
Proceedings of the 29th International Conference on Computational Linguistics, pages 5438–5449
October 12–17, 2022.

5438

Enhancing Structure-aware Encoder with Extremely Limited Data
for Graph-based Dependency Parsing

Yuanhe Tian♥, Yan Song♠†, Fei Xia♥
♥University of Washington ♠University of Science and Technology of China

♥{yhtian, fxia}@uw.edu ♠clksong@gmail.com

Abstract

Dependency parsing is an important funda-
mental natural language processing task which
analyzes the syntactic structure of an input sen-
tence by illustrating the syntactic relations be-
tween words. To improve dependency pars-
ing, leveraging existing dependency parsers
and extra data (e.g., through semi-supervised
learning) has been demonstrated to be effec-
tive, even though the final parsers are trained
on inaccurate (but massive) data. In this pa-
per, we propose a frustratingly easy approach
to improve graph-based dependency parsing,
where a structure-aware encoder is pre-trained
on auto-parsed data by predicting the word de-
pendencies and then fine-tuned on gold depen-
dency trees, which differs from the usual pre-
training process that aims to predict the con-
text words along dependency paths. Experi-
mental results and analyses demonstrate the
effectiveness and robustness of our approach
to benefit from the data (even with noise)
processed by different parsers, where our ap-
proach outperforms strong baselines under dif-
ferent settings with different dependency stan-
dards and model architectures used in pre-
training and fine-tuning. More importantly,
further analyses find that only 2K auto-parsed
sentences are required to obtain improvement
when pre-training vanilla BERT-large based
parser without requiring extra parameters.1

1 Introduction

Dependency parsing aims to produce the syntactic
structure of a sentence by illustrating the syntac-
tic relations between words, where the words with
dependency relations are connected by directed
and labeled arcs. It is an important fundamen-
tal natural language processing (NLP) task that
is widely used to enhance downstream NLP tasks
(Cai et al., 2009; Strubell et al., 2018; Huang and

†Corresponding author.
1Our code is available at https://github.com/

synlp/DMPar.

Carley, 2019; Zhang et al., 2019; Guo et al., 2019;
Nie et al., 2020; Zhou et al., 2020b; Chen et al.,
2020; Tian et al., 2022) such as coreference resolu-
tion, relation extraction, and sentiment analysis.

To produce the dependency structure of a sen-
tence, the contextual information is of great impor-
tance to achieve good model performance. Thus,
most recent studies (Dozat and Manning, 2017;
Zhou and Zhao, 2019; Zhou et al., 2020a,b; Mrini
et al., 2020; Zhang et al., 2021) leverage advanced
encoders (e.g., bi-LSTM, Transformer (Vaswani
et al., 2017)) to model the contextual information
of the input and obtain outstanding performance.
In addition, because leveraging different models to
obtain better results is an important technique for
many NLP tasks (Juraska et al., 2018; Kobayashi,
2018; Kuwabara et al., 2020; Qin et al., 2021),
many previous studies apply this technique to de-
pendency parsing to further improve model per-
formance. Under this paradigm, many studies uti-
lize semi-supervised methods (e.g., self-training)
to benefit from auto-processed extra data which is
used to extract useful features (Smith and Eisner,
2007; Koo et al., 2008; Bansal and Klein, 2011; Ma
and Xia, 2013; Kiperwasser and Goldberg, 2015;
Yu and Bohnet, 2017) or training data (Spreyer
and Kuhn, 2009; Rybak and Wróblewska, 2018;
Rotman and Reichart, 2019). However, since the
auto-generated parse tree is not always accurate,
semi-supervised methods need to handle the noise
with care to achieve better performance (Søgaard
and Rishøj, 2010; Chen et al., 2018).

To address the noise issue, in this paper, we
propose to apply pre-training and fine-tuning to en-
hance dependency parsing with the auto-parsed
data generated by existing parsers. Although
the effectiveness of pre-training and fine-tuning
paradigm has been demonstrated to leverage extra
data in many NLP tasks, it is still worth studying
whether this paradigm works well for dependency

https://github.com/synlp/DMPar
https://github.com/synlp/DMPar


5439

Figure 1: Our parser is trained in two stages: pre-training with auto-parsed data (Figure 1(a)) and fine-tuning with
gold dependency trees (Figure 1(b)). Fine-tuning uses the same encoder architecture as in pre-training but further
adjusts its weights. In contrast, the decoder for fine-tuning is different from the one in pre-training and its weights
are randomly initialized.

parsing. Specifically, we apply an auto-parser2 to
unlabeled data to obtain the auto-parsed dependen-
cies, and then use the resulting data (with noise) to
pre-train a structure-aware encoder, which is finally
fine-tuned with the gold labels. The pre-training
of the encoder follows exactly the same process of
training a dependency parser with the same input
and output, except that the labeled data are automat-
ically generated, which significantly differs from
the usual pre-training process that aims to predict
the context words along the dependency path. In
the fine-tuning stage, the weights (with structural
information learnt from noisy auto-parsed data) of
the pre-trained encoder is used to initialize the en-
coder of our final parser, whereas the final parser’s
decoder is initialized randomly before fine-tuning.
In doing so, the encoder is able to learn the de-
pendency information from large auto-parsed data
(with noise) through pre-training and then use the
information to enhance the performance of the fi-
nal parser when it is fine-tuned on the gold parse
trees. Compared with previous studies, our method
offers a more flexible way to selectively learn from
the auto-parsed data than the methods that take
dependency parses (with noise) as fixed extra in-
put features or training instances. Experimental
results and further analyses on English benchmark
datasets demonstrate the effectiveness and robust-
ness of the proposed approach, which outperforms
strong baselines under different settings with differ-
ent dependency standards and model architectures
used in pre-training and fine-tuning. The most
interesting finding from this study is that the pre-
training step only needs a small amount of data
(e.g., two thousand auto-parsed sentences for the
BERT-large encoder), to improve the performance
of the resulting parser.

2E.g., Stanford CoreNLP Toolkits (Manning et al., 2014).

2 Training the Dependency Parser

In this study, we use neural graph-based depen-
dency parsers, because they have achieved state-of-
the-art performance on this task (Dozat and Man-
ning, 2017; Zhou and Zhao, 2019; Mrini et al.,
2020). Specifically, training our graph-based parser
follows a two-stage procedure with pre-training
and fine-tuning, where pre-training is performed
on auto-parsed data with the same object to train
a dependency parser, and the fine-tuning is con-
ducted on the gold dependency trees with the pre-
trained encoder (other modules in the final parser
are freshly learned in fine-tuning).

Figure 1 shows the model architecture and the
two-stage procedure to train our final dependency
parser. In the following text, we firstly intro-
duce the neural graph-based dependency parser and
then illustrate the process to pre-train the structure-
aware encoder.

2.1 Neural Graph-based Dependency Parser

Given the input sentence X = x1x2 · · ·xi · · ·xn
(xi is the i-th word), conventional neural graph-
based dependency parsers firstly obtain the hid-
den vector hi for each word xi from the encoder.
Then, based on hi, for each word pair (xi, xj), the
decoder of the parser computes sarci,j and sreli,j in-
dicating the score for the directional dependency
connection (arc) between xi and xj and the score
for the dependency relation type rel ∈ R (R is the
dependency type set) between them, respectively.
Next, the parser applies the Eisner algorithm3 (Eis-
ner, 1996) to all sarci,j to predict the dependency tree
T̂0 and assigns the connection between xi and its

3The Eisner algorithm is only applied in inference. In
training, the parser is optimized by comparing sarci,j and sreli,j

with the gold standards using the cross-entropy loss function.



5440

head xj with the dependency type r̂i,j having the
highest score sreli,j .

It is worth noting that there are many ways to
obtain the dependency arc scores sarci,j and the de-
pendency relation scores sreli,j . In doing so, bi-affine
attentions (Dozat and Manning, 2017) (as illus-
trated in Figure 1(b)) is the most common and ef-
fective way to obtain sarci,j and sreli,j . Specifically,
for sarci,j , it is computed by

harc-d
i = MLP arc-d(hi) (1)

harc-h
j = MLP arc-h(hj) (2)

sarci,j = (harc-d
i ⊕ [1])>Warc(harc-h

j ⊕ [1]) (3)

where MLP arc-h and MLP arc-d denote multi-layer
perceptrons for the head and dependent represen-
tations, respectively; Warc is a trainable matrix;
⊕ is the vector concatenation operation; [1] is a
one-dimensional unit vector which serves as a bias
term for harc-d

i and harc-h
j . Following the afore-

mentioned process, sreli,j for a particular dependency
type rel ∈ R is computed in a similar way.

2.2 Pre-training Structure-aware Encoder
To leverage existing parsers and unlabeled data, we
replace the original encoder with a structure-aware
encoder. The encoder is pre-trained with depen-
dency trees generated from an existing parser, fol-
lowing the same but simplified procedure (as shown
in Figure 1(a) without using bi-affine attentions)
of training a parser. That is, in the pre-training
procedure, we use

sarci,j = h>
i W

archj , sri,j = Wrel(hi ⊕ hj) (4)

to compute the arc score sarci,j and the relation
score vector sri,j over all dependency relation types.
Herein, each dimension of sri,j corresponds to a par-
ticular dependency relation type in R and Warc

and Wrel denote two trainable matrices.
Once the model is pre-trained, we get rid of the

Warc and Wrel and combine the resulting encoder
with a new randomly initialized bi-affine attention
module to construct our final dependency parser
(illustrated in Figure 1(b)) for fine-tuning.

Through pre-training, the encoder is able to learn
dependency information from the auto-parsed data
(with noise). Meanwhile, because the decoder
(i.e., the bi-affine attentions) of the final parser
is changed and randomly initialized without us-
ing the decoder parameters (i.e., Warc and Wrel

in Eq. (4)) obtained from pre-training, our final

Datasets Sent. # Token # ASL

PTB
Train 40K 950K 23.9
Dev 2K 40K 23.6
Test 2K 57K 23.5

UD
Train 13K 205K 16.3
Dev 2K 25K 12.6
Test 2K 25K 12.1

Brown (Full) 24K 458K 19.0

English Wiki 92M 2,380M 22.3

Table 1: The number of sentences, tokens, and the aver-
aged sentence length (ASL) of PTB, UD, Brown, and
English Wiki used in our experiments.

parser is able to optimize its parameters based on
the gold standard trees. Therefore, by using the
auto-parsed and the gold training data in different
stages (i.e., pre-training and fine-tuning, respec-
tively), the noise in the auto-parsed data is carefully
addressed: errors learnt from the pre-training stage
can be “fixed” in the fine-tuning stage. In contrast,
many existing semi-supervised approaches train
the final parser on the combination of auto-parsed
and gold training data, which could be risky.

3 Experiments

3.1 Datasets

In the experiments, we use English Wiki (with
92M sentences and 2,380M tokens) as the raw
data for pre-training. We follow previous studies
(Dozat and Manning, 2017; Zhou and Zhao, 2019;
Mrini et al., 2020) to use English Penn Treebank
(PTB)4 (Marcus et al., 1993) converted by version
3.3.0 of the Stanford Dependency converter5 as
the benchmark dataset, which is further split into
train/dev/test sets. In addition, we use Brown cor-
pus (Marcus et al., 1993) and the English Web
Treebank of Universal Dependencies (UD)6 (Nivre
et al., 2016). Herein, the dependency parses of
Brown are obtained in the same process as PTB
and the dependency parsing standard used in PTB
and Brown is the Stanford typed dependencies
(the Stanford standard) (De Marneffe and Man-
ning, 2008); while UD follows a different standard
named the UD dependency parsing standard7. The
statistics (i.e., the number of sentences, tokens, and

4https://catalog.ldc.upenn.edu/
LDC99T42.

5https://stanfordnlp.github.io/CoreNLP.
6We use the version 2.9 of UD obtained from https:

//universaldependencies.org/
7https://universaldependencies.org/u/

overview/syntax.html

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://stanfordnlp.github.io/CoreNLP
https://universaldependencies.org/
https://universaldependencies.org/
https://universaldependencies.org/u/overview/syntax.html
https://universaldependencies.org/u/overview/syntax.html


5441

Pre-training Fine-tuning Testing

Wiki
(SD)

PTB Training (SD) PTB Test (SD)
Brown (SD)

UD Training (UD) UD Test (UD)

Table 2: The datasets used in pre-training, fine-tuning,
and testing. The dependency standard used in the
datasets are illustrated in parentheses with SD and UD
referring to the Stanford dependency standard and the
UD standard, respectively.

the averaged sentence length (ASL)) of all datasets,
namely, PTB, Brown, UD, and English Wiki are
reported in Table 1.

3.2 Obtaining the Auto-parsed Data

In the experiments, we propose to use existing NLP
toolkits to obtain the auto-parsed Wiki data, be-
cause it not only allows us to benefit from existing
tookits, but also is a good approximate of real-
world applications where we want to build a good
parser with existing toolkits. In addition, given
PTB is one of the most widely used benchmark
datasets for English dependency parsing, we want
the auto-parsed data to follow exactly the same
dependency standard as PTB, so that we can ex-
plore the effect of our approach when there is no
gap between the standards in the auto-parsed and
training data. However, many well-known exist-
ing dependency parsers (e.g., Stanford CoreNLP
Toolkit (SCT) (Manning et al., 2014) and SpaCy8)
follow a different standard.9 Therefore, in the ex-
periments, we employ a parsing-conversion process
to obtain the dependency trees: we first use Berke-
ley Neural Parser10 (Kitaev and Klein, 2018) to
obtain the constituency trees of the Wiki text; then
we convert them into dependency trees following
the same process to obtain PTB (we denote this
process as BNP-SD). Since the Berkeley Neural
Parser is trained on the training set of PTB, this
process ensures that the off-the-shelf dependency
parser does not see the test data of PTB in training
and the auto-parsed dependency trees follow the
same dependency parsing standard as PTB.

8https://spacy.io/
9Specifically, the dependency parser of SCT is trained on

UD and follows the UD dependency parsing standard; SpaCy
is trained on OntoNotes 5 with the dependency trees converted
from the corresponding constituency trees through ClearNLP,
which does not exactly follow the Stanford standard.

10We use the model named “benepar_en2”, which is
downloaded from https://github.com/nikitakit/
self-attentive-parser.

Hyper-parameters Values

Learning Rate 5e-6, 1e-5, 3e-5
Warmup Rate 0.1, 0.2
Dropout Rate 0.33
Batch Size 16, 32

Table 3: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

3.3 Settings

Table 2 summarizes the datasets used in pre-
training, fine-tuning, and testing, where the de-
pendency parsing standards for them are also il-
lustrated in parentheses (SD and UD stand for the
Stanford standard and the UD dependency parsing
standard, respectively). Herein, we denote the ex-
periments using Brown and UD in testing as cross-
domain and cross-standard experiments, respec-
tively, because Brown (for testing) and PTB (for
fine-tuning) come from different domains whereas
UD (for testing) and Wiki (for pre-training) use dif-
ferent dependency standards. Intuitively, the cross-
standard setting with UD as the test set is most
challenging as the auto-parsed Wiki data used for
pre-training and the UD data used for fine-tuning
and testing follow different dependency standards.

In addition, since our system design requires the
final parser to use a new randomly initialized de-
coder before fine-tuning, it is interesting to explore
the impact of the choice of the final parser decoder.
Therefore, in addition to our final parser with bi-
affine attentions (BF) following the architecture in
Figure 1(b) (we denote the final parsers as “+BF”),
we also try final parsers without BF and follow-
ing the architecture in Figure 1(a) (we denote it
as “-BF”). It is worth noting that, the architectures
used in pre-training and fine-tuning are different
under “+BF” whereas they are the same under “-
BF” (the parser used in pre-training does not use
BF). Intuitively, “+BF” setting is more challenging
because the patterns learned by the encoder from
pre-training may not fit into the new architecture
(i.e., the BF module) in the final parser and thus
result in noise in the final parser.

3.4 Implementation Details

Since pre-trained language models have achieved
outstanding performance in many NLP tasks (De-
vlin et al., 2019; Wu et al., 2019; Yang et al., 2019;
Raffel et al., 2019; Chen et al., 2020; Tian et al.,

https://spacy.io/
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser


5442

Models
PTB Brown UD

UAS LAS UAS LAS UAS

BERT-base 96.43 94.74 94.25 91.43 65.14
BERT-large 96.70 94.96 94.60 91.62 65.31
XLNet-base 96.81 95.02 94.74 91.70 65.57
XLNet-large 96.97 95.15 95.01 91.98 65.86

Table 4: The performance of different dependency
parsers obtained after pre-training, without fine-tuning.
We only report UAS (which does not evaluate the rela-
tion types associated with the dependency connections)
on UD because UD and the auto-parsed data use differ-
ent dependency parsing standard.

2020; Diao et al., 2020; Sun et al., 2020; Wang
and Tu, 2020; Song et al., 2021; Diao et al., 2021),
we use two of them, namely, BERT and XLNet,
as the encoder for pre-training. Specifically, we
use the base and large versions of them follow-
ing the default settings: the base models use 12
layers of self-attentions with 768 dimensional hid-
den vectors and the large models use 24 layers of
self-attentions with 1024 dimenstional hidden vec-
tors.11 We train the models on the auto-parsed Wiki
for one epoch (i.e., 2,800K steps in total) with the
batch size set to 32. It is worth noting that, since
English Wiki is used to train BERT and XLNet, it
could be considered that we do not use additional
data in experiments. In fine-tuning, we use the pa-
rameters in the encoder obtained from pre-training
to initialize the encoder in our approach and ran-
domly initialize all other trainable parameters. Fol-
lowing previous studies, we evaluate all models
based on unlabeled attachment score (UAS) and
labeled attachment score (LAS). Table 3 reports
the hyper-parameters tested in training our models.
We test all combinations of them for each model
and use the one achieving the highest LAS score in
our final experiments.

4 Results, Analyses, and Findings

4.1 Overall Performance
Since pre-training also follows the process to train
a dependency parser, we report the performance of
the dependency parsers obtained after pre-training
on the test set of PTB, Brown, and UD in Table 4
for reference. For the final parsers, we report the
mean and standard deviation12 of them on the test
set of all datasets in Table 5.

11We download the cased version of BERT from https:
//github.com/google-research/bert and XLNet
from https://github.com/zihangdai/xlnet.

12In experiments, we run (fine-tune) each model five times
with different random seeds.

Overall, results on PTB, Brown, and UD demon-
strate the effectiveness of our approach under dif-
ferent configurations (i.e., using the base and large
versions of BERT and XLNet encoders, with and
without BF), where consistent improvements are
observed in most cases, even though BERT and
XLNet baselines have already achieved good per-
formance. Particularly, it is promising to observe
that our approach works well on UD (i.e., the cross-
standard setting), where the pre-trained models has
rather low performance (e.g., according to Table 4,
BERT-large achieves 65.31% UAS on UD test set
after pre-training) before they are fine-tuned on the
gold standard. This observation demonstrates the
effectiveness of our approach in cases where other
approaches (e.g., training on the combination of the
auto-parsed data and the gold training data) may
not work well owing to the poor quality of auto-
parsed data. Besides, our final parser with BF also
works well in most cases with its architecture dif-
fering from the one used in pre-training. It shows
the effectiveness and robustness of our approach
to leverage the structure-aware encoder obtained
from a parser with a different architecture, where
the representation obtained from such encoder may
not fit into the final parser due to the differences of
the architectures in pre-training and fine-tuning.

In addition, we compare our best performing
model13 using BERT-large and XLNet-large and
BF with previous studies on the PTB test set and
report the results in Table 6. Overall, our approach
outperforms all previous graph-based approaches
(i.e., the ones without the “†” mark) except Mrini
et al. (2020) that leverage auto-generated part-
of-speech (POS) tags. Particularly, our model
outperforms Zhou and Zhao (2019) and Zhou
et al. (2020a) that perform constituency and de-
pendency parsing at the same time through head-
driven phrase structure grammar (HPSG) parsing.
Besides, compared with Mrini et al. (2020) who
proposed label attention layer to enhance the study
of Zhou and Zhao (2019) on HPSG parsing, our
approach obtain inferior performance because we
do not use the label attention layer or the auto-
generated POS tags. Given that our approach out-
performs Zhou and Zhao (2019) on the test set of
PTB, the effectiveness of our approach for depen-
dency parsing is still valid and promising.

13We follow previous studies to compare our best perform-
ing model with their models.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/zihangdai/xlnet


5443

Models
PTB Brown (cross-domain) UD (cross-standard)

-BF +BF -BF +BF -BF +BF
µ σ µ σ µ σ µ σ µ σ µ σ

BERT-base 94.65 0.06 94.70 0.05 91.26 0.07 91.46 0.08 89.78 0.08 89.09 0.09
+ Dep. Wiki 95.06 0.05 95.30 0.05 91.56 0.07 91.76 0.06 90.57 0.07 90.39 0.08

BERT-large 95.01 0.07 95.11 0.06 91.79 0.08 91.84 0.07 90.70 0.09 90.80 0.08
+ Dep. Wiki 95.25 0.06 95.50 0.09 92.00 0.07 92.40 0.08 91.22 0.07 91.01 0.09

XLNet-base 95.13 0.05 95.19 0.06 91.78 0.06 91.98 0.07 91.02 0.07 91.50 0.07
+ Dep. Wiki 95.49 0.04 95.50 0.05 92.35 0.05 92.38 0.08 91.51 0.06 91.39 0.07

XLNet-large 95.48 0.04 95.54 0.06 92.31 0.05 92.53 0.07 91.38 0.08 92.30 0.07
+ Dep. Wiki 95.71 0.05 95.86 0.05 92.45 0.06 92.54 0.07 91.94 0.07 91.70 0.08

Table 5: The mean µ and standard deviation σ of LAS of our approaches (with the fine-tuning of the
structure-aware encoder) and the baseline models with different configurations (i.e., the ones using base or large
BERT/XLNet with (+BF) and without (-BF) bi-affine attentions) on the test set of PTB, Brown, and UD.

Models UAS LAS

Dozat and Manning (2017) 95.74 94.08
*Dozat and Manning (2017) (BERT) 96.64 95.11
*Zhou and Zhao (2019) (BERT) 97.00 95.43
*Zhou and Zhao (2019) (XLNet) 97.20 95.72
*Zhou et al. (2020a) (XLNet) 97.23 95.65
*Zhou et al. (2020b) (LIMIT-BERT) 97.14 95.44
*Mrini et al. (2020) (XLNet + POS) 97.42 96.26
*Wang and Tu (2020) (BERT) 96.91 95.34
Zhang et al. (2021) (BERT) 96.64 95.09
Mohammadshahi and Henderson
(2021) (BERT) 96.66 95.01

*†Fernández-González and
Gómez-Rodríguez (2021) (BERT) 97.05 95.47

*†Yang and Tu (2021) (BERT) 97.24 95.73

BNP-SD (Kitaev and Klein, 2018) 96.03 94.03

*Ours (BERT-large) 97.06 95.60
*Ours (XLNet-large) 97.30 95.92

Table 6: Comparison (UAS and LAS) of our approach
with previous studies. “*” denotes the models using
the large version of BERT and XLNet; “†” marks the
parsers that do not use the graph-based approaches.

4.2 The Effect of System Design

Our parser is different from many of the previous
studies in two ways: (1) the auto-parsed data is
used for pre-training only, (2) the fine-tuning step
uses a different decoder from the one used in pre-
training, whose weights are initialized randomly.

To determine the impact of those decisions, we
build three more parsers for comparison. The first
one uses the architecture in Figure 1(a) and is
trained with the union of the auto-parsed and gold
standard data (we denote this approach as “Union”)
without the fine-tuning step. The second parser
(“Fine-tuning”) is pre-trained with the auto-parsed
data and fine-tuned with gold dependency trees, but
the two stages use the same decoder (as in Figure
1(a)) and the decoder’s weights for fine-tuning are
initialized with the weights from pre-training. The

third one (“Randomize”) is the same as the second
one but the weights of the decoder derived from pre-
training are thrown away before fine-tuning. The
"Randomize" system differs from our final parser
only in that our final parser uses a different decoder
in the fine-tuning stage.

All aforementioned three approaches use BERT-
base encoder. For auto-parsed data, we randomly
select sentences from English Wiki where the
number of selected sentences equals to the num-
ber of sentences in the training set of different
datasets (i.e., 40K auto-parsed sentences for PTB
and Brown, and 13K auto-parsed sentences for
UD).14 For each approach, we run it five times with
different random data and report the average results
(LAS for PTB and Brown, and UAS15 for UD) of
them, as well as the average results of BERT-base
baseline and our final parser, in Table 7.

It is observed that “Randomize” consistently out-
performs the other two approaches on the test set
of all datasets. Particularly, for cross-standard set-
tings on UD, because the auto-parsed data and the
UD data use different dependency standards, the
quality of the auto-parsed data can be considered
relatively low with respect to the UD standard (this
can be confirmed by the low model performance
of the parser pre-trained on auto-parsed data on the
test set of UD (see Table 4)). Under this setting,
the “Union” and “Fine-tuning” even achieve infe-
rior results (the results are underlined) compared
with the BERT-base baseline, because they suffer
from the gap between the dependency standards of
auto-parsed data and gold data. On the contrary,

14We also tested other numbers of selected auto-parsed
sentences and obtain similar observations.

15We report UAS (where the dependency type are ignored
in evaluation) for UD because the auto-parsed data and the
UD use different dependency standards.



5444

Approach PTB Brown UD

BERT-base 94.65 91.26 92.86

+ Union 94.69 91.30 83.51
+ Fine-tuning 94.76 91.38 92.14
+ Randomize 94.94 91.47 93.10

Our Final Parser 95.19 91.60 92.98

Table 7: The average performance (LAS for PTB and
Brown, UAS for UD) of different approaches using
BERT-base encoder with the scores lower than the base-
line highlighted by underlines. “Union” refers to the
model that is trained on the union of auto-parsed and
gold data; “Fine-tuning” denotes the model that is pre-
trained on auto-parsed data and then further fine-tuned
on the gold data; “Randomize” is the same as “Fine-
tuning” except that the weights of the decoder is ran-
domly initialized before fine-tuning. The best scores
among “Union”, “Fine-tuning”, and “Randomize” are
highlighted by boldface. All three models and the base-
line use the architecture in Figure 1(a) and the only dif-
ference between “Randomize” and our final parser is
the architecture of decoder in fine-tuning.

“Randomize” is able to carefully address the noise
in the auto-parsed data by using the auto-parsed
and the gold standard data in different stages and
getting rid of the pre-trained decoder (which may
learn the noise) and randomly initializing a new
one before fine-tuning.

4.3 The Size of Auto-parsed Data

An essential question for evaluating our approach
is that how many data (auto-parsed with noise) are
required to improve the parsers with various model
sizes. To answer its question, we pre-train four
models with variant sizes, i.e., 6-layer BERT-base
(55M parameters), 12-layer BERT-base (110M pa-
rameters), 18-layer BERT-large (252M parame-
ters), and 24-layer BERT-large (336M parameters),
on different amount of randomly selected auto-
parsed Wiki data. Figure 2 illustrates the aver-
aged16 improvement (LAS) of four different mod-
els over their corresponding baselines on three test
sets: (a) PTB, (b) Brown, and (c) UD, with respect
to the ratio of the pre-training sentence number to
the model size. It is interesting that, for the in-
domain setting (i.e., when both training and test
sets are from the PTB), the zero points of different
curves for all models are roughly the same, i.e.,
around 0.3, which means that the pre-training only

16We run the experiment for each model ten times with
different random data to guarantee the results are trustworthy.

Data Auto-parsed by PTB Brown UD

N/A 94.78 91.56 90.10

BNP-SD (94.03) 95.37 91.83 90.48
Parser I (94.78) 94.83 91.58 90.42
Parser II (95.26) 95.38 91.84 91.70

Table 8: Performance (LAS) comparison of a model
(using BERT-base with BF) pre-trained on auto-parsed
English Wiki from different parsers. N/A refers to no
pre-training, Parser I and Parser II are the parsers (with
BF) trained on PTB using BERT-base and XLNet-base,
respectively. The LAS from all parsers on the PTB test
set are reported in parentheses for reference.

needs a little bit over 300 sentences for every 50M
parameters in a parser to ensure an improvement
(e.g., for 24-layer BERT-large, it only requires two
thousand auto-parsed sentences to obtain a better-
than-original parser).

This finding is highly encouraging since it only
needs a small amount of auto-parsed data (com-
pared to 92M sentences in English Wiki) to im-
prove a large model. Similar observations can be
drawn for cross-domain and cross-standard settings
on Brown and UD datasets, where more (since
there are gaps between the pre-training and the
fine-tuning data) but still limited auto-parsed data
is required to ensure that improvement. Particularly,
for each dataset, we found there exists a rather sta-
ble ratio for different models, e.g., 0.3 for PTB, 0.6
for Brown, etc., which is a meaningful guidance
to improve parsers’ performance regarding to their
parameters. An explanation to this observation is
that structural data is useful to update representa-
tion models (Gubbins and Vlachos, 2013; Levy and
Goldberg, 2014; Zhou et al., 2020b) so that a lim-
ited amount (w.r.t. model size) could greatly affect
model performance especially when they are ap-
plied on structure-prediction tasks such as parsing.

4.4 The Choice of Existing Parsers

Another factor that may affect the performance
of our systems is the off-the-shelf parser used to
produce auto-parsed data. To assess the effect of
the parser on the performance of the final systems,
we experimented with two more parsers from our
baselines, i.e., the ones using BERT-base (Parser
I) and XLNet-base (Parser II) trained on PTB, in
addition to BNP-SD as described in Section 3.2:
Table 8 reports the LAS of models with or with-
out pre-training. While pre-training improves the
performance with auto-parsed data from all four



5445

Figure 2: The improvement (LAS) of four models over their baselines on three test sets. The X-axis is the number
of auto-parsed sentences used for pre-training divided by the number of model parameters, and then multiplied by
50,000 (to make the scale more readable).

Models PTB Brown UD

BERT-base 94.70 91.46 89.09
+ Dep. Wiki (-BF) 95.30 91.76 90.39
+ Dep. Wiki (+BF) 95.35 91.80 90.43

XLNet-base 95.19 91.98 91.50
+ Dep. Wiki (-BF) 95.50 92.38 91.39
+ Dep. Wiki (+BF) 95.54 92.40 91.97

Table 9: The average LAS of final parsers (with BF)
using BERT-base and XLNet-base encoders, with (+)
and without (-) using BF in pre-training.

parsers, the improvement with Parser I is less sig-
nificant than the other parsers because it is more
similar to the final parser in terms of the model
architecture.

This finding is quite intuitive and matches the
observation in Surdeanu and Manning (2010) that
the diversity between different parsers plays an
important role in improving model performance
when combining them. Specifically, when being
evaluated on PTB and Brown, Parser I tends to
make the same mistakes as our final parser since
they use exactly the same architecture (i.e., Trans-
former), which reduces the benefits of pre-training
with auto-parsed data. In contrast, BNP-SD (which
uses ELMo embeddings (Peters et al., 2018)) and
parser II (which is based on Transformer-XL (Dai
et al., 2019)) use different resources and architec-
tures so that our approach with BERT-base encoder
can learn from their auto-parsed data. In addition,
when our final parser is evaluated on UD, since
UD uses a different dependency standard, Parser
I and our final parser no longer make the “same”
mistakes, which results in more improvement on
UD.

4.5 The Decoder Used in Pre-training

In the main experiments, we pre-train the parser
without using BF. To explore its effect, we conduct
an ablation study where BF is used in pre-training.
Table 9 reports the average LAS of different final
parsers (with BF) using BERT-base and XLNet-
base encoders, where BF is used (i.e., “+BF”) or
not used (i.e., “-BF”) in pre-training. It is observed
that using BF in pre-training results in similar per-
formance compared with the settings where BF is
not used. It demonstrates the robustness of our
approach where the architecture of the final parser
(with BF) does not need necessary to be identical
to the one (without BF) in pre-training to obtain
promising improvement over the baselines. In ad-
dition, it is worth-noting that for experiments on
UD with XLNet-base, “+ Dep. Wiki (+BF)” out-
performs the baseline model whereas “+ Dep. Wiki
(-BF)” fails to do so. The explanation could be the
following. For “+ Dep. Wiki (+BF)”, the only gap
between pre-training and fine-tuning is the depen-
dency standard, whereas “+ Dep. Wiki (-BF)” faces
an additional gap that the architectures used in pre-
training and fine-tuning are different. Therefore, “+
Dep. Wiki (-BF)” fails to overcome the two gaps
and thus results in inferior results compared with
the XLNet baseline. On the other hand, when BF
is also used in pre-training, the gap between the
architectures does not exist, which allows our final
parser to obtain a higher performance.

5 Related Work

Recent studies for dependency parsing use ad-
vanced architectures (e.g., bi-LSTM, BERT) to
capture contextual information so as to achieve
outstanding performance (Shen et al., 2021; Zhang
et al., 2021; Yang and Tu, 2021; Li et al., 2021). To
further improve dependency parsing, approaches



5446

such as bi-affine attentions (Dozat and Manning,
2017; Attardi et al., 2021; Xu and Koehn, 2021),
HPSG parsing (Zhou and Zhao, 2019; Zhou et al.,
2020a; Mrini et al., 2020), TreeCRF (Zhang et al.,
2020) are further applied. Besides, to improve
model performance, there are studies that use ex-
isting dependency parsers and auto-parsed data
through model ensemble (Attardi and Dell’Orletta,
2009; Surdeanu and Manning, 2010; Che et al.,
2018) or semi-supervised approaches (Sagae and
Lavie, 2006; Chen et al., 2009; Prokopidis and Pa-
pageorgiou, 2014; Yu and Bohnet, 2017; Zhang
et al., 2021; Wagner and Foster, 2021).

Compared to previous studies that use auto-
parsed data, our approach differs in several ways.
First, our encoder is structure-aware as it is pre-
trained with dependency trees. Second, because
auto-parsed data is noisy and may use dependency
standard different from that of the test data (in the
cross-standard setting), it is used in pre-training
only. In contrast, training a parser on the union
of auto-parsed data and gold data would not work
well, especially in the cross-standard setting, as
shown in Table 7. Third, the decoder of the
fine-tuning stage starts with randomly initialized
weights, instead of with the weights learned from
the pre-training stage, thus ensuring that the de-
coder in the final parser will not be affected by the
noisy auto-parsed data.

6 Conclusion

In this study, we propose a simple and effective
solution to improve dependency parser through pre-
training on auto-parsed data. In doing so, the en-
coder is able to learn structural information from
the auto-parsed data in pre-training. During fine-
tuning, a different decoder is used and its weights
initialized randomly, thus reducing the impact of
errors in the auto-parsed data. We have run a
large number of experiments under different set-
tings (e.g., cross-domain vs. cross-standard, -BF
vs. +BF, different parsers used to parse Wiki) and
shown that our approach outperforms strong base-
lines and many previous studies under those set-
tings. Furthermore, pre-training needs only a small
amount of auto-parsed data (e.g., 2K sentences for
a BERT-large based parser on the PTB test set) to
ensure improvement over strong baselines.

References
Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-

verse Revision and Linear Tree Combination for De-
pendency Parsing. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 261–264, Boulder, Colorado.

Giuseppe Attardi, Daniele Sartiano, and Maria Simi.
2021. Biaffine Dependency and Semantic Graph
Parsing for Enhanced Universal Dependencies. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (IWPT 2021), pages 184–188, Online.

Mohit Bansal and Dan Klein. 2011. Web-scale Fea-
tures for Full-scale Parsing. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 693–702, Portland, Oregon, USA.

Dongfeng Cai, Yonghua Hu, Xuelei Miao, and Yan
Song. 2009. Dependency Grammar Based English
Subject-Verb Agreement Evaluation. In Proceed-
ings of the 23rd Pacific Asia Conference on Lan-
guage, Information and Computation, Volume 1,
pages 63–71, Hong Kong.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards Better UD Parsing:
Deep Contextualized Word Embeddings, Ensemble,
and Treebank Concatenation. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 55–
64, Brussels, Belgium.

Dong-Dong Chen, Wei Wang, Wei Gao, and Zhi-Hua
Zhou. 2018. Tri-net for Semi-Supervised Deep
Learning. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelli-
gence, IJCAI-18, pages 2014–2020.

Guimin Chen, Yuanhe Tian, and Yan Song. 2020. Joint
Aspect Extraction and Sentiment Analysis with Di-
rectional Graph Convolutional Networks. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 272–279.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto,
and Kentaro Torisawa. 2009. Improving Depen-
dency Parsing with Subtrees from Auto-Parsed Data.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
570–579, Singapore.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models be-
yond a Fixed-Length Context. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2978–2988, Florence,
Italy.



5447

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford Typed Dependencies Manual.
Technical report, Technical report, Stanford Univer-
sity.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, and
Yonggang Wang. 2020. ZEN: Pre-training Chinese
Text Encoder Enhanced by N-gram Representations.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4729–4740.

Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan
Song, and Tong Zhang. 2021. Taming Pre-trained
Language Models with N-gram Representations for
Low-Resource Domain Adaptation. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 3336–3349,
Online.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2021. Dependency Parsing with
Bottom-up Hierarchical Pointer Networks. arXiv
preprint arXiv:2105.09611.

Joseph Gubbins and Andreas Vlachos. 2013. Depen-
dency Language Models for Sentence Completion.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1405–1410, Seattle, Washington, USA.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
Guided Graph Convolutional Networks for Relation
Extraction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 241–251.

Binxuan Huang and Kathleen M Carley. 2019. Syntax-
Aware Aspect Level Sentiment Classification with
Graph Attention Networks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5472–5480.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bow-
den, and Marilyn Walker. 2018. A Deep Ensem-
ble Model with Slot Alignment for Sequence-to-
sequence Natural Language Generation. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 152–162, New Orleans,
Louisiana.

Eliyahu Kiperwasser and Yoav Goldberg. 2015. Semi-
supervised Dependency Parsing using Bilexical Con-
textual Features from Auto-Parsed Data. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1348–1353,
Lisbon, Portugal.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia.

Hayato Kobayashi. 2018. Frustratingly Easy Model
Ensemble for Abstractive Summarization. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4165–
4176, Brussels, Belgium.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Pars-
ing. In Proceedings of ACL-08: HLT, pages 595–
603, Columbus, Ohio.

Ryosuke Kuwabara, Jun Suzuki, and Hideki
Nakayama. 2020. Single Model Ensemble using
Pseudo-Tags and Distinct Vectors. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3006–3013,
Online.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
302–308, Baltimore, Maryland.

Ying Li, Meishan Zhang, Zhenghua Li, Min Zhang,
Zhefeng Wang, Baoxing Huai, and Nicholas Jing
Yuan. 2021. APGN: Adversarial and Parameter Gen-
eration Networks for Multi-Source Cross-Domain
Dependency Parsing. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
1724–1733, Punta Cana, Dominican Republic.

Xuezhe Ma and Fei Xia. 2013. Dependency Parser
Adaptation with Subtrees from Auto-Parsed Target
Domain Data. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 585–590,
Sofia, Bulgaria.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language



5448

Processing Toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Alireza Mohammadshahi and James Henderson. 2021.
Recursive Non-Autoregressive Graph-to-Graph
Transformer for Dependency Parsing with Iterative
Refinement. Transactions of the Association for
Computational Linguistics, 9:120–138.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking Self-Attention: Towards Inter-
pretability in Neural Parsing. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 731–742, Online.

Yuyang Nie, Yuanhe Tian, Yan Song, Xiang Ao, and
Xiang Wan. 2020. Improving Named Entity Recog-
nition with Attentive Ensemble of Syntactic Infor-
mation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4231–4245.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal Dependen-
cies v1: A Multilingual Treebank Collection. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016),
pages 1659–1666.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana.

Prokopis Prokopidis and Haris Papageorgiou. 2014.
Experiments for Dependency Parsing of Greek. In
Proceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages,
pages 90–96, Dublin, Ireland.

Han Qin, Guimin Chen, Yuanhe Tian, and Yan Song.
2021. Improving Arabic Diacritization with Regu-
larized Decoding and Adversarial Training. In Pro-
ceedings of the Joint Conference of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

Wei Li, and Peter J Liu. 2019. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-text
Transformer. arXiv preprint arXiv:1910.10683.

Guy Rotman and Roi Reichart. 2019. Deep Contextu-
alized Self-training for Low Resource Dependency
Parsing. Transactions of the Association for Compu-
tational Linguistics, 7:695–713.

Piotr Rybak and Alina Wróblewska. 2018. Semi-
Supervised Neural System for Tagging, Parsing and
Lematization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 45–54, Brussels,
Belgium.

Kenji Sagae and Alon Lavie. 2006. Parser Combina-
tion by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 129–132,
New York City, USA.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Don-
ald Metzler, and Aaron Courville. 2021. Struct-
Former: Joint Unsupervised Induction of Depen-
dency and Constituency Structure from Masked Lan-
guage Modeling. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 7196–7209, Online.

David A. Smith and Jason Eisner. 2007. Bootstrapping
Feature-rich Dependency Parsers with Entropic Pri-
ors. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 667–677, Prague, Czech
Republic.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised Dependency Parsing using Generalized
Tri-training. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(Coling 2010), pages 1065–1073, Beijing, China.

Yan Song, Tong Zhang, Yonggang Wang, and Kai-Fu
Lee. 2021. ZEN 2.0: Continue Training and Adap-
tion for N-gram Enhanced Text Encoders. arXiv
preprint arXiv:2105.01279.

Kathrin Spreyer and Jonas Kuhn. 2009. Data-driven
Dependency Parsing of New Languages Using In-
complete and Noisy Training Data. In Proceedings
of the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL-2009), pages 12–
20, Boulder, Colorado.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-Informed Self-Attention for Seman-
tic Role Labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 5027–5038, Brussels,
Belgium.



5449

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE
2.0: A Continual Pre-Training Framework for Lan-
guage Understanding. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8968–
8975.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble Models for Dependency Parsing: Cheap
and Good? In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 649–652, Los Angeles, California.

Yuanhe Tian, Wang Shen, Yan Song, Fei Xia, Min
He, and Kenli Li. 2020. Improving Biomedical
Named Entity Recognition with Syntactic Informa-
tion. BMC Bioinformatics, 21:1471–2105.

Yuanhe Tian, Yan Song, and Fei Xia. 2022. Improv-
ing Relation Extraction through Syntax-induced Pre-
training with Dependency Masking. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Joachim Wagner and Jennifer Foster. 2021. Revisit-
ing Tri-training of Dependency Parsers. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 9457–9473,
Online and Punta Cana, Dominican Republic.

Xinyu Wang and Kewei Tu. 2020. Second-Order Neu-
ral Dependency Parsing with Message Passing and
End-to-End Training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 93–99, Suzhou, China.

Zhaofeng Wu, Yan Song, Sicong Huang, Yuanhe Tian,
and Fei Xia. 2019. WTMED at MEDIQA 2019: A
Hybrid Approach to Biomedical Natural Language
Inference. In Proceedings of the 18th BioNLP Work-
shop and Shared Task, pages 415–426, Florence,
Italy.

Haoran Xu and Philipp Koehn. 2021. Zero-Shot Cross-
Lingual Dependency Parsing through Contextual
Embedding Transformation. In Proceedings of the
Second Workshop on Domain Adaptation for NLP,
pages 204–213, Kyiv, Ukraine.

Songlin Yang and Kewei Tu. 2021. Headed Span-
based Projective Dependency Parsing. arXiv
preprint arXiv:2108.04750.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In Advances in Neural In-
formation Processing Systems 32, pages 5753–5763.

Juntao Yu and Bernd Bohnet. 2017. Dependency
Language Models for Transition-based Dependency
Parsing. In Proceedings of the 15th International
Conference on Parsing Technologies, pages 11–17,
Pisa, Italy.

Hongming Zhang, Yan Song, Yangqiu Song, and Dong
Yu. 2019. Knowledge-aware Pronoun Coreference
Resolution. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 867–876, Florence, Italy.

Xudong Zhang, Joseph Le Roux, and Thierry Charnois.
2021. Strength in Numbers: Averaging and Cluster-
ing Effects in Mixture of Experts for Graph-Based
Dependency Parsing. In Proceedings of the 17th
International Conference on Parsing Technologies
and the IWPT 2021 Shared Task on Parsing into
Enhanced Universal Dependencies (IWPT 2021),
pages 106–118, Online.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Ef-
ficient Second-Order TreeCRF for Neural Depen-
dency Parsing. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3295–3305, Online.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020a. Pars-
ing All: Syntax and Semantics, Dependencies and
Spans. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4438–4449,
Online.

Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail-
iang Zhang. 2020b. LIMIT-BERT : Linguistics In-
formed Multi-Task BERT. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4450–4461, Online.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar Parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy.


