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Abstract

Out-of-Domain (OOD) detection is a key com-
ponent in a task-oriented dialog system, which
aims to identify whether a query falls outside
the predefined supported intent set. Previous
softmax-based detection algorithms are proved
to be overconfident for OOD samples. In this
paper, we analyze overconfident OOD comes
from distribution uncertainty due to the mis-
match between the training and test distribu-
tions, which makes the model can’t confidently
make predictions thus probably causing abnor-
mal softmax scores. We propose a Bayesian
OOD detection framework to calibrate distri-
bution uncertainty using Monte-Carlo Dropout.
Our method is flexible and easily pluggable
into existing softmax-based baselines and gains
33.33% OOD F1 improvements with increas-
ing only 0.41% inference time compared to
MSP. Further analyses show the effectiveness
of Bayesian learning for OOD detection. 1

1 Introduction
Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is key for a task-oriented
dialog system (Gnewuch et al., 2017; Akasaki and
Kaji, 2017; Tulshan and Dhage, 2018; Shum et al.,
2018; Zeng et al., 2021a,b; Wu et al., 2022). It
aims to know when a user query falls outside their
range of predefined supported intents to avoid per-
forming wrong operations. Different from normal
intent classification tasks, lack of labeled OOD ex-
amples leads to poor prior knowledge about these
unknown intents, making it challenging to detect
OOD samples.

A rich line of OOD intent detection algo-
rithms has been developed recently, among which
softmax-based methods demonstrated promise
(Guo et al., 2017; Liang et al., 2018; Zheng et al.,

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1Our code is available at https://github.com/
pris-nlp/COLING2022_Bayesian-for-OOD/.
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Figure 1: Multiple predicted probability distributions
of an OOD sample under different random seeds. We
train four identical models on the same data but only
use different random seeds. Fig (a) displays each output
distribution of an OOD input and Fig (b) shows the
averaged output distribution.

2020). Softmax-based methods leverage softmax
outputs extracted from an in-domain (IND) intent
model and operate under the assumption that the
test OOD samples get a lower likelihood proba-
bility than the ID data. For example, Maximum
Softmax Probability (MSP) (Hendrycks and Gim-
pel, 2017) detects a test query as OOD if its max
softmax probability is lower than a fixed thresh-
old. However, all these models make a strong
distributional assumption of the practical OOD
probability being uniform, which has been proven
wrong because neural networks can produce over-
confidently high softmax scores even for OOD sam-
ples (Guo et al., 2017). Therefore, solving the
overconfidence issue is still challenging for OOD
detection.

In this paper, we study the overconfidence is-
sue from the perspective of Bayesian learning (Gal
and Ghahramani, 2016). Essentially, the reason
for overconfidence is that a model cannot confi-
dently make predictions on the input OOD utter-
ances (unknow-unknow) due to the lack of prior
knowledge of OOD data. In other words, even
given the same input OOD intent, the predicted

https://github.com/pris-nlp/COLING2022_Bayesian-for-OOD/
https://github.com/pris-nlp/COLING2022_Bayesian-for-OOD/
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probability distributions using different random
seeds are completely different, uniform, sharp, or
any distribution. Fig 1 show an example. We find
models with different initialization seeds can out-
put diverse distributions for OOD input, maybe
cause overconfidence in several in-domain classes.
But the averaged output is close to a uniform dis-
tribution. We also find models with different seeds
are more robust to IND input and obtain consis-
tent outputs (see Appendix C.2). Therefore, one
direct way to solve the distribution uncertainty is to
train multiple models independently and assemble
their outputs for the final result. But this method
is not applicable to practical scenarios for large
training cost. In this paper, we propose a Bayesian
OOD detection framework to calibrate distribution
uncertainty. Specifically, we firstly train an in-
domain intent classifier using IND data, then in the
test stage, we perform multiple stochastic forward
passes with a certain dropout rate (like 0.7) and av-
erage the output normalized logits as a final prob-
ability. Without increasing any new parameters,
we calibrate distribution uncertainty by tending to
expectation uniform distribution via Monte-Carlo
Dropout (Gal and Ghahramani, 2016). Our method
can be easily extended to existing softmax-based
OOD detection methods and gain significant OOD
improvements with only increasing little inference
time compared to baselines, even outperform the
state-of-the-art distance-based methods like LOF
(Lin and Xu, 2019) and GDA (Xu et al., 2020).
Our contributions are two-fold: (1) We analyze the
intrinsic reason of overconfidence issue via distri-
bution uncertainty and propose a Bayesian OOD
detection framework to calibrate this uncertainty
using Monte-Carlo Dropout. (2) We provide the-
oretical and empirical analysis to demonstrate the
effectiveness of our Bayesian OOD method.

2 Method

2.1 Understanding OOD Detection

Problem Definition We refer to training data D as
IND data. We aim to detect the input utterances x
belonging to OOD and correctly classify the utter-
ances belonging to IND utilizing a well-calibrated
classifier trained only on finite IND data D.

The predictive uncertainty of a classification
model P (υ|x,D) is commonly divided into data
uncertainty (aleatoric), distribution uncertainty
and model uncertainty (epistemic)(Kiureghian and
Ditlevsen, 2009; Malinin and Gales, 2018):

P (υ|x,D) =

∫∫
P (υ|µ)︸ ︷︷ ︸

data

P (µ|x, θ)︸ ︷︷ ︸
distribution

P (θ|D)︸ ︷︷ ︸
model

dµdθ

(1)
The model uncertainty is described by the pos-

terior distribution over model parameters θ, and it
can be lowered by increasing the amount of data
and simplifying the model complexity. The data
uncertainty is described by the posterior distribu-
tion over classes, where υ is the predicted distri-
bution of all possible in-domain intent classes for
OOD detection. It arises from the natural complex-
ity of the data, such as class overlap, label noise and
homoscedastic noise. It is a property of the world,
and cannot be changed. The distribution uncer-
tainty is modeled with a distribution over distribu-
tion, where µ is the categorical distribution over
simplex. It arises due to the mismatch between the
training and test distributions. We give an example
in Fig 2 which displays a distribution over distribu-
tions on a simplex (Dirichlet distribution (Malinin
and Gales, 2018)) where each dot represents a soft-
max prediction distribution for a test OOD sample
and all the dots denote a distribution over distri-
butions. For an input utterance x, softmax-based
detection algorithms like MSP assume that the dis-
tribution of OOD utterances (vood) should be very
close to the uniform distribution (the yellow dots
in Fig 2) and the distribution of IND utterances
(vind) should be very close to one-hot distribution
(e.g. Fig 2(a)-(d)). However, the practical OOD
samples (green dots) exactly yield a sparse distri-
bution over the simplex where each OOD sample
may get a sharp softmax prediction distribution
(like one-hot distribution) or a flat softmax predic-
tion distribution (like uniform distribution). Due
to the lack of prior knowledge of OOD data, the
model cannot confidently make predictions on the
input OOD utterances (unknow-unknow) which is
the essential reason why the predicted probability
distributions of the same OOD sample are com-
pletely different under different random seeds and
even get very high max softmax scores (Fig 1). In
other words, distribution uncertainty could lead to
overconfidence in the prediction of OOD samples.

Therefore, how to alleviate the distribution un-
certainty is the key to solving the overconfidence
problem in OOD detection.

2.2 Bayesian Approximation
In order to alleviate the distribution uncertainty, we
consider marginalizing out θ in Eq 1:
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Figure 2: A distribution over distributions where each dot represents a softmax prediction distribution for a test OOD
sample and all the dots denote a distribution over distributions. We also display softmax prediction distributions of
several dots on the dot line in Fig 1.2.

P (υ|x,D) =

∫
P (υ|µ)P (µ|x,D)dµ (2)

This yields expected estimates of data and dis-
tributional uncertainty given model uncertainty.
Marginalization is intractable in deep neural net-
works, thus we consider using q(ω) to approximate
the intractable posterior though Monte-Carlo Sam-
pling algorithm (Tsymbalov et al., 2020; Gal and
Ghahramani, 2016):

P (υ|x,D) =

∫
P (υ|ω)q(ω)dω (3)

where ω = {Wi}li=1 is the random variables for a
model with l layers. We define q(ω) as:

Wi = Mi · diag([αi,j ]
ki
i=1) (4)

αi,j ∼ Bernoulli(pi) (5)

Where pi and Mi are the variational parameters.
The binary variable αi,j indicates whether unit j of
the i − 1 layer will be passed to the next layer.
Specifically, we sample N sets of independent
random vectors of realisations from the Bernoulli
distribution {αn

1 , ..., α
n
l }Nn=1 with [αi,j]

ki
i=1 giving

{Wn
1 , ...,W

n
L}Nn=1. Then we average the output:

Eq(υ|x,D)(υ) ≈
1

N

N∑
n=1

υ̂(x,D,Wn
1 , ...,W

n
l ) (6)

According to the Law of Large Numbers (Yao and
Gao, 2016), when N is large enough, the predicted
distribution will converge in expected uniform dis-
tribution. That is, we can calibrate the practical
sparse OOD distribution (green dots) over the sim-
plex into ideal dense OOD distribution (yellow
dots) by Bayesian approximation to mitigate the
overconfidence issue, which is verified in the fol-
lowing empirical experiments.

Embedding Layer

User Utterances

Contextual Encoder

MSP/Entropy

OOD Detection

a) Overall Architecture

A

b) Using Bayes for OOD detection

N

Softmax Bayes + Softmax

Softmax Layerx

Expected softmax distribution

Bayes

Softmax distribution

Figure 3: The overall architecture of our method.

2.3 OOD Detection with Bayesian Learning
Fig 3(a) shows the overall architecture of our
proposed OOD detection model. The part in
the dashed box is a well-trained feature extrac-
tor based on Bi-LSTM (Hochreiter and Schmid-
huber, 1997) or BERT (Devlin et al., 2019). It
is trained on labeled in-domain data using cross-
entropy loss. Fig 3(b) shows the Bayesian approx-
imation process for distribution calibration. We
adopt Monte-Carlo Dropout and average the out-
put normalized logits from multiple stochastic for-
ward passes: v̄ = 1

N

∑N
i=1 vi. In this way, we

calibrate the softmax distribution to the expected
distribution, which close to a uniform distribution.
Then, we apply two softmax-based metrics for
OOD detection, which is mMSP = max(v̄) and
mEntropy = −

∑c
i=1 v̄i log v̄i. We further apply a

empirical threshold to distinguish IND and OOD
data.

3 Experiments

3.1 Datasets
We perform experiments on two public benchmark
OOD datasets2, CLINC-Full and CLINC-Imbal
(Larson et al., 2019). We show the detailed statistic

2https://github.com/clinc/oos-eval
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Model
CLINC-Full CLINC-Imbal

OOD IND OOD IND
F1 Recall F1 ACC F1 Recall F1 ACC

LSTM

LOF (Lin and Xu, 2019) 59.28 58.32 86.08 85.87 55.37 51.03 80.51 82.79
GDA (Xu et al., 2020) 65.79 64.14 87.90 86.83 61.38 63.80 85.35 84.20
MSP (Hendrycks and Gimpel, 2017) 50.13 45.60 87.73 87.25 44.93 41.10 84.96 84.16
MSP+Bayes.(ours) 70.05 68.38 88.91 88.57 61.70 57.50 85.92 85.65
Entropy (Zheng et al., 2020) 68.05 67.96 88.97 88.68 64.45 63.80 86.07 85.71
Entropy+Bayes.(ours) 72.02 71.70 89.10 88.73 68.32 67.61 86.34 86.11

BERT

MSP 52.79 50.50 87.81 87.46 48.76 46.70 85.87 85.65
MSP+Bayes.(ours) 71.25 69.58 89.10 89.56 64.32 62.00 86.39 85.87
Entropy 68.97 68.83 89.13 88.72 65.25 64.89 86.21 85.94
Entropy+Bayes.(ours) 72.85 72.42 89.47 88.94 69.11 68.49 86.74 86.42

Table 1: Performance comparison between our method and baselines on CLINC-Full and CLINC-Imbal datasets (p
<0.01). Bayes. represents our proposed Bayesian approximation via Monte-Carlo Dropout.

CLINC Full Imbal
Avg utterance length 9 9
Intents 150 150
Training set size 15100 10625
Training samples per class 100 25/50/75/100
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount 1000 1000

Table 2: Statistics of the CLINC datasets.

of these datasets in Table 2. They both contain
150 in-domain intents across 10 domains. The only
difference is that, for CLINC-Imbal, there are either
25, 50, 75 or 100 training queries per in-scope
intent, rather than 100. Note that all the datasets
we used have a fixed set of labeled OOD data but
we don’t use it for training.

3.2 Metrics

We report both OOD metrics: Recall and F1-
score(F1) and in-domain metrics: F1-score(F1) and
Accuracy(ACC). Since we aim to improve the per-
formance of detecting out-of-domain intents from
user queries, OOD Recall and F1 are the main eval-
uation metrics in this paper.

3.3 Baselines

For detection algorithms, we use LOF, GDA, MSP
and Entropy, none of them need OOD supervised
training. For the feature extractor, we use LSTM
and BERT. We provide a more comprehensive com-
parison and implementation details of these models
in the Appendix.

3.4 Main Results

Table 1 shows our main results on two benchmarks.
Our Bayesian method significantly outperforms
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Figure 4: Effect of Bayesian approximation on MSP
and Entropy confidence distributions of IND and OOD.

softmax-based baselines including MSP and En-
tropy, even distance-based SOTA GDA on OOD
metrics. Specifically, on CLINC-Full, Bayes im-
proves 19.92% and 3.97% OOD F1 compared to
MSP and Entropy using LSTM, which proves MSP
suffers from severe overconfidence and our method
helps calibrate OOD distribution. The performance
gap between MSP and Entropy is because Entropy
based on softmax output distribution can better cap-
ture distinguished information for OOD than MSP
based on a single value of softmax distribution. We
find similar improvements under the BERT setting
on CLINIC-Imbal dataset.

4 Analysis

4.1 Effect of Bayesian approximation

Fig 4 shows the MSP and Entropy confidence distri-
butions of IND and OOD test data using Bayesian
to verify the effect of our method. Due to the
over-confidence issue of OOD, we find IND and
OOD curves overlap a lot in the original confidence
scores. The overlapping part of Entropy is less,
which confirms its better OOD detection perfor-
mance. After calibration using Bayes, the overlap
part of both methods is reduced, making it easier
to distinguish between IND and OOD.
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lgN
Statistical Indicators

OOD IND
mean median mean median

0 3.63 3.60 4.74 4.95
1 2.59 2.47 4.36 4.58
2 2.27 2.15 4.31 4.54
3 2.24 2.12 4.30 4.54

Table 3: KL-divergence between predicted distribution
and uniform distribution on CLINC-Full. The smaller
value is better for OOD. N is the number of dropout.

4.2 Analysis of Distribution Calibration

Table 3 shows the effect of Bayes on OOD Dirich-
let Distribution. We calculate the KL-divergence
between the predicted averaged softmax distribu-
tion and the uniform distribution of each test OOD
sample and report the mean and median values on
the whole test set. With the increase of sampling,
we observe a larger drop on OOD mean and me-
dian KL values than INDs. It proves that Bayes
can gradually calibrate the vood to a uniform dis-
tribution and thus make the sparse OOD Dirichlet
distribution dense but not affect IND. Besides, we
find N = 100 already achieves good performance
to reduce inference cost. We provide an efficiency
comparison in Section 4.3 and find 33.33% OOD
F1 improvements only increase 0.41% time.

4.3 Analysis of Cost-effectiveness

We show the comparison between the time con-
sumption and the corresponding performance im-
provement in Table 4 on CLINC-Full which has
15100 training data and 5500 test data. We find that
when the number of samples N is 10, our method
can improve the performance by 33.33% while only
increasing the time by 0.41%, which proves that
our proposed method is very cost-effective. Be-
sides, we also find that more sampling times lead
to more improvements, demonstrating that more
accurate calibration significantly boosts OOD de-
tection. In terms of time consumption and perfor-
mance improvement, N = 100 is the most appropri-
ate sampling parameter. When the sampling time is
1000, the cost-effectiveness is not as high as when
N = 10. We consider that methods such as model
distillation and pruning can reduce the time con-
sumption, and we will leave it to future work. In
general, we can choose the appropriate number of
samples according to the computing resources.

4.4 Analysis of Parameters

Table 5 reports the OOD F1 under different dropout
probability and sampling times. Within a range be-

lgN Time(s) OOD F1
Increased

Time(%) OOD F1(%)
0 240.00 50.13 - -
1 240.98 66.84 ↑ 0.41 ↑ 33.33
2 252.41 70.05 ↑ 5.17 ↑ 39.74
3 388.36 70.82 ↑ 61.82 ↑ 41.27

Table 4: Time consumption and corresponding perfor-
mance improvement of Bayesian approximation based
MSP.

lgN
Dropout Probability

0.3 0.4 0.5 0.6 0.7 0.8
1 57.21 60.97 61.80 64.27 66.84 64.01
2 60.78 64.38 65.84 68.87 70.05 69.03
3 63.32 65.35 67.51 69.33 70.82 69.69

Table 5: Effect of Bayesian approximation with different
parameters on OOD F1-score.

tween 0.3 to 0.7, the larger dropout probability
leads to better OOD detection performance. This
is because OOD data is more vulnerable to feature
loss and its averaged softmax prediction distribu-
tion tends to be more uniform. Besides, more sam-
pling times lead to improvements, demonstrating
that more accurate calibration significantly boosts
OOD detection. We also find that the performance
on p=0.7, N=10 is better than the performance on
p=0.3, N=1000. This prompts us to choose a higher
p (e.g. 0.7), which can effectively reduce the time
consumption (1000->10). In addition, OOD F1 is
not sensitive to excessive sampling times.

5 Conclusion

In this paper, we conduct an analysis of why previ-
ous softmax-based detection algorithms like MSP
or Entropy suffer from the overconfidence issue.
We find OOD samples exactly yield a sparse distri-
bution over the simplex and evenly distribute over
the whole space. Therefore, we propose a simple
but strong Bayesian approximation method to cal-
ibrate OOD distribution. Experiments prove the
effectiveness of our method. We hope to provide
new guidance for future OOD detection work.
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A Baseline Details

We compare many types of unsupervised OOD
detection models. For detection algorithms,
we use LOF(Local Outlier Factor)(Lin and Xu,
2019), GDA(Gaussian Discriminant Analysis)(Xu
et al., 2020), MSP(Maximum Softmax Proba-
bility)(Hendrycks and Gimpel, 2017) and En-
tropy. For feature extractor, we use LSTM(Long
Short Term Memory)(Hochreiter and Schmidhuber,
1997) and BERT(Bidirectional Encoder Represen-
tations from Transformers)(Devlin et al., 2019).
MSP (Maximum Softmax Probability)(Hendrycks
and Gimpel, 2017) uses maximum softmax proba-
bility as the confidence score and regards an intent
as OOD if the score is below a fixed threshold.

LOF (Local Outlier Factor)(Lin and Xu, 2019)
A detecting unknown intents in the utterance algo-
rithm with local density. It Assumes that unknown
intents’ local density is significantly lower than its
k-nearest neighbor’s.

GDA (Gaussian Discriminant Analysis) (Xu
et al., 2020) A generative distance-based classi-
fier for OOD detection with Euclidian space. For
avoiding over-confidence problems, they estimate
the class-conditional distribution on feature spaces
of DNNs via Gaussian discriminant analysis. GDA
is the state-of-the-art detection method till now,
our proposed method using Bayesian approxima-
tion still significantly outperforms GDA. We also
compare our method on two feature extractors for
further study.

LSTM (Long Short Term Memory)(Hochreiter
and Schmidhuber, 1997) A neural network that
was proposed with the motivation of an analysis
of Recurrent Neural Nets, which found that long
time lags were inaccessible to existing architectures
because backpropagated error either blows up or
decays exponentially.

BERT (Bidirectional Encoder Representations
from Transformers)(Devlin et al., 2019) A neural
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Figure 5: Effect of Bayesian approximation on softmax
distribution of OOD sample.

network that is trained to predict elided words in
the text and then fine-tuned on our data. Note that
they both trained only on labeled in-domain data
using cross-entropy loss.

B Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)3 or
bert-base-uncased (Devlin et al., 2019)4 model to
embed tokens. We use a two-layer BiLSTM as a
feature extractor and set the dimension of hidden
states to 128. We use Adam optimizer (Kingma and
Ba, 2014) to train our model. We set a learning rate
to 1E-03 for GloVe+LSTM and 1E-04 for BERT.
In the training stage, We set the dropout probability
to 0.5 and set the training epoch up to 200 with
an early stop. We train only on in-domain labeled
data. We use the best F1 scores on the validation
set to calculate the detection method’s threshold
adaptively. For our proposed Bayesian approxima-
tion, we set the dropout probability to 0.7, and the
dropout sampling times to 100. Each result of the
experiments is tested 10 times under the same set-
ting and gets the average value. The training stage
of our model lasts about 4 minutes using GloVe em-
beddings, and 12 minutes using Bert-base-uncased,
both on a single Tesla T4 GPU(16 GB of memory).
The average value of the trainable model parame-
ters is 3.05M. We will release our code after blind
review.

C Visualization of softmax prediction
distribution.

C.1 Visualization of OOD samples
In Fig 5, we give a 150-dimensional class distri-
bution of an OOD sample to help understand our

3https://github.com/stanfordnlp/GloVe
4https://github.com/google-research/bert
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Figure 6: Multiple predicted probability distributions of
an IND sample under different random seeds.

calibration process. The upper part of the figure is
the distribution obtained by using the primary fea-
ture extractor. The softmax prediction distribution
has obvious over-confidence in a particular IND
category. The lower half of the figure presents the
distribution after calibration by Bayesian approxi-
mation, which is flatter and meets the expectations
of the OOD sample. When applying softmax-based
detection methods, the latter will more easily rec-
ognized as OOD.

C.2 Visualization of IND samples
Corresponding to Fig 1, Fig 6 and Fig 7 show pre-
dicted probability distributions of two IND sam-
ple under different random seeds over 150 classes.
We train four identical models on the same data
but only use different random seeds. Fig (a) dis-
plays each output distribution of an IND input
and Fig (b) shows the averaged output distribution.
Specifically, Fig 6 shows when the input utterance
is ’block my american saving bank for now’, the
model obtains the maximum prediction probability
on ground truth (freeze_account) under four ran-
dom seeds and averaged output. Specifically, The
maximum probabilities of prediction are 0.77, 0.96,
0.90 and 0.84 under different random seeds, and
0.87 under averaged output. In the experiments,
we find that most IND samples present the state of
Fig 6, that is, under different random samples set-
ting, the model is very confident to give the input
IND utterances with high confidence probability
in the ground-truth category. We guess that this
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Figure 7: Multiple predicted probability distributions of
an IND sample under different random seeds.

is because the model has seen some IND data in
the training phase, and is familiar with IND clas-
sification, that is, the distribution uncertainty of
IND is not serious. We also show another exam-
ple in Fig 7 which the input utterance is ’where
is improve the credit score’ and the correspond-
ing true label is improve_credit_score. However,
we find that under one random sampling setting,
the model mispredicts into credit_score category
with a probability of 0.61. We argue this is due
to the fact that the two are easily confused with
each other. Under this random sampling parameter
setting, the model has not learned the feature abil-
ity to accurately distinguish these two categories.
In addition, we also find that although there are
wrong predictions, most of the IND predictions are
accurate and have a high prediction probability, so
that the highest prediction probability can still be
obtained on the ground-truth label after averaging
the distributions. This also reveals that our method
will not damage the performance of IND classifica-
tion, and can even avoid misjudgment among some
confusing IND categories.


