feature as Op. For-
mally, we denote the vision and orientation rep-
resentations for the the navigable viewpoints as
V = {v1, v2, · · · , vk} and O = {o1, o2, · · · , ok},
respectively.
Recurrent State Unit The recurrent state unit
stores the history information from the previous
steps. At each time step, the navigation agent takes
three inputs: the state representation st, the lan-
guage representation X , and the vision represen-
tation Vt. For the next navigation step, the state is
refined using the text information and the current
observations in the visual environment as follows,

st+1 = NAV (st, X, Vt), (1)

where NAV is the navigation model. In three mod-
ules from our model, state representation are ini-
tialized with the [CLS] representation in the text
encoder. In our model, we assign the state rep-
resentation to three different modules to consider
different information.

3.3 Our Model: LOViS
Our proposed model (LOViS) has three main mod-
ules: history module, orientation module, and vi-
sion module, as depicted in Figure 2.
History Module The History Module receives
three types of inputs: state representation st (see
“state” in Figure 2), text representation X , and
“vision-orientation” representations. To obtain
“vision-orientation” representation, we feed the con-
catenation of vision and orientation representations
to a “vision-orientation encoder" (see Figure 2).
We denote “vision-orientation” representation as
˜V O = {ṽo1, ṽo2, · · · , ṽok}. Then we use cross-

modal attention layers and self-attention layers to
obtain the cross representation. In cross-modality
attention Transformer layers, one modality is used

as a query and the other as the key to exchange
information as follows,

X̂, ŝt, ˆV Ot = Cross_Attn(X, [st;V Ot]), (2)

where X̂ , ŝt, and ˆV Ot are respectively updated
state, text and “vision-orientation” representations
after cross modality attention layers. Then state and
“vision-orientation” representations are fed into self-
attention Transformer layers:

st+1, p
h
t = Self_Attn([ŝt; ˆV Ot]) (3)

where st+1 is the updated state after self-attention
layers. pht is the self attention score between state
representations and “vision-orientation” represen-
tations. Note that the refinement of the state repre-
sentation only happens in the history module.
Orientation Module Orientation information is
vital for the navigation task. For example, the
instruction, “turn left" can assist the agent to ig-
nore the navigable viewpoints on the right side. In
our work, we build an orientation module specif-
ically to encourage the agent to learn the spatial
information from the instructions and ground it in
the visual environment. Specifically, we linearly
project the orientation features O (refer to the nota-
tions in Section 3.2) via the “Orientation Encoder”
(see Figure 2) to obtain its projected representation,
denoted as Õ. Then we input the state represen-
tation st, text representation X , and the projected
orientation representation Õ to the cross-modality
attention Transformer layer. The orientation mod-
ule learns a new state representation, denoted as
sot , for orientation information (see “State-O’ in
Figure 2). For cross-model attention layers, we
have:

X̂o, ŝot , Ôt = Cross_Attn(X, [sot ; Õt]) (4)

where X̂o, ŝot , Ôt are updated state, text, orienta-
tion representations after cross modality attention
layers in the orientation module. Then we use the
state representation enriched with the orientation
information to perform self-attention with orienta-
tion representations as follows.

pot = Self_Attn([ŝot ; Ôt]) (5)

where pot is the attention score between state repre-
sentation and orientation feature.
Vision Module Connecting mentioned landmarks
in the instruction to the scene and objects in the
visual environment is also important to the nav-
igation task. In the instruction, “enter into the



5749

bedroom and move close to TV.”, The mentioned
landmarks, such as “bedroom” and “TV”, provide
apparent clues for the navigation actions. Like the
orientation module, we build a vision module to
ground the text landmarks in the visual scene and
objects. Specifically, we first project vision repre-
sentations V (refer to the notations in Section 3.2)
using “Vision Encoder” (see Figure 2) to obtain
the projected visual representation, denoted as Ṽ .
Then we input the state representation st, text rep-
resentation X , and projected vision representation
Ṽ to the cross-modal attention and self-attention
layers as follows,

X̂v, ŝvt , V̂t = Cross_Attn(X, [svt ; Ṽt]), (6)

pvt = Self_Attn([ŝvt ; V̂t]), (7)

where svt is the new state representation consider-
ing visual information (see “State-V” in Figure 2).
X̂v, ŝvt , V̂t are updated state, text, vision represen-
tations after cross modality attention layers in the
vision module. pvt is the attention score between
state representation and vision representations.
Action Selection For each navigable viewpoint, we
obtain the self-attention scores from 1) orientation
state representation to its orientation representation
(orientation module), 2) vision state representation
to the vision representation (vision module), 3)
state representation to the combined orientation
and visual representations (history module). We
combine these scores as follows:

pt = Softmax(Wa[p
h
t ; p

o
t ; p

v
t ]) (8)

where wa is the trainable parameter, and pt denote
the action probability which weights different mod-
ule scores.

4 Training and Inference

We train our model with the mixture of Imitation
Learning (IL) and Reinforcement Learning (RL)
following (Tan et al., 2019). It minimizes the cross-
entropy loss of the prediction and ground-truth tra-
jectories by following teacher actions for each nav-
igation step. RL samples an action from the action
probability pat and learns from the rewards. The
loss function is the following:

l = −
∑
t

as
t log(p

a
t )− λ

∑
t

a∗
t log(p

a
t ) (9)

where a∗t is the teacher action, ast is the sampled
action from RL, and λ is the coefficient to balance
two training goals. During inference, we use the
greedy search to select the viewpoint with highest
probability and finally generate the trajectory.
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Figure 3: Pre-training Model with Specific Pre-training Tasks.
V-O is the encoder considering both orientation and vision
representations. MLM: Masked Language Modeling; SSAP:
Singe Step Action Prediction; OM: Orientation Matching;
VM:Vision Matching.

5 Pre-training

We follow the model architecture of PREVA-
LENT (Hao et al., 2020) to obtain the joint
cross representations trained on text-image-action
triplets, as shown in Figure 3. However, the nov-
elty of our pre-training is that we design new tasks
named Vision Matching (VM) and Orientation
Matching (OM) to pretrain for the vision module
and orientation module designed in our navigation
agent, as shown in Figure 2. Moreover, we improve
the existing pre-training tasks of the PREVALENT,
Masked Language Modeling (MLM) and Single
Step Action Prediction (SSAP), to obtain a more ef-
fective initialization of our new architecture. Here,
we describe the details of all the pre-training tasks
while their effects is described in Section 6.5.1. In
the following tasks, we denote each instruction-
trajectory pair in training set D as < w, τ >.
Masked Language Modeling (MLM) Different
from PREVALENT (Hao et al., 2020) masking of
random tokens, we mask direction and landmark
tokens with 8% probability and replace them with
special token [MASK]. The goal is to recover
landmark or orientation tokens wm by reasoning
over the surrounding words w\m, and the orienta-
tion and visual observation at the each navigation
step. We denote the combination of orientation and
vision features of panorama views as V Op. Land-
mark tokens are usually the token related to scene
or objects in the visual environment, such as “ ta-
ble”, “sofa”, and “bedroom”. We extract nouns as
landmark tokens based on their pos-tag. The di-
rection tokens usually convey spatial information,
such as “left”, “right”, and “forward”. We obtain
direction tokens using a direction dictionary built
upon R2R training dataset. The loss of MLM is



5750

calculated as follows,

LMLM = −EV Op˜P (τ),(w,τ)˜D logP (wm|w\m, V Op),
(10)

Single Step Action Prediction (SSAP) PREVA-
LENT (Hao et al., 2020) selects actions by mapping
the [CLS] representations to the 36 classes directly,
which may cause the loose connection between
cross-modal representations of the viewpoints and
the action space. To address this issue, we use the
cross attention distribution from the [CLS] repre-
sentation to the images in the panoramic view to
select an action. We use the cross-entropy loss to
compute the loss of SSAP, as follows,

LSSAP = −EOV p˜P (τ),(w,τ)˜D logP (a|w[CLS], V Op),
(11)

where a is the ground-truth action.
Vision Matching (VM) VM is our novel pre-
training specific for initializing our vision module.
It predicts whether the current vision information
can match with the instruction. In this task, to en-
courage the agent to focus on learning the connec-
tion between landmarks in the instruction and the
scene objects in the visual environment, we only
use the vision representation (i.e. excluding the
heading and elevation) of viewpoint as the input,
denoted as vp. We generate the negative samples by
replacing the ground-truth images with an images
from another environment. We use the output rep-
resentation of the [CLS] as the joint representation
of textual and visual features to feed to a fully con-
nected layer with a sigmoid function. This layer
predicts the matching score s(w, vp). The loss of
SSAP is computed as follows,

LV M = −Evp˜τ,(w,τ)˜D[y logP + (1− y) logP )], (12)

where P = s(w, vp), and y ∈ {0, 1} indicates
whether the sampled viewpoint-instruction pair is
matching.
Orientation Matching (OM) Our second novel
pre-training task is designed to learn the orientation
representations. We propose to predict the current
orientation based on the instruction and the initial
orientation. As described before, the orientation
feature Op is the combination of the heading α and
elevation β. We use the output representation of
[CLS] as the joint representation of instruction and
orientation. Then we feed this to a fully connected
layer to predict 4-bits of orientation features. The
loss of OM is computed as follows,

LOM = −Eop˜τ,(w,τ)˜D log p(O′|w[CLS], Op), (13)

where O′ is the ground-truth orientation feature.
The full pre-training objective is

Lpre−train = LMLM + LSSAP + LV M + LOM . (14)

6 Experiments

6.1 Dataset

Two VLN datasets are used in evaluation: R2R (An-
derson et al., 2018) and R4R (Jain et al., 2019).
R2R builds upon the Matterport3D dataset. This
dataset has 7198 paths and 21567 instructions with
an average length of 29 words. The whole dataset
is partitioned into training, seen validation, unseen
validation, and unseen test set. The seen set shares
the same visual environments with the training set,
while unseen sets contain different environments.
R4R extends the R2R dataset with longer instruc-
tions and trajectories by concatenating two adja-
cent tail-to-head trajectories in R2R. Different from
R2R, the trajectories in R4R are less biased as they
are not necessarily the shortest path from the start
viewpoint to the destination.

6.2 Evaluation Metrics

We mainly report three evaluation metrics for R2R.
(1) Navigation Error (NE): the mean of the shortest
path distance between the agent’s final position
and the goal location. (2) Success Rate (SR): the
percentage of the cases where the predicted final
position is close within 3 meters from the goal
location. (3) Success rate weighted by normalized
inverse Path Length (SPL) (Anderson et al., 2018):
normalizes Success Rate by trajectory length. It
considers both the effectiveness and efficiency of
navigation performance.

In terms of the metrics for the R4R benchmark,
besides the basic metrics same as R2R, NE, SR,
and SPL, R4R includes additional metrics: the Cov-
erage Weighted by Length Score (CLS), the Nor-
malized Dynamic Time Warping and the nDTW
weighted by Success Rate (sDTW). In R4R, SR
and SPL measure the performance of the naviga-
tion, while CLS, nDTW and sDTW measure the
fidelity of the predicted paths.

6.3 Implementation Details

Please check our code 2 for the implementation.
Pre-training We use 4 GeForce RTX 2080 GPUs
for pre-training. The batch size for each GPU is
28, and the training time is around 22 hours. The

2https://github.com/HLR/LOViS

https://github.com/HLR/LOViS
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Val seen Val Unseen Test(Unseen)
Method NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL ↑

1 Speaker-Follower (Fried et al., 2018) 3.36 0.66 - 6.62 0.35 - 6.62 0.35 0.28
2 Env-Drop (Tan et al., 2019) 3.99 0.62 0.59 5.22 0.47 0.43 5.23 0.51 0.47
3 OAAM (Qi et al., 2020) - 0.65 0.62 - 0.54 0.50 5.30 0.53 0.50
4 RelGraph (Hong et al., 2020a) 3.47 0.67 0.65 4.73 0.57 0.53 4.75 0.55 0.52
5 NvEM (An et al., 2021) 3.44 0.69 0.65 4.27 0.60 0.55 4.37 0.58 0.54
6 PRESS (Li et al., 2019) 4.39 0.58 0.55 5.28 0.49 0.45 5.49 0.49 0.45
7 PREVALENT (Hao et al., 2020) 3.67 0.69 0.65 4.71 0.58 0.53 5.30 0.54 0.51
8 AirBERT (Guhur et al., 2021) 2.68 0.75 0.70 4.01 0.62 0.56 4.13 0.62 0.57
9 RecBERT (Hong et al., 2021) 2.90 0.72 0.68 3.93 0.63 0.57 4.09 0.63 0.57
10 HAMT (Chen et al., 2021) - 0.69 0.65 - 0.64 0.58 - - -
11 RecBERT* 2.99 0.71 0.66 4.03 0.61 0.56 4.35 0.61 0.57
12 Our pretrain + RecBERT 2.90 0.74 0.69 3.75 0.63 0.58 4.20 0.63 0.57
13 Our pretrain + LOViS (our model) 2.40 0.77 0.72 3.71 0.65 0.59 4.07 0.63 0.58

Table 1: Experimental Results Comparing with Baseline Models on R2R Benchmarks in a single-run setting. The best results
are in bold font. * denotes our reproduced R2R results.

Val Seen Val Unseen
Method NE↑ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑

EnvDrop* (Tan et al., 2019) - 0.52 0.41 0.53 - 0.27 - 0.29 0.18 0.34 - 0.09
OAAM (Qi et al., 2020) - 0.56 0.49 0.54 - 0.32 - 0.29 0.18 0.34 - 0.11
NvEM (An et al., 2021) 5.38 0.54 0.47 0.51 0.48 0.35 6.80 0.38 0.28 0.41 0.36 0.20

RecBERT* (Hong et al., 2021) 4.82 0.56 0.46 0.50 0.56 0.38 6.48 0.43 0.32 0.41 0.42 0.21
LOViS (our model) 4.16 0.67 0.58 0.56 0.58 0.43 6.07 0.45 0.35 0.45 0.43 0.23

Table 2: Experimental Results for comparing LOViS with the Baseline Models on R4R dataset in a single-run setting. The best
results are in bold font. * denotes our reproduced R4R results.

learning rate is 5e− 5, and the AdamW optimizer
is adopted. The language Transformer has nine lay-
ers, and the cross-modality Transformer has four
layers. The models’ parameters are initialized with
the weights of PREVALENT (Hao et al., 2020).
Fine-tuning We directly adapt different encoders
and Transformer layers from our pre-training
model to our navigation model. The navigation
model is further trained in 30k iterations with learn-
ing rate 1e − 5. The batch size is 28. The best
performance is selected according to the best SPL
of the validation unseen set. For R2R, we use the
same augmented data as in (Hong et al., 2021) for
a fair comparison.

6.4 Comparisons with SoTA

Table 1 shows the experimental results of different
VLN methods on R2R benchmarks in a single-run
setting. In this table, row#1 to row#5 show the re-
sults of the LSTM-based navigation agents. From
row#6 to row#10 are Transformer-based navigation
agents that largely have improved the performance
of the LSTM-based agents. PREVALENT (Hao
et al., 2020) pre-trains the cross-modal representa-
tions with text-image-action triplets and replaces
the encoder of Env-Drop (Tan et al., 2019) to im-
prove its performance. AirBERT (Guhur et al.,
2021) is one of the SOTA methods that train a
model on a large scale and diverse in-domain de-
tests. RecBERT(Hong et al., 2021) , our baseline,

is also a SOTA method that uses the attention dis-
tribution of the history information on navigation
candidates to determine the next action. Row#10
is their own reported results in their paper, and
row#11 shows our best reproduced results which
is consistent with the reported results in (Liu et al.,
2021). Row#12 and row#13 are the performance
of our LOViS model. We first show the effective-
ness of our pre-training on the baseline model. Our
pre-training setting can improve the SR and SPL
of baseline by about 2% in the unseen validation
environment. Moreover, we further improve the
performance of the baseline with our designed nav-
igation model and the pre-training setting. The
improvement is about 3% of SR and SPL in the
seen environment and 2% of SR in the unseen vali-
dation and test environment. This result indicates
our pre-training tasks are more suitable for our de-
signed navigation model. We also obtain a lower
NE showing that our agent navigates closer to the
destination. For HAMT (Chen et al., 2021), we re-
port their results with ResNet-152 as the vision en-
coder for a fair comparison. Among those methods,
only OAAM (Qi et al., 2020) and NvEM (An et al.,
2021) consider the semantics of spatial information
and visual perception, but their results have a large
performance gap compared to our Transformer-
based navigation model.

Table 2 shows the performance of various mod-
els on R4R benchmark in a single-run setting.
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Baseline Model LOViS (Our Model)
Val Seen Val Unseen Val Seen Val Unseen

Tasks SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑
1 MLM 0.712 0.662 0.613 0.562 0.724 0.673 0.621 0.564
2 MLM+SSAP 0.731 0.675 0.619 0.575 0.747 0.695 0.649 0.585
3 MLM+SSAP+VM 0.737 0.683 0.622 0.577 0.755 0.711 0.637 0.581
4 MLM+SSAP+OM 0.730 0.672 0.617 0.574 0.766 0.724 0.629 0.579
5 MLM+SSAP+VM+OM 0.743 0.691 0.632 0.583 0.774 0.722 0.653 0.592

Table 3: Ablation Study for Different Tasks of Pre-training on the Baseline and LOViS.

Val Seen Val Unseen
Modules SR↑ SPL↑ SR↑ SPL↑

1 H 0.743 0.691 0.632 0.583
2 H+O 0.756 0.712 0.629 0.576
3 H+V 0.762 0.718 0.642 0.588
4 H+O+V 0.774 0.722 0.653 0.592

Table 4: Ablation Study for Different Modules in Model. H:
History Module; O: Orientation Module; V: Vision Module.

Same as R2R, we can better perform in all eval-
uation metrics. Compared to the our reproduced
results of the RecBERT (Hong et al., 2020a), we
can improve 4% of CLS, 1% of nDTW, and 2%
of sDTW in the unseen validation environment,
which indicates the significantly better fidelity of
our model.

6.5 Ablation Study

6.5.1 Ablation Study of Different Tasks
In Table 1, we already observe that our pre-training
strategy improved the RecBERT baseline. In Ta-
ble 3, we show the influence of each pre-training
task on both RecBERT and LOViS. For RecBERT
baseline model, SSAP shows about 2% of improve-
ment on both seen and unseen environments. Al-
though the tasks of VM and OM independently
do not change the performance of MLM+SSAP,
the combination of two tasks improves the perfor-
mance by about 1%. The same phenomenon hap-
pens in LOViS. SSAP improves the performance by
a large margin. Although VM and OM do not show
significant improvement when used separately in
the unseen environment, they improve both SR and
SPL in the seen environment. The combination
of VM and OM improves the performance signifi-
cantly, especially in the seen environment.

6.5.2 Ablation Study of Different Modules
Table 4 shows the ablation of different modules.
Based on row#1, the history module with our pre-
training strategy has already improved its perfor-
mance. Comparing row#2 and row#3, we can see
that vision module affects the results more than
the Orientation module. The combination of two
modules with our pre-training strategy achieves

V1
(1.74, -0.19)

V3
(3.30, -0.08)

V4
(4.17, 0.54)

V5
(5.06, -0.07)

V6
(4.95, 0.20)

Instruction: Continue down the stairs, and take a left. 

Orientation Module

Vision Module

History Module

V2
(2.44, -1.05)

Final Decision

Figure 4: Qualitative Example. The ground-truth viewpoint
is v1. The word “down” and “left” are the orientation signals.
The word “stairs” is the vision signal. The attention map
shows the score of different candidate viewpoints in each mod-
ule. The darker color means the higher score. The numbers
below each viewpoint show the orientation information with
the format of <relative heading, relative elevation>. The lower
value of each number means the orientation is more towards
left and down respectively.

the best performance (row#4). This indicates that
our designed explicit modules can assist the agent
in choosing the correct action based on different
information.

6.6 Qualitative Example

Figure 4 shows a qualitative example that demon-
strates the performance of each module of LOViS
navigation agent. It is evident that the orientation
module gives a higher score to the viewpoints that
are left, and their elevation is down. The vision
module gives a higher score to the viewpoints that
“stairs” can be seen. The history module also gives
a relatively higher score to the viewpoints on the
right side. The final decision is v1 with its weights
of [0.02,−0.03,−0.04] to the three modules. The
example shows that our designed orientation and
vision modules can attend to the viewpoint with the
corresponding information.

7 Conclusion

The main idea of this paper is to design explicit
vision and orientation modules in the neural archi-
tecture of a navigating agent. These modules can
effectively learn to ground the landmark mentions
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and spatial information related to the orientation
of the agent expressed in the natural language in-
struction into the visual environment. To make the
designed modules more effective, we design new
pre-training tasks accordingly to equip the agent
with spatial reasoning and visual perception abili-
ties before navigation. We evaluate our model on
R2R and R4R datasets and achieve state-of-the-art
results. Our ablation study shows the effectiveness
of our designed modules and pre-training tasks.
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