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Abstract

Artificial agents are nowadays challenged to
perform embodied AI tasks. To succeed, agents
must understand the meaning of verbs and how
their corresponding actions transform the sur-
rounding world. In this work, we propose
ACT-Thor, a novel controlled benchmark for
embodied action understanding. We use the
AI2-THOR simulated environment to produce
a controlled setup in which an agent, given
a before-image and an associated action com-
mand, has to determine what the correct after-
image is among a set of possible candidates.
First, we assess the feasibility of the task via a
human evaluation that resulted in 81.4% accu-
racy, and very high inter-annotator agreement
(84.9%). Second, we design both unimodal
and multimodal baselines, using state-of-the-
art visual feature extractors. Our evaluation
and error analysis suggest that only models that
have a very structured representation of the ac-
tions together with powerful visual features can
perform well on the task. However, they still
fall behind human performance in a zero-shot
scenario where the model is exposed to unseen
(action, object) pairs. This paves the way for
a systematic way of evaluating embodied AI
agents that understand grounded actions.

1 Introduction

Recently, embodied agents have been increasingly
proposed and evaluated on their capacity to nav-
igate virtual environments, and execute actions
within them according to instructions (Suhr et al.,
2019; Hahn et al., 2020; Shridhar et al., 2020;
Padmakumar et al., 2022). Action execution as
a means of evaluating language understanding is a
long-standing idea (e.g. (Winograd, 1972)) which
has now become feasible thanks to the release

*Equal contribution
†Work performed while at the University of Trento

Figure 1: The image on the left (before-image) is the
view the robot has while holding a plate or a cup; the
image on the right is the view the robot has after having
executed the command of picking up that plate/cup.

of various virtual environment platforms (Kolve
et al., 2017; Savva et al., 2019; Yan et al., 2018).
Thus, the study of embodied agents is an interesting
venue to push forward due its both theoretical and
practical appeal. However, fully embodied tasks
involve a variety of issues, making it hard to under-
stand where we stand with respect to the challenges
posed. Here, we focus on one core aspect of such
embodied tasks: action grounding.

Tamari et al. (2020) advocate for embodied
language understanding as a necessary step to
overcome the limitations of the mainstream deep-
learning paradigm. Among the priorities of their
agenda is evaluating models’ ability to simulate
the effects of actions. Evidence from neuroscience
favors an embodied meaning of words and specif-
ically of verbs; for instance, the natural theory of
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language (Feldman and Narayanan, 2004) is based
on the assumption that people understand language
by imagining (or simulating) the situation being
described.

In this paper, we focus on grounded verb under-
standing and predicting the visual transformation
their corresponding action causes. More specif-
ically, we consider the idea of verbs as func-
tions (Frege, 1892), and see them as transforma-
tions of an object within a scene before and after
the verb/action is executed. To achieve this, we
create a dataset combining ideas and methods from
two main papers about learning physical common-
sense knowledge (Gao et al., 2018; Zellers et al.,
2021). As in Gao et al. (2018), we focus on the
action-effect relation, namely the physical change
that an action causes when executed on an object.
And, as in Zellers et al. (2021), we leverage a vir-
tual environment, AI2-THOR (Kolve et al., 2017),
to generate transitions between object states.

In sum, we propose ACT-Thor, a dataset for
learning the effects of actions, generated using a
virtual environment.1 For each example in our
dataset, we collect an image of an object, a la-
bel describing an action performed on the object,
and an after-image resulting from executing the
action (Figure 1). Thus, unlike in Gao et al. (2018)
and Zellers et al. (2021), both the before and after
world states are images; the linking action acts as
a function transforming the former into the latter.
Then, via the use of images whose generation is
carefully controlled, we design a task that intends
to capture a challenge embodied AI agents will
face in a real setting.

Out of this collection of image pairs and their
corresponding action-label, we design a prediction
task based on carefully selected contrast sets con-
taining candidate images representing the effect of
other actions performed on the very same object in
the same scene (Figure 2). Agents that truly ground
verbs, given the before-image and the action label,
should be able to select the after-image out of the
contrast set. We also evaluate human performance
on a sample of the dataset. Annotators achieve high
accuracy and inter-annotator agreement, evidenc-
ing the quality of the design method we propose,
and setting an upper bound for multimodal models.

We evaluate baseline models based on state-of-
the-art visual features (Singh et al., 2021; Radford

1The dataset and all relevant code are available at https:
//github.com/hannamw/ACT-Thor.

et al., 2021). We put together ideas and results
from different disciplines to shed light on different
ways to study action in neural models and pave
the way for future research on action grounding.
From formal semantics and computational seman-
tics, we take the view of verbs as functions (Frege,
1892), and therefore as matrices (Baroni and Zam-
parelli, 2010) and learn, for each action, a matrix
able to transform the before-image, into the corre-
sponding after-image. We compare this model with
multimodal neural network models of increasing
complexity. Our experiments show that

• virtual environment platforms can be used
to generate interesting diagnostic datasets of
static images having certain properties and
satisfying certain constraints;

• the task we propose is easy for humans despite
the use of virtual environments they are not
familiar with;

• though the baseline models we have evaluated
succeed on the task when evaluated on un-
seen scenes, they have difficulties when gen-
eralizing the learned action transformations to
unseen objects.

2 Related Work

Actions/verbs have been studied from a variety
of perspectives. They have been the subject of
thorough investigation in formal semantics (Fill-
more, 1982; Beth, 1993), and have been the focus
of widely-used annotated resources (Fillmore et al.,
2002; Schuler, 2005).

Multimodal approaches to action/verb learning
have been especially fruitful. Misra et al. (2015)
learn to ground visual representations of actions to
formal semantic representations thereof. Prior stud-
ies have connected visual action representations to
concepts such as intention (Pezzelle et al., 2020; Ig-
nat et al., 2021) and causality (Gao et al., 2016; She
and Chai, 2017; Yoo et al., 2021). Moreover, text-
based models of similarity between actions have
been shown to substantially improve when text is
combined with visual information (Regneri et al.,
2013). The breadth of these works suggests the im-
portance of verbs and actions for the development
of embodied agents and natural language under-
standing more broadly. We contribute to this line
of research by presenting a new technique for cre-
ating datasets that evaluate computational models

https://github.com/hannamw/ACT-Thor
https://github.com/hannamw/ACT-Thor
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for action grounding. We build on ideas introduced
in (Gao et al., 2018; Wang et al., 2016) by lever-
aging a virtual environment platform: rather than
filtering and annotating images from the web via
crowdsourcing, we generate a controlled dataset
using an agent in a virtual environment.

Within the NLP community, predicting the con-
sequences of actions is often framed as part of
learning commonsense knowledge. We share with
Gao et al. (2018) a focus on what they call naive
physical action-effect relations, namely the causal
relation between an action (verb) and the change
in physical world state caused by that action. Sim-
ilarly, we propose an “effect prediction” task in
which the model predicts an effect (an image) given
the action and the object on which the action is per-
formed. In their task, the action and object pair
are expressed as verbs and nouns, whereas in our
case the noun is presented as a (before) image;
hence the model is challenged to learn the visual
transformation objects undergo through the action
execution.

Zellers et al. (2021) use AI2-THOR to build
the PIGPeN dataset, from which models can learn
world dynamics. They do so by letting a virtual
agent navigate and interact with its environment
to solve certain tasks. However, when building
these trajectories, the robot’s visual perspective (an
image) is ignored in favor of a symbolic represen-
tation of the world state (i.e., as a set of visual
attributes). Hence, models trained on PIGPeN re-
ceive symbolic and natural language inputs repre-
senting world information, and produce outputs in
the same modality. To achieve our goal, we propose
studying the physical action-effect relation high-
lighted by Gao et al. (2018), utilizing the image
generation approach used in Zellers et al. (2021).

Finally, as in (Gao et al., 2018), we implement
this concept as a classification task. However, in-
spired by Gardner et al. (2020), we adopt a con-
trastive setup. Our use of a virtual environment
and its metadata allows us to build carefully con-
trolled sets of candidates in which the very same
object in the very same scene depicted in the before-
image has undergone different visual transforma-
tions/different actions.

Statistic ACT-Thor
action-object pairs 403
before-i, action, after-i 11154
unique before-i 3746
unique after-i 11154
scenes 120
objects 62
actions 12

Table 1: Statistics of the ACT-Thor collection.

3 Datasets

To build our dataset, we generated images using
AI2-THOR2, the virtual environment platform in-
troduced in (Kolve et al., 2017). In AI2-THOR, the
user controls a robot as it navigates a room of a
virtual house environment, filled with household
objects. While navigating the rooms, the robot can
interact with objects it encounters by performing
actions on them. Position and state metadata are
available for the robot and all objects in the scene.

We use the robot to generate an image represent-
ing a scene before and after an action is taken. In
the following section, we describe the image gener-
ation process, which led to the collection of triples
consisting of before and after-images and their
linking action. Then, we describe ACT-Thor,
a dataset built out of this collection to evaluate
models’ abilities to simulate the consequences of
actions on objects situated in virtual scenes.

3.1 Image Generation
AI2-THOR provides a rich environment for im-
age generation. It allows an agent to traverse 120
distinct virtual rooms (scenes), equally distributed
among the following four categories: kitchen, bath-
room, living room, or bedroom. These scenes con-
tain 125 distinct objects, from large, static objects
such as desks or sinks, to smaller objects like pots
or cups. Crucially for the creation of an action-
oriented dataset, the robot can execute 24 actions,
21 of which act directly on objects.

In this virtual world, as in reality, each object has
a certain number of affordances (Gibson, 1977), in
other words, not all actions can be performed on
all objects. Moreover, the state of an object affects
these affordances as well; for example, objects can
only be put down or thrown if they are currently
held. We are interested in studying actions as visual

2We used version v4.2.0 of AI2-THOR, https://
ai2thor.allenai.org/.

https://ai2thor.allenai.org/
https://ai2thor.allenai.org/
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transformations, but not all actions result in clearly
visible changes. A preliminary analysis showed
that pickupable objects, those that can be picked up,
could be the target of a greater variety of actions
compared to static objects, or objects that could
be moved but not picked up. Thus, we focused
on these, as our dataset requires objects to be the
targets of multiple, diverse actions.

Selecting pickupable objects and filtering out
the rest, we consider 62 object types across all
120 scenes; each object type occurs in on aver-
age 28.5 scenes (SD: 14.65). Of the 21 actions
affecting objects, we focused on 15 actions. We
prioritized actions that cause visible state changes
in their target objects, while also including some
that physically move objects (some of the physi-
cal actions are similar in character, and not very
visually distinct).

Based on these observations, our image gener-
ation procedure was as follows. For each of AI2-
THOR’s scenes, we generated the list of pickupable
objects by selecting those on which the action “pick
up” could be executed and identified a surface on
which objects could be placed. Then for each scene,
we performed two sets of trials with each picku-
pable object at the predetermined location. In the
first set of trials, the object started in the robot’s
grasp (held object) while in the second set, the
object started on the surface (placed object). For
each object and set of trials, one before-image was
recorded, and for each action performed, one after-
image was recorded.

In the first trial (held object), all objects could
have at least 3 distinct actions performed on them:
they could all be dropped, thrown, and put down.
Some objects permitted additional actions: dirtying,
toggling, filling, breaking, cooking, and opening.
In the second trial (placed object), all objects could
be pushed, pulled, and picked up. Again, some
objects allowed additional actions, the same as for
held objects, plus slicing. We executed all possible
actions for each object to generate the after-images,
making sure that every before-action-after triple in
a given scene takes place in the same location. This
approach yielded 13958 before-action-after triples
(6979 for each trial). There were 412 object-action
pairs, across 15 actions and 62 objects, across all
120 scenes.

We then cleaned the data, removing from the
dataset any triples whose associated actions failed;
for example, placing an object can fail if there is

no space in which to place it. We also removed any
triples where the object was no longer visible in
the after-image, as well as those whose after-image
was not visibly different from the before-image,
as determined by pixel-wise distance between im-
ages. Finally, we removed actions that could be
executed on only one object. This filtering removed
3 actions: “use up”, “slice”, and “cook”.

As summarized in Table 1, after filtering, our col-
lection contained 11154 triples, built out of 12 ac-
tions, 62 object types, and 403 action-object pairs,
across 120 scenes. It contained in total 3746 unique
before-images and 11154 unique after-images.3

Note also that while this collection is not large,
it can also be expanded, as it was collected from a
virtual environment. Specifically, by randomizing
object color, scene lighting, agent perspective, and
other aspects of the virtual environment, it would
be possible to increase visual diversity while not
compromising the controlled nature of the image
generation.

In the next section, we focus on building a
dataset for a contrast set task; however, we note that
this collection could be assembled into datasets for
other tasks as well. For example, an action infer-
ence task could be created by presenting a matching
before- and after-image, and training a model to
predict the action connecting the two images.

3.2 Dataset Creation
We converted our collection of triples described
above into contrast sets consisting of 4 images.
For each (before-image, action, after-image) triple,
the corresponding contrast set consists of the true
after-image, and 2 after-images generated starting
from the same before-image by executing different
actions on the same object. In addition, we include
1 image that is the result of executing the same
action on the same object type situated in a scene
distinct from the one depicted in the before-image.
The inclusion of this image ensures that a model
cannot simply pick images that are consistent with
the given action; they must also correspond to the
scene of the before-image. Below we provide the
details of the dataset creation to highlight its fine-
grained design.

Some before-images had fewer than 3 after-
images (same object, same scene, different action);
thus, triples containing this before-image could not

3The list of actions, together with the number of object
types on which they have been executed, is provided in the
Supplementary Material (Table 5)
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Action # Objs. Action # Objs.
Push 20 Pull 20
Pick Up 20 Put Down 20
Throw 20 Drop 20
Break 11 Fill 7
Dirty 7 Toggle 3
Open 2 Close 2

Table 2: Task: Number of object types per action
(before-image-action pair) in the filtered contrast set
dataset.

Figure 2: Simulation task: given a before-image and an
action label, select from a contrast image set the one
that represents the action simulation (after-image).

be converted into contrast sets. We also discarded
examples where certain action pairs occur in the
same contrast set, as their outcomes are too visually
similar. For example, the outcome of putting any
given object down is not consistently distinguish-
able from the outcome of throwing it; similarly,
pushing and pulling objects can be visually similar.
This particular filtering step results in significant
cuts to the dataset size. This approach yields 4451
datapoints, 152 object-action pairs over 12 actions
and 20 objects, across 109 scenes. The object-
action distribution is given in Table 2.

Task Figure 2 illustrates the task: given the
before-image (the robot is in a kitchen, holding
a plate) and the action label, the model has to select
the corresponding after-image (image 3) from the
given contrast set, whose candidates are generated
from the before-image by having the robot dirty
(image 0), throw (image 1), and break (image 3)
the plate. Finally, image 2 results from the robot
breaking the plate in a different kitchen.

Human experiment To determine how challeng-
ing this task was for humans, we also solicited an-

notations from students. Each of the 7 annotators
was randomly assigned 60 contrast sets to annotate
using the makesense.ai platform. Annotators
saw images like Figure 2 but without the red box
indicating the correct response. They were told
to select the index of the image corresponding to
performing the listed action on the object in the
before-image.

As each contrast set was annotated by two anno-
tators, this yielded annotations for 210 contrast sets.
Overall, annotators achieved high accuracy (81.4%)
and annotator agreement (84.9%), compared to ran-
dom chance (25% for both). This evidences the
quality of the data and generation process, as well
as the feasibility of the task.

4 Models

In this section, we describe baseline models de-
signed to assess the role of the embeddings in-
volved: those of the action-label, before- and after-
images. We compare models using frozen visual
features extracted from various state-of-the-art fea-
ture extractors.4

Training method Considering the contrastive
nature of our task, inspired by CLIP’s loss func-
tion (Radford et al., 2021), we use the InfoNCE
loss proposed by van den Oord et al. (2018). This
loss minimizes the distance with the ground-truth
vector while jointly maximizing distances from
the “negative” elements in the contrast set (i.e.
the ones generated from different actions). Let
C = ({c1, c2, ..., cn} , k) be a contrast set where
ci are the vector representations for each image,
and k is the index of the true after-image. Further-
more, let ã be the predicted after-image representa-
tion. Then we compute the probability that image i
is the true after-image as follows:

p(i|C, ã) = eci·ã
⊤∑n

j=1 e
cj ·ã⊤

The training loss is L(C, ã) = − log(p(k|C, ã)),
cross-entropy loss. At test time, our model predicts
the true after -mage index as argmaxi p(i|C, ã).
The models presented in the following paragraphs
all use the approach described above, with the ex-
ception of the visual-only model, for which
there is no training time.

4Details regarding model architectures and parameter
counts can be found in the Supplementary Material (Figure 6,
Table 8)

makesense.ai
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Unimodal Baselines Inspired by Thomason et al.
(2019), we verify the impact of visual and language
input by considering unimodal baselines. First, we
evaluate a model that learns to select as after-image
an image of the contrast set whose visual vector is
closer to the before-image, based on cosine simi-
larity (Hence, visual-only.) In this work, we
explore two different visual extractors: 1) MOCA:
we rely on the visual encoder pretrained using AL-
FRED data by Singh et al. (2021); 2) CLIP: we
use the visual features extracted by the CLIP image
encoder (Radford et al., 2021). We use the for-
mer because it has been extensively used for other
Embodied AI tasks (e.g., (Pashevich et al., 2021))
while we use the latter because Khandelwal et al.
(2022) showed that CLIP provides very effective
representations for Embodied AI tasks.

Second, we evaluate a model that learns to se-
lect the after-image simply based on the action
name (action-name). The model architecture
is simple: first, the action label is converted into
a (learned) embedding. Next, each of the after-
images is turned into a feature vector using one of
the aforementioned frozen pre-trained feature ex-
tractors. Then, both the action embedding and each
of the after-image feature vectors are projected into
a shared space via linear projections. The pro-
jected action embedding is taken to be ã, and the
appropriate projected image representations to be
c1, . . . , cn. Then training and prediction are per-
formed as described above.

Multimodal Baselines We design three multi-
modal baseline models. The first of them departs
from the mainstream end-to-end approach used
in Embodied AI, implementing the formal seman-
tics view of “verbs as functions”. Following Ba-
roni and Zamparelli (2010), we represent each ac-
tion as a matrix that is learned from its before-
and after-images. Unlike Baroni and Zamparelli
(2010), we rely on a feed-forward network with a
single linear layer, with no bias vector or activation
function (hence, Action-Matrix). Given the
before-image representation (derived from either
MOCA or CLIP), we use the action identifier to
extract the associated action matrix, which is com-
posed with the before-image vector through matrix
multiplication to return the predicted after-image
vector.5

5The model we implemented is quite close to the Siamese
Network proposed in (Wang et al., 2016) which we discovered
while writing the paper. The code is not available; hence, we

In addition, we design two models trained end-
to-end to select the after-image given the before-
image representation and the action name repre-
sented as a vector that belongs to a learned em-
bedding matrix. The two variants of this archi-
tecture are: Concat-Linear: a single matrix,
acting as a linear layer, which is multiplied by the
concatenation of before vector and action vector;
and Concat-Multi: a 2-layer, feed-forward net-
work, including batch-normalization, dropout and
activation layers, taking as input the same concate-
nated vector as above.

5 Experiments

It is important that embodied AI agents be capable
of making sound predictions in unseen scenarios is
a very important requirement for real-world appli-
cations. For this reason, we carefully design two
hold-out procedures when splitting the dataset into
train, validation and test data, in order to estimate
the generalization capabilities of the baselines

Unseen Scenes. Following the standard practice
in AI2-THOR6, we split the set of scenes S into
seen scenes Ss and unseen scenes Su and use the
former to create the training and validation sets
(2856 and 684 datapoints, resp.) and the latter for
the test set (820 datapoints); in other words, at
test time the models will receive images illustrat-
ing one of the four possible types of virtual rooms
(e.g. a bathroom) in a configuration that they have
not seen during training/validation.7 This method
allows us to test for generalization at the scene
level, in order to see if the models’ visual features
are fine-grained enough to generalize across differ-
ent configurations of objects appearing in different
rooms.

Unseen Objects. Given the set of object classes
O, we split it into a seen subset Os, and an unseen
subset Ou. We define the training and validation
splits so that they contain objects that belong to Os

only. On the other hand, we define the test split so
that it contains only objects belonging to Ou. We
manually selected the unseen objects (laptop, cup,
and book) so as to guarantee the complete coverage
of actions at test time. The test set contains 908
datapoints, the training and validation sets amount
to 2762 and 690 datapoints, respectively.8 This

could not evaluate it.
6The standard practice in AI2-THOR is reported in the

official documentation.
7Detailed statistics in Supplementary Material (Table 7)
8Detailed statistics in Supplementary Material (Table 6)

https://ai2thor.allenai.org/ithor/documentation/scenes/#trainvaltest-splits


5603

procedure will help showing how well models can
understand the effect of known actions on novel
objects.

6 Results

6.1 Accuracy

As illustrated in Figure 3, the unimodal baseline
models are close to chance levels both in the un-
seen scenes and unseen objects setting. In both
cases, the visual-only model performs better than
the action-name one, independently of the visual
features used. In general, for the visual-only base-
line, CLIP features seem to be better than MOCA
ones, possibly due to their higher expressiveness
when used for visual similarity, as is the case
here. The drop in performance for the model
action-name on unseen scenes is justified by
the fact that the model is learning to make pre-
dictions based on the action embeddings only. At
training time, the model is exposed to seen scenes
only; therefore, the action embeddings are likely
to encode patterns associated with these scenes
only. Such representations do not truly consider
other context-specific information and therefore do
not allow the model to generalize well on unseen
scenes.

In both splits, all models perform better when
based on the MOCA visual features than CLIP. In
particular, MOCA-based models generalize better
across scenes. This could be associated with the
fact that our task requires very fine-grained infor-
mation that a CLIP model may not be able to retain.
Thanks to the embodied nature of the task solved by
MOCA, its visual features learn more fine-grained
representations of the AI2-THOR environment.

The Action Matrix and Concat-Multi
models reach a similar accuracy in both settings;
however, the latter suffers less from the coarser-
grained representation provided by the CLIP fea-
tures in the holding out scene setup. When com-
paring model and human performance, it is clear
that the weak point of these models is the crucial
ability to generalize their action grounding to un-
seen objects. Although the images are not fully
naturalistic, humans reach 83% accuracy, whereas
the best models are around 70% in the unseen ob-
jects split when given the MOCA features that are
specifically fine-tuned on AI2-THOR, and lower
than 60% with CLIP.

Another important consideration is that, follow-
ing previous work on affordance prediction (Deng

et al., 2021), our baselines benefit from the gold
information of the action being performed. The
Action-Matrix model is designed to learn a
transformation matrix for each action in the dataset
as in Wang et al. (2016). This demonstrates that
having a way to learn “verb” related information
is useful to match human performance and gener-
alize better. We believe that this represents a very
interesting challenge for embodied AI models that
are fully end-to-end (e.g. (Suglia et al., 2021)).
Introducing models that can reason over time by
“simulating” the action being performed represents
a potentially interesting avenue for future work.

6.2 Error Analysis

In order to understand models’ performance,
we completed a detailed analysis of the best
performing models, Action Matrix and
Contact-Multi, focusing on the unseen object
split. First, we computed accuracy by action.
Looking at Table 3, the most successful action is
by far “drop” for all models: this could be due
to the change of perspective that happens after
dropping an object. Moreover, this action can be
applied to all the objects in the dataset, thus we
can assume that the model has more data to learn
from and generalizes better.

While the MOCA-based Concat-Multi
model holds the majority of the best values, it can
be noted that the CLIP-based version scores better
on actions for which there are fewer datapoints in
the training set (“close”, “open”, “toggle”). We
hypothesize this is due to the larger pretraining
dataset that is used by CLIP, whose higher capacity
might lead to better generalization with less data.

Second, we computed the accuracy by objects.
This analysis shows that of the three objects unseen
during training, “cup” is the one with highest scores
across actions. We hypothesize that this is due to
the presence of other visually similar objects in the
training set, for instance “mug” and “bowl”.9

Finally, we exploited the directly interpretable
action representations computed by the Action
Matrix MOCA-based model, and computed the
nearest neighbors of each verb. As reported in
Table 4, the model groups together actions that
cause a change of position (e.g., “drop”, “push”,
“pull”), and actions that cause a change in object
appearance (e.g. “break”, “dirty”, “toggle”.) This
is a first promising step towards grounded verb

9Details in Table 9 of the Supplementary Material
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Figure 3: Results for contrast-task accuracy, training with contrastive-loss (average over 5 random initializations).
Dashed lines represent baselines: gray for chance, orange for visual-similarity, purple for the action-name after-
image-only model. The red line represents human accuracy averaged over all procedures.

Model break close dirty drop fill open pickUp pull push put throw toggle
AM-CLIP 0.406 0.516 0.553 0.907 0.495 0.348 0.540 0.439 0.572 0.628 0.619 0.447
CM-CLIP 0.576 0.573 0.502 0.627 0.546 0.722 0.593 0.521 0.546 0.607 0.622 0.630

AM-MOCA 0.580 0.541 0.678 0.991 0.814 0.409 0.772 0.449 0.675 0.782 0.769 0.567
CM-MOCA 0.651 0.482 0.719 0.964 0.848 0.426 0.805 0.536 0.668 0.855 0.670 0.573

Table 3: Accuracy per action of the best scoring models; results for the test set of the object split. Best values on
columns in bold.

Action Nearest neighbors (sorted)
break dirty open toggle
close break dirty put
dirty break pull open
drop push pull pickUp
fill put pull throw

open dirty break fill
pickUp dirty fill break

pull put push throw
push pull throw put
put throw pull push

throw put push pull
toggle dirty break pull

Table 4: 3 nearest action neighbor actions for each
action, using action representations from the MOCA
Action-Matrix model (trained on the object split).

representations. We believe much could be learned
by combining formal semantics findings on verbs
and the embodied AI literature.

7 Conclusion

In this work, we define ACT-Thor, a controlled
benchmark for embodied action understanding in

simulated environments. Compared to similar
benchmarks presented in the literature, we propose
a more systematic benchmark for studying the ca-
pability of multimodal machine learning models
to understand the effects of actions on the objects.
Additionally, our contrast set formulation allows
us to precisely pinpoint the distinctions that mod-
els should learn, providing a robust and reliable
benchmark for studying action grounding.

To assess the quality of our dataset, we first com-
pleted a human evaluation demonstrating that hu-
mans can complete this task with 83% accuracy.
Then, we evaluated several unimodal models, and
multimodal models using several state-of-the-art
visual feature extractors such as CLIP (Radford
et al., 2021). By inspecting models that learn a
matrix for each action, we show that the represen-
tations learned via our dataset favor the emergence
of clusters of actions associated with a change of
position, and actions that cause a change in object
appearance. These are two salient visual transfor-
mations objects undergo, but more could be learned
by extending the dataset with other actions or other
objects, and by proposing controlled settings in-
spired by the theoretical view on verb semantics.
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Our work demonstrates the potential of virtual en-
vironments to pursue this line of research.

We argue that ACT-Thor represents an exper-
imental benchmark for studying the action under-
standing capabilities of machine learning models,
an important skill for embodied AI agents. This is
especially important moving forward for studying
the capabilities of generalist agents that can solve
multiple tasks (Reed et al., 2022).
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A Probing visual features

For the purpose of our experiments, we require
visual representations that are expressive and fine-
grained so that it is possible to distinguish both
object-dependent and scene-dependent features.
Therefore, we rely on the object detection task—
similar to the one performed in the ImageNet
setup (Deng et al., 2009)—as a diagnostic task for
the quality of the visual features. Particularly, we
assume that high quality visual features will yield
high performance in the selected diagnostic task.
Furthermore, implementing this sanity check is
important because most of our visual feature ex-
tractors are pretrained on real-world images, and
we do not know how well they will perform on
AI2Thor synthetic images.

Borrowing from the literature in Computer
Vision, we define our task as the combina-
tion of object classification and bounding-box
regression: given an input image, the model
should produce a tuple (x0, y0, x1, y1) of
coordinates representing the top-left and
bottom-right corners of the rectangular bounding-
box, where xi ∈ [0,max-image-width] and
yi ∈ [0,max-image-height], coupled with the
hypothesized object label l ∈ {0, 1, ..., C − 1}
where C is the number of unique objects in
the dataset. Performance over these two tasks
can be measured the Mean Average Precision
(MAP) metric, which includes information of both
intersection-over-union of the predicted boxes with

the ground-truth and object class precision.

We use the TorchVision10 implementation of
an end-to-end object detection architecture, Faster
RCNN (Ren et al., 2015): this is composed of a
CNN backbone, coupled with a Region Proposal
Network that gets trained in parallel and two dis-
tinct fully connected heads to predict bounding
boxes (of size 4) and object class label (of size 62).
This architecture is trained to predict both bounding
box and object location of the only relevant object
in the image, which is the one subject to the current
action in the contrast set from which it comes; for
the bounding box regression it is used an MSE loss,
while for object detection it is used a Cross Entropy
loss. In order to match the data distributions of the
training set of these models, we normalize AI2Thor
images channel-wise, by computing the mean and
standard deviation for each channel over the whole
dataset. We also crop inputs to size 224× 224 for
compatibility reasons.
Crucially, for evaluating our models as feature ex-
tractors we need to keep the convolutional back-
bone fixed to its initial weights: in this way, the
better the visual features extracted, the easier it
will be for the classification head to learn this diag-
nostic task. Nonetheless, for comparison we train
also object detection models where the backbone is
fine-tuned, and test if their performance is different
from the frozen versions.

The TorchVision reference implementation is
based on a ResNet50 backbone, which is the most
similar to the models in our experiments, and it
reaches a mAP value of 37.0 over COCO val2017
(Lin et al., 2014).

For frozen models, we obtain results that are
lower than the baseline. We hypothesize this is
due firstly to dataset size, which does not reach
hundreds of thousands of samples as for other
object detection benchmarks. However, it must be
taken into account also the difference in our object
detection task compared to more general ones:
while in this work we assume just one interesting
object with a single bounding box per sample, in
works focused on object detection it is common to
have a high number of boxes per image, spanning
several different categories. This variation in
the task framing could explain, at least in part,
the differences in performance from broader works.

10https://pytorch.org/vision/stable/models.html#object-
detection-instance-segmentation-and-person-keypoint-
detection
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Figure 4: Object Detection: MAP on validation set per
epoch.

Both MOCA and CLIP based models reach satis-
fying performances, therefore we consider their fea-
tures to be good enough to be used in other exper-
iments; we will include also the ImageNet model
for comparison, despite its poor performance on
this task. Additionally, this choice is also supported
by previous work that shows that both MOCA and
CLIP are appropriate vision models for AI2Thor
synthetic scenes, as demonstrated by (Singh et al.,
2021) and (Khandelwal et al., 2022), respectively.

B Additional Dataset, Model, and Results
Information

Action # Objs. Action # Objs.
Push 62 Pull 62
Pick Up 62 Put Down 62
Throw 62 Drop 62
Break 11 Fill 8
Dirty 8 Toggle 3
Open 2 Close 2

Table 5: List of the 12 actions used to generate after
images and the number of object types per action.

Split Object # Actions # Samples Tot.

Test
Book 7 92

908Cup 9 316
Laptop 9 500

Train

Bottle 8 52

2762

Bowl 9 393
Box 7 188

Candle 7 115
CellPhone 8 128

Cloth 7 104
Egg 7 77

Kettle 8 98
Mug 9 350
Pan 7 151

Plate 8 278
Pot 8 221

Potato 6 65
Statue 7 290
Vase 7 259

WateringCan 6 23
WineBottle 7 35

Valid

Bottle 8 14

690

Bowl 9 92
Box 7 40

Candle 7 25
CellPhone 7 32

Cloth 6 32
Egg 4 11

Kettle 7 16
Mug 9 113
Pan 7 41

Plate 8 66
Pot 8 49

Potato 6 16
Statue 7 74
Vase 7 71

WateringCan 4 5
WineBottle 4 9

4360

Table 6: Action and sample counts for the Object split.
’Actions’ column represents the number of unique ac-
tions performed on that object.
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Split Envt. # Configs # Samples Total

Test

bathroom 3 36

820
bedroom 5 158
kitchen 5 367

living room 5 277

Train

bathroom 20 152

2856
bedroom 20 472
kitchen 20 1513
living 20 773

Valid

bathroom 5 44

693
bedroom 5 117
kitchen 5 337
living 5 195

4360

Table 7: Environment information for the scene split.

Figure 5: Distribution of actions between seen and unseen items per splitting procedure.
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Figure 6: Schema of model architecture. Note: the arrow linking before-vector and vector transformation models
represents, respectively: the dot product with the correct action matrix, for the Action-Matrix model; feedforwarding
the vector as network input for the Concat-Multi model. We omit the Concat-Linear model since it uses the same
procedure of the Concat-Multi.

VF Embedding? Model Params

MOCA

No
Action-Matrix 259,308
Concat-linear 23,520
Concat-Multi 36,680

Yes
Action-Matrix 259,308
Concat-linear 375,296
Concat-multi 539,520

CLIP

No
Action-Matrix 12,582,912
Concat-linear 1,061,888
Concat-Multi 1,602,421

Yes
Action-Matrix 12,582,912
Concat-linear 599,808
Concat-multi 764,032

Table 8: Summary of model parameter counts. ’VF’ is the visual feature extractor used, while ’Embedding’ denotes
whether the model uses an embedding space of the same dimension (256) for both actions and visual vectors instead
of the 1-hot-vector action encoding (and raw visual vectors).

Object break close dirty drop fill open pickUp pull push put throw toggle
Book // // // 1.000 // 0.426 0.508 0.538 0.646 0.780 0.420 //
Cup 0.726 // 0.719 0.993 0.847 // 0.966 0.620 0.711 0.931 0.727 //

Laptop 0.603 0.482 // 0.942 // // 0.787 0.498 0.649 0.825 0.694 0.573

Table 9: Action-wise accuracies for the Concat-Multi MOCA model, computed for each object in the test set
(’//’ used when the action is not available for that object). Best values for columns in bold.
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Figure 7: Results for accuracy of the least-squares regression model (average over 5 random splits).

Figure 8: Comparison of L2 training procedure (top) and contrastive loss (bottom). Average over 5 random
initializations. Dashed lines represent baselines (gray for chance, red for visual-similarity)
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Figure 9: Action confusion matrix for the MOCA model with action embedding layer (row is ground truth, column
represents prediction).

Figure 10: Action confusion matrix for the CLIP model with action embedding layer (row is ground truth, column
represents prediction).
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