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Abstract

Learning visual and textual representations
in the shared space from web-scale image-
text pairs improves the performance of diverse
vision-and-language tasks, as well as modality-
specific tasks. Many attempts in this framework
have been made to connect English-only texts
and images, and only a few works have been
proposed to extend this framework in multilin-
gual settings with the help of many translation
pairs. In this multilingual approach, a typical
setup is to use pairs of (image and English-text)
and translation pairs. The major limitation of
this approach is that the learning signal of align-
ing visual representation with under-resourced
language representation is not strong, achiev-
ing a sub-optimal performance of vision-and-
language tasks. In this work, we propose a sim-
ple yet effective enhancement scheme for pre-
vious multilingual multi-modal representation
methods by using a limited number of pairs of
images and non-English texts. In specific, our
scheme fine-tunes a pre-trained multilingual
model by minimizing a triple contrastive loss
on triplets of image and two different language
texts with the same meaning, improving the
connection between images and non-English
texts. Experiments confirm that our enhance-
ment strategy achieves performance gains in
image-text retrieval, zero-shot image classifica-
tion, and sentence embedding tasks.

1 Introduction

Transferring visual representations learned from
a large annotated set into downstream tasks of in-
terest (Deng et al., 2009; Zhai et al., 2019) is the
standard approach to achieve the state-of-the-art
performance (Kuznetsova et al., 2020; Kolesnikov
et al., 2020). However, due to the labeling cost,
the scalability of this approach is rather limited. In
contrast, self-supervised learning with contrastive
losses (He et al., 2020; Chen et al., 2020) has
proven to learn semantic representations without
using the explicit labels, which becomes a promis-

ing solution to obtaining general visual represen-
tations. In addition, this paradigm combined with
billion-scale unlabeled samples is competitive with
the annotation-based transfer learning approaches
in multiple tasks (Goyal et al., 2021).

In natural language processing (NLP), pre-
training with billions of corpus and transferring
to downstream tasks has likewise achieved tremen-
dous success. And it has been a de facto standard
for a recent decade (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020). Witnessing suc-
cesses in two domains, researchers have been ac-
tively attempting to find visual-and-language (VL)
representations by combining supervisions that
come from billions of both images and languages.
(Li et al., 2019; Lu et al., 2019, 2020; Kim et al.,
2021) have attempted to utilize highly curated VL
datasets such as MS-COCO (Lin et al., 2014) or
Visual Genome (Krishna et al., 2016). However,
the non-trivial collection process is the major limi-
tation in scaling up these datasets. CLIP (Radford
et al., 2021) overcame the limitation by learning
VL representations from web-scale 400M image-to-
text pairs on both visual and VL downstream tasks,
even with a simple contrastive loss. ALIGN (Jia
et al., 2021) extended this approach by scaling up
image-text pairs to 1.8B with simple filtering com-
pared to CLIP and showed state-of-the-art scores
on both visual and visual-language tasks.

Such web-scale approaches as well as the ear-
liest attempts have focused on connecting images
to English texts. Using a separate translator might
be a practical solution to match images and multi-
lingual texts, but this resorts to sub-optimal results
because the effect of translation errors is not ex-
plicitly considered in the VL representation learn-
ing process, and translating every text into dozens
of languages is inefficient. In language models,
many attempts have been successfully made to de-
velop language-agnostic representations, improv-
ing the performance of downstream tasks on under-
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resourced languages. In order to achieve this goal,
Pires et al. (2019); Liu et al. (2020); Xue et al.
(2021) pre-train language models over a multilin-
gual corpus for transferring knowledge across lan-
guages. Chi et al. (2021); Feng et al. (2020) utilize
bilingual translation pairs to transfer the informa-
tion from common languages to under-resourced
ones in a more efficient way.

Following this research direction in language
models, MURAL (Jain et al., 2021) suggests the
efficient multilingual VL modeling that leverages
both the alignments of (a) monolingual image-to-
text and (b) multilingual text-to-text on the training
dataset simultaneously. However, since English is
the only language that has a direct connection with
images, the performance of non-English languages
on several multi-modal tasks is relatively weaker
than that of English. Linking all languages directly
to images would be the easiest and ideal solution,
but obtaining billions of image-text datasets for
all languages is nearly impossible, especially for
low-resourced languages.

To tackle the data-scarcity problem, we propose
a simple but efficient enhancement via triplet con-
trastive learning (ETCL) that utilizes multi-modal
zero-shot transfer through relatively small amounts
of image-text datasets in non-English languages
through a triplet contrastive loss. In ETCL, we fur-
ther train the pre-trained multilingual VL model
with a new limited number of pairs of image and
non-English texts to strengthen the weak alignment
of the pre-trained model. In order to fully lever-
age multi-modal cross-lingual zero-shot transfer,
we introduce a triplet contrastive learning which
considers (a) image-textA, (b) textA-textB and (c)
textB-image, where textA and textB are multilin-
gual translation pairs.

Through various experiments, we show that our
framework provides significant performance im-
provement for various languages in multi-modal re-
trieval tasks and zero-shot image classification and
sentence embedding tasks. Interestingly, the large
performances gains also occur in some languages
which are not included in the training dataset for
ETCL. Through ablation study, we prove that the
phenomenon comes from the multi-modal cross-
lingual zero-shot transfer with regard to gram-
matical and geographic relationships between lan-
guages. And we show that ETCL leverages the
relationships efficiently. In summary, our contribu-
tions to the multilingual VL representation are:

• We propose the ETCL framework that lever-
ages multi-modal cross-lingual zero-shot
transfer to train VL model efficiently.

• We show that ETCL gives the large perfor-
mance gains on various downstream tasks
such as image-text retrieval, zero-shot image
classification and language tasks.

• We provide the empirical analysis that ETCL
utilizes the geographical and grammatical re-
lationships between languages efficiently.

2 Related works

We briefly review the research areas and key refer-
ences most relevant to our approach.

2.1 Multilingual representation learning

Multilingual language models have shown that a
single large model improves diverse multilingual
NLP tasks, removing the need for maintaining
language-specific models (Pires et al., 2019; Liu
et al., 2020; Xue et al., 2021; Feng et al., 2020;
Chi et al., 2021). Multilingual BERT (Pires et al.,
2019), dubbed as mBERT, is a multilingual vari-
ant of BERT (Devlin et al., 2019), which is pre-
trained with the masked language modeling ob-
jective over about 100 languages. LaBSE (Feng
et al., 2020) adapts mBERT to learn language-
agnostic sentence embedding over bilingual trans-
lation pairs, improving cross-lingual retrieval tasks
significantly. mBART (Liu et al., 2020) trains
an encoder-decoder architecture on a large cor-
pus composed of multiple languages using BART
objective (Lewis et al., 2019). Considering mul-
tilingual variants to newly proposed models has
still been actively studied. For instance, T5 (Raf-
fel et al., 2020) is also extended to a multilingual
model, which is named mT5 (Xue et al., 2021), by
training a sequence-to-sequence model over 101
languages. Recently, mT6 (Chi et al., 2021) further
improves mT5 by proposing a novel objective for
text-to-text pre-training.

2.2 Vision-and-Language representation
learning

Learning VL representations in a self-supervised
fashion is a promising approach to solving many vi-
sually grounded language understanding tasks (Li
et al., 2019; Lu et al., 2019, 2020; Kim et al.,
2021). ViLBERT (Lu et al., 2019) and Visual-
BERT (Li et al., 2019) try to align patches in an
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(a) Image-to-Text (I2T) Contrastive Loss (b) Text-to-Text (T2T) Contrastive Loss
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Figure 1: Illustration on English-only image-to-text
and multilingual text-to-text matching, where the text
encoder is shared across languages.

image into (sub-)words through a sequence of self-
attention layers, generating transferable representa-
tions on many VL downstream tasks. ViLT (Kim
et al., 2021) advances the model architecture and
training procedure to achieve comparable perfor-
mance without using the region proposal network.
Since these works rely on highly curated multi-
modal datasets, the scalability of these approaches
is rather limited. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) have shown that it is pos-
sible to learn transferrable visual and VL repre-
sentations from noisy web-scale datasets. Very re-
cently, MURAL (Jain et al., 2021) extends ALIGN
in a multilingual setting by leveraging billion-scale
translation pairs. However, the performance of
under-resourced languages on various VL tasks
is still weaker than that of English. Otherwise,
KELIP(Ko and Gu, 2022), a CLIP-style bilingual
VL model trained using 708M Korean and 476M
English image-text pairs, has been proposed, show-
ing strong representations on Korean VL tasks.
However, the approach is not an optimal solution
for multilingual VL modeling because gathering
image-text pairs for more than a hundred languages
is practically impossible. Our work suggests a sim-
ple but effective solution to boost the performance
of under-resourced languages.

3 Approach

This section describes the details of conventional
multilingual VL modeling, the proposed ETCL
scheme, and training details.

Image encoder

Text encoder

Text encoder

shared

Der Welpe schläft auf 
der Bettdecke.

小狗睡在羽绒被上。

Trip
let co

ntrastive lo
ss

Figure 2: Illustration on a triple contrastive loss using
(1) image-textA, (2) textA-textB and (3) textB-image,
where the text encoder is shared across languages.

3.1 Background: Multilingual VL pretraining

MURAL (Jain et al., 2021) suggests large-scale
multilingual VL modeling using pairs of (image
and English-text) and translation pairs. (see Fig-
ure.1). For training VL representations, the system
requires capturing the meaning of images and texts
at the same time. In this context, contrastive loss
is a suitable objective since it places semantically
similar images and sentences in the same latent
vector space as follows:

Li2t = − 1

N

N∑
i=1

eϕ(xi,yi)∑N
n=1 e

ϕ(xi,yi)
,

Lt2i = − 1

N

N∑
i=1

eϕ(yi,xi)∑N
n=1 e

ϕ(yi,xi)
,

(1)

Limage-text = Li2t + Lt2i, (2)

where Li2t and Lt2i represent the image-to-text and
text-to-image losses respectively and ϕ denotes
scoring function x⊤y. Also, xi and yi denote the
image and text features in the i-th pair, N is the
batch size, σ is a learnable softmax temperature.
The loss function for text-to-text matching from
translation pairs is similarly defined and denoted
by LtextA-textB and LtextB-textA, and Ltext-text is de-
fined as the sum of two losses. The final objective
of MURAL is followed by:

LMURAL =
1

2

(
Limage-text + Ltext-text

)
, (3)

In addition to this, MURAL adds an addictive
margin (Yang et al., 2019) to LMURAL.
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3.2 Enhancement via triple contrastive loss
Although MURAL trains a multilingual VL repre-
sentation efficiently, the alignment of visual rep-
resentation with under-resourced language repre-
sentation is still weaker than that of English. To
tackle this limitation, we suggest an enhancement
scheme that conducts training by adding a small
amount of non-English image-text dataset to im-
prove weak alignment between image and non-
English languages. As with (Ruan et al., 2022),
we introduce a triple contrastive loss that takes
into account all pair possibilities rather than simply
training with L image−text between images and non-
English captions to take full advantage of zero-shot
transfers across multi-modal cross-lingual in the
training dataset (see Figure 2). Before defining the
proposed triple contrastive loss, we prepare image,
and two pairs of text in different languages with the
same meaning. Since we have prepared three differ-
ent representations of training data with the same
semantic, we can simply apply contrastive loss to
the three inputs(image, textA, textB) as follows:

LETCL =
1

3
(Limage-textA + LtextA-textB + LtextB-image) . (4)

Here, we refer to our enhancement scheme as
ETCL, abbreviated version of Enhancement via
Triplet Contrastive Learning. Combined with
MURAL, we name it as MURAL+ETCL.

3.3 Model details
Since there is no publicly available MURAL model,
we reproduce the MURAL using the architecture
and training method as proposed in MURAL (Jain
et al., 2021). The image-text pairs required are
created by ourselves, and the publicly available
CCMatrix is used for text-text pairs.

Model architecture Our model is composed of
an image encoder and three text encoders to align
image-text and text-text pairs (see Figure 1), where
the parameters of all text encoders are shared. For
the image encoder, we follow the same protocol of
ALIGN (Jia et al., 2021) by using EfficientNet (Tan
and Le, 2019) with global averaging pooling to
obtain the embedding of an image. For the text
encoder, we choose BERT (Devlin et al., 2019)
and use the hidden representation of [CLS] token
as the embedding of a text. To make sure that the
embeddings have the same dimension, we add an
additional fully-connected layer on the top of the
text encoder.

Pre-processing For a fair comparison, we try to
follow the data pre-processing and augmentation
used in ALIGN and MURAL as much as possible.
For training, we resize images of arbitrary resolu-
tions into 346 × 346 resolution regardless of the
aspect ratio. Then, we randomly crop the image to
289 × 289, and apply the horizontal flip of proba-
bility 0.5. For evaluation, we resize the image to
346 × 346, and apply the center crop of 289 × 289.
For both training and evaluation, we use the same
pre-processing for the texts. We use the tokenizer
having 550K vocabulary provided by the official
repository of LaBSE 1, and truncate the sequence
to have the maximum length of 64.

Training details For MURAL optimization, we
use LAMB optimizer (You et al., 2020) with a
weight decay ratio of 1e-5. The learning rate is
linearly increased from zero to 1e-3 in 10k steps,
and then linearly decays to zero in 800k steps. We
use the label smoothing of 0.1. The temperature is
initialized as 1.0, and the margin m is 0.3 same as
to LaBSE (Feng et al., 2020). We train the model
with a batch size of 16,384 on 128 Cloud TPU V3
cores with 128 positive pairs on each core. Since
a large number of negative samples is critical in
contrastive learning, we adopt the cross-accelerator
negative sampling as used in LaBSE. This enables
the large batch training by collecting samples in all
synchronized cores and treating them as negative
samples. For ETCL, we use a 32,768 batch size
with a learning rate of 1e-4, which decreases from
1e-4 to zero linearly in 3k steps.

3.4 Data collection

Image-text pairs We follow the data collection
process of ALIGN to create our in-house 1B image-
text pairs dataset from Common crawl 2. The raw
descriptions are gathered from the Alt-text HTML
attribute associated with web images. We only ap-
ply minimal rule-based filtering as detailed below.
For image-based filtering, we only keep images
whose shorter dimension is larger than 200 pixels
and set the aspect ratio as 3. We discard images
with more than 100 associated alt-text. For text-
filtering, we exclude alt-texts that are shared by
more than 10 images. We also discard either too
short (<3 unigrams) or too long (>100 unigrams
or >1000 characters). These filters include discard-
ing instances that are classified as non-English by

1https://tfhub.dev/google/LaBSE/2
2https://commoncrawl.org/the-data/

https://commoncrawl.org/the-data/
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cld3 (compact language detector v3) 3. Addition-
ally, we also include CC3M (Sharma et al., 2018)
and CC12M (Changpinyo et al., 2021) in our 1B
image-text pairs dataset.

Text-text pairs We use all 10.8B text-text pairs
in CCMatrix dataset (Schwenk et al., 2021) for the
text-test alignment, which covers 90 languages and
have 1,197 bitexts across multiple languages. All
pairs are publicly available on the OPUS website 4.

Multilingual image-text pairs We use multilin-
gual CC3M datasets which consist of translated
versions of original CC3M in 5 languages (de, fr,
cs, zh and ja), which are provided (Zhou et al.,
2021). After generating 15 language pairs in 6 lan-
guages without duplicates, image-textA-textB 45M
triple dataset was created and used for ETCL. In
this dataset, the number of unique images is 3M,
and the captions are 18M.

4 Experiments

In this section, we present experiment settings to
evaluate our proposed model over VL, visual, and
language tasks.

4.1 Task description

Image-text retrieval The image-text retrieval is
the most suitable task to evaluate the VL model be-
cause this task uses the representation of language
and image simultaneously. Following (Jain et al.,
2021; Jia et al., 2021; Li et al., 2019), we validate
the ability of our VL representation on multilingual
Flickr30K (Young et al., 2014; Elliott et al., 2016,
2017; Barrault et al., 2018) and MS-COCO (Lin
et al., 2014; Yoshikawa et al., 2017) in image-to-
text and text-to-image retrieval tasks with zero-shot
and fine-tuning scenarios. In this experiment, we
use multilingual Flickr30K having English, Ger-
man, French, and Czech captions, where and Ger-
man captions are provided by Multi30K (Elliott
et al., 2016) and French and Czech captions are
obtained by the translation (Elliott et al., 2017; Bar-
rault et al., 2018). Multi30K contains five captions
per image in English and German, and one de-
scription per image in French and Czech. We use
29K, 1K, and 1K images for the train, validation,
and test sets, respectively as used in the original
dataset (Young et al., 2014). In addition to English
MS-COCO, Japanese (Yoshikawa et al., 2017) and

3https://github.com/google/cld3
4https://opus.nlpl.eu/CCMatrix.php

Korean MS-COCO 5 are also used for the VL eval-
uation. We follow the split protocol used in (Karpa-
thy and Fei-Fei, 2015), resulting in 82K training
and 5K test sample. For evaluation, we measure
Recall@K with respect to K = 1, 5, 10 on two
retrieval tasks. We report the performance of each
model by Average Recall (AR), taking the mean
over these six scores.

During fine-tuning, we follow the same proto-
col used in ALIGN for a fair comparison. The
pre-trained model is fine-tuned by the image-text
contrastive loss (without text-text matching loss).
We use the batch size of 2,048 and set the learning
rate to 1e-5 with a linear decay scheduler, and fine-
tune the model over 3K and 6K steps on Flickr30K
and MS-COCO, respectively. All the other hyper-
parameters are consistent with the ones in pre-
training.

Zero-shot image classification Performance on
the zero-shot image classification has been consid-
ered one of the important evaluation tasks for the
large-scale multi-modal pre-training model since
it represents the generalization ability of a model.
Following previously proposed studies(Jain et al.,
2021; Jia et al., 2021), we validate the visual
representation power of our method on multilin-
gual zero-shot classification tasks based on text
prompts. Furthermore, an additional result on
ImageNet K-Nearest-neighbor (KNN) tasks with-
out text prompts is provided in Appendix A.3.
Our models are evaluated on diverse classification
datasets, including ImageNet (Deng et al., 2009),
CIFAR100 (Krizhevsky, 2009), SUN397 (Xiao
et al., 2010), and Fool101 (Bossard et al., 2014).
We conduct the zero-shot image classification
based on text prompts (Radford et al., 2021) over
83 languages, where prompts are translated by
Google Translator. We remark that the transla-
tor supports 83 languages among 90 languages
covered in CCMatrix. For a fair comparison, we
adopt the text prompt engineering used in CLIP.
For instance, in the case of Food101, a context
prompt is inserted, so the final prompt is “A photo
of a {label}, a type of food", and the context
prompt is also translated over 83 languages. Sim-
ilar to MURAL, we compare models on three
groups, All-languages, well-resourced
and under-resourced to deeply investigate
our model in different resource conditions. The

5Korean COCO is from https://aihub.or.kr/
keti_data_board/visual_intelligence.

https://github.com/google/cld3
https://opus.nlpl.eu/CCMatrix.php
https://aihub.or.kr/keti_data_board/visual_intelligence
https://aihub.or.kr/keti_data_board/visual_intelligence
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Type Model Backbone
Image-text Text-text Flickr30K MSCOCO 5K

pairs pairs en de fr cs avg. en ja ko avg.

Zero-shot

ALIGN-BASE B5+BERT-Base
1.8B -

83.3 75.0 74.2 47.9 70.1 59.6 53.9 - -
ALIGN-L2 L2+BERT-Large 92.2 - - - - 70.9 - - -
MURAL-BASE B5+BERT-Base

1.8B 6B
82.4 76.2 75.0 64.6 74.6 59.5 54.4 - -

MURAL-LARGE B7+BERT-Large 89.2 83.5 83.1 77.0 83.2 67.7 64.6 - -
MURAL(reprod.) B7+BERT-Base 1B 10.8B 90.1 70.5 70.1 63.7 73.6 67.8 40.6 31.5 46.6
MURAL(reprod.) + ETCL B7+BERT-Base 1B + 45M 10.8B + 45M 90.6 85.6 85.8 82.2 86.0 69.1 62.1 49.3 60.2

Fine-tune

ALIGN-BASE B5+BERT-Base
1.8B -

92.2 88.5 88.1 84.5 88.3 74.8 72.5 - -
ALIGN-L2 L2+BERT-Large 96.0 - - - - 83.4 - - -
MURAL-BASE B5+BERT-Base

1.8B 6B
92.2 88.6 87.6 84.2 88.2 75.4 74.9 - -

MURAL-LARGE B7+BERT-Large 93.8 90.4 89.9 87.1 90.3 81.2 81.3 - -
MURAL(reprod.) B7+BERT-Base 1B 10.8B 94.5 89.8 90.2 87.8 90.6 79.3 77.9 73.3 76.9
MURAL(reprod.) + ETCL B7+BERT-Base 1B + 45M 10.8B +45M 94.8 91.0 91.3 89.7 91.7 79.8 79.2 77.0 77.8

Table 1: Average Recall of image-to-text and text-to-image retrieval tasks on multilingual Flickr30K and MS-COCO
in zero-shot and fine-tuning scenarios for English (en); German (de); French (fr); Czech (cs); Japanese (ja). The
numbers of ALIGN and MURAL are taken from (Jain et al., 2021). The last column for each dataset means the
average score over all languages.

groups are below:

• well-resourced: English (en), German(de),
French (fr), Czech (cs), Japanese (ja), Chi-
nese (zh), Russian (ru), Polish (pl), Turkish
(tr)

• under-resourced: Uzbek (uz), Irish (ga), Be-
larusian (be), Malagasy (mg), Cebuano (ceb)

Sentence similarity & retrieval For the multi-
lingual VL model, one important question is still
remaining: what does the model learn from lan-
guages and how can we assess its ability to NLP
tasks? As previous VL studies proposed (Jain
et al., 2021), we validate the performance of sen-
tence embeddings from our approach in (multilin-
gual and monolingual) sentence similarity com-
parison (Cer et al., 2017) and cross-language sen-
tence retrieval tasks (Artetxe and Schwenk, 2019).
For the sentence similarity comparison, we choose
STS 2017 (Cer et al., 2017) and its extended ver-
sion (Reimers and Gurevych, 2020). Both datasets
contain human-annotated labels of the similarity
from 0 (no meaning overlapping) to 5 (equivalent
meaning) for every pair of sentences. We com-
pute the Spearman rank correlation between the
cosine similarity of two sentence embeddings and
the ground-truth label in both 3 monolingual and
7 multilingual settings. We also evaluate ETCL on
a multilingual sentence retrieval task with Tatoeba
dataset (Artetxe and Schwenk, 2019). In this ex-
periment, we observe that ETCL have decent per-
formance compared to other language models, and
more details could be found in Appendix A.5.

5 Results

As presented in our contributions in Section 1, our
study has different goals: (1) investigate the per-
formance gains based on the proposed method on
various downstream tasks including image-text re-
trieval, zero-shot image classification and sentence
retrieval (2) study the effect of ETCL in related
languages (geographically and grammatically), (3)
check whether ETCL activates information sharing
in multilingual training. By taking into account
the proposed goals, in this section, we report our
experimental results in various tasks.

5.1 Downstream Task Results on Image-Text
Retrieval

To investigate the effectiveness of the proposed
model, we conducted experiments on the Image-
Text Retrieval task. Table 1 shows the average
recall over three different Ks of two retrieval tasks
in zero-shot and fine-tuning scenarios. We note that
the reproduction of MURAL is successful because
MURAL(reprod.) performs comparably to ALIGN-
BASE and MURAL-LARGE in all languages of
the two datasets.

First, for Flickr30K, ALIGN-L2 performs bet-
ter than MURAL(reprod.)+ETCL in both zero-
shot and fine-tuning cases (92.2 vs. 90.1 and
96.0 vs. 94.5) in the case of English, because
the capacity of the image encoder of ALIGN-
L2 is larger than MURAL(reprod.)+ETCL.
In the case of non-English, we observe that
MURAL(reprod.)+ETCL model shows better
performance compared to MURAL-LARGE and
ALIGN-L2 on German, French in zero-shot and
German, French, and Czech in fine-tune setting
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even if the model capacity is smaller than that of
two models.

For MS-COCO, MURAL(reprod.)+ETCL
also shows competitive performance for all lan-
guages in both zero-shot and fine-tune cases
with the relatively small size of model com-
pared to MURAL-LARGE and ALIGN-L2. Es-
pecially for Korean, which is not included
in languages of new image-text pairs for
ETCL, MURAL(reprod.)+ETCL outperforms
MURAL(reprod.) in both zero-shot and fine-
tuning cases by 17.8 and 3.7, respectively. These
results confirm that multi-modal cross-lingual zero-
shot transfer occurs effectively for languages not in
training data after ETCL. In other words, zero-shot
transfer strengthens the weak connection between
image and non-English text after indirect alignment
training. A more in-depth study of the phenomenon
will be discussed in Section 5.4.

In Appendix A.1, all Recall@K with respect
to K = 1, 5, 10 on two retrieval tasks for all lan-
guages are provided.

5.2 Downstream Task Results on Zero-Shot
Image Classification

Language Model ImageNet SUN397 Food101 CIFAR100

All languages
MURAL(reprod.) 18.4 29.6 29.1 16.6
MURAL(reprod.) + ETCL 26.9 37.1 45.1 19.6

Well-resourced
MURAL(reprod.) 26.4 40.4 29.1 16.6
MURAL(reprod.) + ETCL 38.1 50.7 45.1 19.6

Under-resourced
MURAL(reprod.) 15.2 23.0 29.4 16.7
MURAL(reprod.) + ETCL 23.6 29.2 45.5 19.8

Table 2: Classification accuracy (%) on multilingual
zero-shot image classification on 4 datasets. Languages
are grouped as followed (1) All languages, (2) well-
resourced languages and (3) under-resourced languages
group. All values are the average of 100 × Acc@1
across languages.

As presented in Section 4.1, we conduct
zero-shot image classification and languages are
grouped to see general trends depending on lan-
guage resources. Table 2 shows the zero-shot
classification performance on four datasets. All
detailed results are illustrated in Appendix A.4.
We note that all results are reliable to compare
the trends because MURAL(reprod.)+ETCL
shows comparable performance compared to CLIP-
ViT/32 (62.6 vs 64.6). For all three groups,
MURAL(reprod.)+ETCL shows better perfor-
mance on four datasets. For the well-resourced
group, the performance of ru, pl and tr improves al-
though those languages are not in the newly added

languages. Above all, the performance of the under-
resourced group which does not include any newly
added languages also improves largely over all
datasets, which confirms that ETCL gives effec-
tive multi-modal zero-shot cross-lingual transfer
over low-resourced languages as well.

5.3 Results on language tasks
To answer the raised question about assessing our
model in NLP tasks in Section 4.1, we conduct
NLP-oriented experiments. The goal of this exper-
iment is to verify how well sentence embeddings
obtained from pre-trained models can solve sen-
tence similarities and search tasks.

en-en es-es ar-ar Avg.

LaBSE 79.4 80.8 69.1 76.4
MURAL(reprod.) 84.8 80.5 69.2 78.1
MURAL(reprod.) + ETCL 87.3 83.3 76.2 82.3

Table 3: Performance on extended STS 2017 similarity
comparison task in the monolingual setting. Scores are
calculated by 100 × Spearman rank correlation between
the cosine similarity of sentence embeddings and the
gold labels.

en-ar en-de en-tr en-es en-fr en-it en-nl Avg.

LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5
MURAL(reprod.) 70.7 70.4 69.8 69.1 72.9 71.8 72.4 71.0
MURAL(reprod.) + ETCL 75.7 84.1 76.3 79.5 85.3 82.1 82.3 80.7

Table 4: Performance on extended STS 2017 similarity
comparison task in the multilingual setting. Scores are
calculated by 100 × Spearman rank correlation between
the cosine similarity of sentence embeddings and the
gold labels.

Semantic Textual Similarity To evaluate the
sentence embedding performance of the text en-
coder, the STS task was performed with the
same evaluation protocol as done in (Reimers
and Gurevych, 2019). Since the text encoder is
trained with a contrastive loss, we set LaBSE, a
text-encoder-only language model trained in the
same way, as a baseline. As shown in Table 3
and 4, the performance of the text encoder of
MURAL(reprod.) is similar to that of LaBSE.
This is because the two text encoders are trained
using text-text alignment based on the parallel text
pairs. Interestingly, we can see that the perfor-
mance of MURAL(reprod.)+ETCL increases
significantly by 4.2 and 9.7 in STS 2017 mono-
lingual and multilingual settings respectively. We
conjecture that this performance improvement is
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due to the synergy caused by the image domain
because the multi-modal model is trained with both
images and text simultaneously. In summary, these
results reveal that since the text encoder of the
VL model is trained along with the image encoder,
there is room for improvement in the performance
of the text encoder by using the image encoder,
unlike the text encoder-only language model. a

Model Avg Gain over baseline

MURAL(reprod.) baseline 31.5 -
MURAL(reprod.) + cs 47.1 15.6
MURAL(reprod.) + fr 45.4 13.9
MURAL(reprod.) + ja 47.6 16.0
MURAL(reprod.) + zh 47.1 15.6
MURAL(reprod.) + de 46.1 14.6

Table 5: Performance on Korean MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

Model Avg Gain over baseline

MURAL(reprod.) baseline 40.6 -
MURAL(reprod.) + cs 54.3 13.7
MURAL(reprod.) + fr 53.2 12.6
MURAL(reprod.) + ja 52.5 11.9
MURAL(reprod.) + zh 52.3 11.7
MURAL(reprod.) + de 52.4 11.8

Table 6: Performance on Ukraine MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

Model 3 COCO datasets 4 Flickr30K datasets

MURAL(reprod.) 139.9 294.4
MURAL(reprod.) + 6 lang 179.3 343.9
MURAL(reprod.) + ETCL 180.5 344.2

Table 7: Performance on MS-COCO(en, ja, ko) and
Flickr30K(en, de, fr, cs) in zero-shot image-text retrieval
tasks. Scores are the summation of averages of 6 scores
(T2I and I2T R@1,5,10).

5.4 Analysis and ablation study
Observing the overall performance in Table 1, one
could be convinced that adding more multilingual
image-text pairs during ETCL will bring better per-
formance. Then, one can ask some questions (1)
does our model really transfer VL knowledge even
for unseen language?, (2) how does zero-shot trans-
fer differ depending on linguistic context?. Further
experiments and analyses are performed to gain
a better understanding of multi-modal zero-shot

transfer. In addition, we investigate the effective-
ness of triple contrastive loss. Another ablation
study on VL pre-training steps is described in Ap-
pendix A.3.

Effect of the multi-modal zeroshot-transfer In
order to answer questions (1) and (2), we fine-
tune MURAL(reprod.) with L image−text using
one language pairs from multilingual CC3M and
compare models on the Korean and Ukraine 6

COCO image-text retrieval. As shown in rows 2-6
in both Table 5 and Table 6, additional training us-
ing (L image−text) brings zero-shot transfer gain over
both unseen Korean and Ukraine. Interestingly, ad-
ditional training using Japanese image-text pairs
shows the largest gain over other languages for
Korean COCO. We conjecture that Japanese is a
language very similar to Korean grammatically, re-
sulting in enhanced zero-shot transfer. Likewise,
Czech, similar to Ukraine geographically, also
has the largest zero-shot transfer gain in Ukraine
COCO. Another ablation study is included in Ap-
pendix A.5.

Effectiveness of triple contrastive loss One
can expect that the cross-lingual zero-shot
transfer effect can sufficiently occur with
only the L image−text. To investigate the effect
of the triple contrastive loss, we fine-tune
MURAL(reprod.) with L image−text us-
ing all six multilingual CC3M (we name it
MURAL(reprod.)+6lang). Furthermore, we
compare it with MURAL(reprod.)+ETCL on
zero-shot image-text retrieval for multilingual
MS-COCO (en, ja, ko) and Flickr30K (en, de,
fr, cs). As shown in Table 7, row 1-2 show
that cross-lingual zero-shot transfer also occurs
in MURAL(reprod.)+6lang as expected.
However, MURAL(reprod.)+ETCL still show
the best performance, proving the effectiveness of
triple contrastive loss.

6 Conclusion

VL modeling using large-scale web-crawled
datasets has shown great success but cannot be
easily utilized for low-resourced languages due to
the lack of data. Although a method to efficiently
create a multilingual VL model through indirect
text-text alignment has been proposed, the VL rep-
resentations of low-resourced languages are still

6We translate MS-COCO into Ukraine using google trans-
lator.
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weaker than that of English. This work proposes
a new approach to solve the limitation based on
the observation that multi-modal zero-shot transfer
occurs with regard to grammatical and geographi-
cal relationships between languages. Our proposed
method can be easily adapted to multilingual multi-
modal models trained similarly to MURAL.

7 Ethical consideration

It is likely that our model has unwanted social bias
from the majority of English in our dataset. If an
objective or a dataset that strongly increases the
contribution of low-resource language is comple-
mented, the bias can be alleviated.

In our approach, a larger model size, more data,
and longer training steps lead to better models.
However, these lead to an environmental impact
inevitably. Therefore, more research is required
to develop a large-scale multilingual multi-modal
model with fewer steps and a small backbone to
alleviate tremendous computing resources harming
our environment.
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A Appendix

A.1 Image-text retrieval

Fine-tuning on Flickr30K and MSCOCO took
about 3 and 6 hours, respectively using 32 Cloud
TPU V3 cores. All scores of both image-text and
text-image retrieval are listed in Table 8 and 9.

A.2 Validation of visual embedding

To validate the visual embedding only, we con-
duct the ImagenetKNN retrieval task using visual
features from our pre-trained model as done in
ALIGN. In ImageNet KNN retrieval, we retrieve
their nearest neighbors from the training set using
pre-trained visual embeddings to find the class of

Language
image → text text → image

Type R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

en 84.9 97.7 99.5 73.5 92.2 96.0
de 77.5 96.0 98.4 63.0 86.6 91.9
fr 70.8 90.6 95.0 72.0 91.2 95.3
cs 62.8 87.8 93.0 67.2 88.8 93.5

Fine-tune

en 93.5 99.4 99.8 81.8 95.9 98.2
de 88.1 98.7 99.7 72.1 91.6 95.7
fr 80.1 96.3 97.9 80.0 95.9 97.8
cs 77.1 95.0 97.0 77.1 94.5 97.3

Table 8: Image-text retrieval on Flickr30K in multiple
languages.

Language
image → text text → image

Type R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot
en 56.1 80.2 87.5 43.5 69.1 78.4
ja 35.3 59.9 70.9 25.0 47.3 57.5
ko 47.1 72.5 82.1 36.8 62.0 72.0

Fine-tune
en 70.2 91.0 95.3 54.9 80.0 87.7
ja 62.9 87.0 93.2 46.8 73.9 82.9
ko 69.8 90.8 95.1 53.1 79.1 87.1

Table 9: Image-text retrieval on COCO in multiple lan-
guages.

each image in the validation set of ILSVRC-2012.
Recall@K metric is obtained using the appearance
of the found label of the query image in the top-
K retrieved images. We compare our model with
ALIGN as shown in Table 10. Because we use
image-text pair datasets less than ALIGN by 0.8B
pairs, our model shows a score of 67.8 which is
still comparable, indicating that our model trained
using two alignment task learning ensures power-
ful visual embedding like ALIGN which is trained
with only image-text alignment.

Model Data Backbone
ImageNet KNN
R@1

ALIGN 1.8B B7 + BERT-base 69.3
MURAL(reprod.) + ETCL 1.0B + 15M B7 + BERT-base 67.8

Table 10: Performance on ImagenetKNN retrieval task.

A.3 Ablation study
We investigate the effect of VL pre-training steps
with regard to three domain tasks including visual,
VL, and language. We select ImageNetKNN and
Multi30K(en, de) and STS tasks for three domain
respectively.

Performance dependency on VL pre-training
steps Table 11 shows the ablation study of VL
pre-training steps on three domain tasks. Generally,
the longer VL pre-training steps give the stronger
performance after ETCL. Interestingly, in the case

http://arxiv.org/abs/1705.00823
http://arxiv.org/abs/1705.00823
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Row
VL pre-training ETCL ImageNetKNN MS-COCO (zero-shot) STS

steps steps R@1 en(Avg.) ja(Avg.) ko(Avg.) Meta avg

1 100K - 60.5 61.5 29.6 24.0 68.1
2 200K - 64.0 65.1 34.1 29.1 71.5
3 400K - 66.0 67.2 37.0 30.1 73.7
4 600K - 67.5 68.4 40.1 34.1 73.2
5 800K - 66.9 67.8 40.6 31.5 74.6

6 100K 3K 60.7 61.5 53.2 35.7 78.9
7 200K 3K 64.1 65.2 57.2 42.8 79.9
8 400K 3K 65.6 67.5 57.2 45.7 81.9
9 600K 3K 67.7 69.1 60.3 51.9 81.6
10 800K 3K 67.8 69.1 62.1 49.3 81.5

Table 11: Performance on visual, VL and language domain tasks with regard to VL pre-training steps.

of Korean MS-COCO, the model after VL pre-
training 100K + ETCL has a higher performance
by 4.2 than when the model trained after VL pre-
training 800K steps. When considering that there
is no image and Korean sentence pair in the ad-
ditional datasets used in ETCL, the result shows
that ECTL learns multilingual VL representations
very effectively. Likewise, a similar phenomenon
is shown in the STS sentence embedding task. This
is a good example showing that the visual repre-
sentation obtained from VL training can be used to
improve the performance of text representation.

Model 14 langs 36 langs 82 langs All langs

LASER 95.3 84.4 75.9 65.5
m-USE 93.0 44.3 38.5 36.6
LaBSE 95.3 95.0 87.3 83.7
(Reimers and Gurevych, 2019) 94.8 86.2 75.6 67.0
(Ham and Kim, 2021) 95.4 89.1 79.4 72.9
MURAL(reprod.) + ETCL 88.4 81.5 72.4 63.6

Table 12: Performance on Tatoeba sentence retrieval
task. Scores are reported by 100 × accuracy. We follow
the grouping ‘14 langs’, ’36 langs’, and ’82 langs’ as
used in m-USE, XTREME and LASER respectively.

A.4 Zero-shot image classification

Text prompts engineering We use 80 text tem-
plates as used in CLIP 7. For fine-grained datasets,

“a type of food" are appended to the initial template
for adding context information. All multilingual
zero-shot ext prompts image classification results
in various visual datasets are shown in Table 14.

7https://github.com/openai/CLIP

A.5 Multi-modal zero-shot transfer

To further investigate the effect of multi-modal
zero-shot transfer, we calculate the performance
of fine-tuned MURAL(reprod.) with one lan-
guage pair from multilingual CC3M on Italian MS-
COCO. Interestingly, the performance gains via
ETCL using the image and regionally closer lan-
guages (cs, fr, de) pairs are larger than that of Asian
languages (zh, ja), which are regionally far from
Italian (See Table 13).

Model Avg Gain over baseline

MURAL(reprod.) baseline 40.6 -
MURAL(reprod.) + cs 60.3 19.7
MURAL(reprod.) + fr 60.2 19.6
MURAL(reprod.) + ja 59.7 19.1
MURAL(reprod.) + zh 59.3 18.7
MURAL(reprod.) + de 60.1 19.5

Table 13: Performance on Italian MS-COCO image-text
and text-image retrieval tasks. Scores are the average of
T2I and I2T R@1,5,10.

A.6 Additional NLP task

Tatoeba For the multilingual sentence retrieval
task, we use Tatoeba dataset composed of
1,000 English-aligned sentence pairs for 112 lan-
guages (Artetxe and Schwenk, 2019). This task
is to find the nearest neighbor for each sentence
in another language using the cosine similarity.
We conduct an evaluation on three groupings of
languages for fair-comparison: the first 14 lan-
guage groups are selected for m-USE (Yang et al.,
2020). The second language group with 36 lan-
guages follows the XTREME benchmarks (Hu
et al., 2020). The third 82 language group that
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LASER proposed covers high-resourced to low-
resourced languages. Table 12 shows the average
accuracy of languages according to different group-
ings. Our model generally has similar performance
compared to LASER, and lower performance than
LaBSE. That is because compared to LaBSE and
LASER which learns 109 and 93 languages respec-
tively, our model learns 90 languages, and then
our model does not support several languages in
Tatoeba dataset. For example, Thai language is
included in the 14 languages group while the lan-
guage is not included in the CCMatrix we learned,
which leads to a poor performance of 89.2%. The
average of 13 languages excluding the language is
94.2%, which is comparable to the top language
models. This poor performance from data scarcity
also appears for 36 langs groups. The average accu-
racy of the 36 langs group except for Swahili, Tel-
ugu, and Thai is 86.7%, which is better than other
models except for LaBSE. Performance degrada-
tion due to lack of data in some languages is not
relevant to our methodology itself, so it does not
impair the novelty of this work. Rather, it is likely
that supplementing from other datasets in opus can
boost our model. The results for all languages can
be found in Table 15, 16.
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af am ar az be bg bn ca ceb cs cy da de

ImageNet 16.5 2.5 18.7 12.9 14.3 21.6 16.3 20.0 21.9 24.6 14.0 30.0 29.3
SUN397 39.0 6.1 43.3 30.9 30.9 46.9 40.2 46.5 33.0 57.2 27.6 56.4 59.5
Food101 51.2 9.6 34.7 47.7 48.9 43.3 47.6 49.6 50.5 62.0 42.6 61.2 66.6

CIFAR100 19.8 6.8 23.7 17.2 15.2 26.0 21.7 23.2 14.9 31.3 10.6 27.2 31.6

el en eo es et eu fa fi fr fy ga gd gl

ImageNet 18.3 62.6 23.2 25.5 20.2 15.3 15.7 19.7 26.5 24.5 10.4 16.7 28.7
SUN397 45.5 67.2 43.7 48.9 43.5 37.1 40.1 43.3 59.9 37.7 21.0 27.4 58.5
Food101 37.9 74.2 63.8 53.7 40.6 49.4 42.1 47.4 64.6 49.3 45.1 47.2 64.3

CIFAR100 23.8 33.6 25.2 27.6 19.6 19.3 22.7 25.6 32.3 18.0 7.3 14.1 31.1

ha he hl hr hu hy id ig is it ja jv ka

ImageNet 13.9 14.2 9.8 22.1 20.2 5.8 26.3 12.9 23.4 28.3 17.6 28.2 9.0
SUN397 23.5 35.8 28.9 47.4 46.9 21.3 45.9 21.4 42.8 51.4 52.0 44.0 19.6
Food101 53.5 31.7 31.9 46.4 52.3 33.7 58.3 43.2 54.6 59.4 40.0 51.8 39.4

CIFAR100 13.4 13.7 20.4 23.5 24.7 10.1 26.7 11.1 19.3 25.8 29.8 22.4 9.1

kk km ko la lb lt lv mg mk ml mr ms my

ImageNet 9.7 5.8 14.1 29.1 20.0 22.8 20.8 20.4 21.8 6.0 8.1 30.3 5.8
SUN397 20.5 12.7 40.0 36.5 36.2 45.1 34.8 40.1 38.3 18.4 23.0 53.6 13.8
Food101 33.4 32.0 33.9 58.9 50.6 52.3 47.8 62.8 51.6 19.8 35.1 60.8 25.1

CIFAR100 14.2 4.8 21.8 20.9 18.6 24.2 19.4 17.5 24.3 12.9 16.9 28.3 4.5

ne nl no or pl pt ro ru sd si sk sl so

ImageNet 6.2 27.9 28.8 1.1 23.4 26.3 25.9 22.6 2.8 11.0 23.1 28.5 10.2
SUN397 15.4 53.6 54.5 6.3 48.6 50.1 50.5 47.1 8.3 24.7 53.7 50.5 14.1
Food101 15.6 60.9 60.8 10.6 54.3 59.0 53.6 38.3 10.2 29.1 51.1 53.8 38.4

CIFAR100 11.0 26.5 26.5 4.4 25.0 27.3 24.7 26.6 8.6 18.6 28.2 25.7 8.6

sq sr su sv sw ta tl tr tt uk ur uz vi

ImageNet 21.3 17.0 17.7 25.5 22.5 6.9 36.3 19.7 9.4 18.1 9.8 9.1 23.6
SUN397 39.1 35.7 30.2 53.1 45.2 24.0 53.5 44.1 24.1 46.0 31.5 21.0 49.1
Food101 52.1 17.5 44.7 54.7 65.5 45.7 66.3 50.8 25.0 40.1 46.7 25.1 50.5

CIFAR100 20.6 23.4 18.5 25.9 24.9 10.4 24.8 22.2 13.6 24.5 16.3 12.3 24.8

xh yi yo zh zu

ImageNet 12.1 1.8 7.4 21.8 11.5
SUN397 17.3 8.6 13.9 56.0 20.9
Food101 36.9 17.7 35.7 44.7 36.3

CIFAR100 10.3 4.1 5.1 30.9 6.7

Table 14: Zero-shot image classification on ImageNet, SUN397 Food101 and CIFAR100. Scores are 100 × Acc@1.
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Model ar (ara) bg (bul) ca (cat) cs (ces) cmn da (dan) de (deu) el (ell) et (est) fi (fin) fr (fra) gl (glg) he (heb)

LASER 92.0 95.0 95.9 96.5 95.4 96.0 99.0 95.0 96.7 96.3 95.6 95.5 92.2
m-USE 81.0 54.0 66.3 17.8 94.3 25.9 98.2 1.6 8.4 8.2 93.5 82.2 1.8
LaBSE 91.0 95.7 96.5 97.5 96.2 96.4 99.4 96.6 97.7 97.0 96.0 97.2 93.0
MURAL(reprod.) + ETCL 89.8 95.1 96.6 96.6 95.6 96.7 98.8 96.2 96.3 96.4 95.5 95.4 91.5

Model hi (hin) hr (hrv) hu (hun) hy (hye) id (ind) it (ita) ja (jpn) ka (kat) ko (kor) lt (lit) lvs mr (mar) mk (mkd)

LASER 94.7 97.2 96.0 36.1 94.5 95.3 90.7 35.9 88.9 96.2 95.4 91.5 94.7
m-USE 1.2 23.9 10.2 1.7 93.3 94.3 93.8 2.6 86.0 10.2 11.1 1.8 33.1
LaBSE 97.7 97.8 97.2 95.0 95.3 94.6 96.4 95.9 93.5 97.3 96.8 94.8 94.8
MURAL(reprod.) + ETCL 95.9 97.6 95.7 82.2 94.5 94.3 95.6 66.8 91.7 96.5 93.9 91.8 92.8

Model mn (mon) nl (nld) nb (nob) pes pl (pol) pt (por) ro (ron) ru (rus) sk (slk) sl (slv) es (spa) sq (sqi) sr (srp)

LASER 8.2 96.3 98.8 93.4 97.8 95.2 97.4 94.6 96.6 95.9 98.0 98.0 95.3
m-USE 16.9 94.0 23.9 12.7 93.7 94.9 30.0 93.7 21.1 20.9 95.4 19.9 27.7
LaBSE 96.6 97.2 98.9 96.0 97.8 95.6 97.8 95.3 97.3 96.7 98.4 97.6 96.2
MURAL(reprod.) + ETCL 18.2 96.5 98.3 95.8 96.7 95.7 96.6 94.6 96.3 96.4 97.5 97.4 94.5

Model sv (swe) th (tha) tr (tur) uk (ukr) ur (urd) vi (vie) yue zsm

LASER 96.6 95.4 97.5 94.5 81.9 96.8 90.0 96.4
m-USE 18.8 96.0 94.0 51.0 6.4 10.4 84.2 89.1
LaBSE 96.5 97.1 98.4 95.2 95.3 97.8 92.1 96.9
MURAL(reprod.) + ETCL 96.4 8.6 98.0 94.9 86.6 97.5 88.2 96.5

Table 15: Performance on Tatoeba sentence retrieval task for languages. Scores are reported by 100 × accuracy. To
make comparisons to other works easily, language abbreviations are expressed using ISO 639-1/639-2/639-3.

Model af (afr) am (amh) ang arq arz ast awa az (aze) be (bel) bn (ben) ber bs (bos) br (bre)

LASER 89.5 42.0 37.7 39.5 68.9 86.2 36.1 66.0 66.1 89.6 68.2 96.5 15.8
m-USE 63.5 2.1 38.1 28.2 59.6 81.5 2.4 42.2 40.3 0.7 8.3 30.1 10.2
LaBSE 97.4 94.0 64.2 46.2 78.4 90.6 73.2 96.1 96.2 91.3 10.4 96.2 17.3
MURAL(reprod.) + ETCL 92.5 45.2 50.0 42.3 74.2 86.6 44.2 81.6 74.1 89.5 9.6 97.5 12.0

Model cbk ceb ch (cha) kw (cor) csb cy (cym) dsb dtp eo (epo) eu (eus) fo (fao) fy (fry) gd (gla)

LASER 77.0 15.7 29.2 7.5 43.3 8.6 48.0 7.2 97.2 94.6 71.6 51.7 3.7
m-USE 76.1 13.7 33.6 6.4 37.4 13.1 35.1 8.4 36.8 19.4 18.7 52.3 6.9
LaBSE 82.5 70.9 39.8 12.8 56.1 93.6 69.3 13.3 98.4 95.8 90.6 89.9 88.8
MURAL(reprod.) + ETCL 77.9 22.0 32.9 7.4 45.5 13.7 59.7 11.2 97.4 94.0 72.1 61.9 6.0

Model ga (gle) gsw hsb io (ido) ie (ile) ia (ina) is (isl) jv (jav) kab kaz km (khm) ku (kur) kzj

LASER 5.2 44.4 54.5 83.7 86.2 95.2 95.6 22.9 58.1 18.6 20.6 17.2 7.2
m-USE 7.7 39.3 33.3 55.5 73.3 86.7 10.3 38.3 3.7 15.3 1.5 21.7 10.2
LaBSE 95.0 52.1 71.2 90.9 87.1 95.8 96.2 84.4 6.2 90.5 83.2 87.1 14.2
MURAL(reprod.) + ETCL 7.2 45.3 65.0 82.7 86.1 93.6 94.9 39.0 4.6 56.0 58.2 21.0 10.6

Model la (lat) lfn ml (mal) max mhr nds nn (nno) nov oc (oci) orv pam pms swg

LASER 58.5 64.5 96.9 50.9 10.4 82.9 88.3 66.0 61.2 28.1 6.0 49.6 46.0
m-USE 36.7 60.5 1.2 65.0 14.3 57.5 21.2 66.1 42.9 28.3 8.4 48.8 48.7
LaBSE 82.0 71.2 98.9 71.1 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0 65.2
MURAL(reprod.) + ETCL 61.2 68.5 97.4 59.9 15.0 68.6 88.8 73.2 63.9 38.9 8.9 56.6 59.8

Model swh ta (tam) tt (tat) te (tel) tl (tgl) tk (tuk) tzl ug (uig) uz (uzb) war wuu xh (xho) yjd

LASER 57.6 69.4 31.1 79.7 50.6 20.7 44.7 45.2 18.7 13.6 87.7 8.5 5.7
m-USE 13.7 2.8 15.7 2.4 16.2 20.9 46.6 4.0 15.9 15.6 82.2 14.8 1.9
LaBSE 88.6 90.7 97.9 98.3 97.4 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0
MURAL(reprod.) + ETCL 71.3 77.2 27.8 4.3 62.3 27.6 52.9 6.0 29.7 24.9 87.3 10.6 8.7

Table 16: Performance on Tatoeba sentence retrieval task for languages. Scores are reported by 100 × accuracy. To
make comparisons to other works easily, language abbreviations are expressed using ISO 639-1/639-2/639-3.


