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Abstract

We introduce a novel position offset label pre-
diction subtask to the encoder-decoder archi-
tecture for grammatical error correction (GEC)
task. To keep the meaning of the input sen-
tence unchanged, only a few words should be
inserted or deleted during correction, and most
of tokens in the erroneous sentence appear in
the paired correct sentence with limited posi-
tion movement. Inspired by this observation,
we design an auxiliary task to predict position
offset label (POL) of tokens, which is naturally
capable of integrating different correction edit-
ing operations into a unified framework. Based
on the predicted POL, we further propose a
new copy mechanism (P-copy) to replace the
vanilla copy module. Experimental results on
Chinese, English and Japanese datasets demon-
strate that our proposed POL-Pc framework ob-
viously improves the performance of baseline
models. Moreover, our model yields consistent
performance gain over various data augmenta-
tion methods. Especially, after incorporating
synthetic data, our model achieves a 38.95 F0.5

score on Chinese GEC dataset, which outper-
forms the previous state-of-the-art by a wide
margin of 1.98 points.

1 Introduction

Grammatical error correction (GEC) is to auto-
matically correct grammatical errors in the input
sequence, which is significant for both academic
research and practical applications. Comparing
with English grammatical error correction, Chinese
grammatical error correction (CGEC) is less ad-
dressed.

After convolutional neural network and recurrent
neural network, the Transformer based sequence-
to-sequence models have achieved remarkable per-
formance on GEC task (Junczys-Dowmunt et al.,
2018; Kaneko et al., 2020). To alleviate the
data sparsity problem, the method of generating
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(a) Example I: deletion and substitution

(b) Example II: re-ordering and insertion

Figure 1: Examples of error detection and correction for
CGEC task. Label @ represents a blank position.

pseudo data is intensively studied (Xie et al., 2018;
Lichtarge et al., 2019). Several models simplify
the GEC task from sequence generation to token-
level edit prediction. For example, LaserTagger
(Malmi et al., 2019) predicts three edit tags Keep,
Delete and Append_# for each token in the source
sentence, and GECToR (Omelianchuk et al., 2020)
designs ample English-specific tags to predict.

To keep the meaning of the erroneous sentence
unchanged, only a few words could be inserted or
deleted while most words remain the same. Taking
the CGEC task NLPCC data (Zhao et al., 2018) as
an example: (1) about 95.6% tokens in erroneous
sentences appear in their corresponding correct sen-
tences (namely "cue tokens" for brevity). (2) the
average lengths of erroneous sentences and the
longest common sub-sequence of error-corrected
sentence pairs are 29.65/27.55 tokens, indicating
that cue tokens are almost in the same order. (3)
the average lengths of inserted and deleted spans
are 1.46 and 1.49 tokens, respectively.

Unfortunately, there is no existing model which
takes all of these three characteristics into consid-
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eration. The copy mechanism (Zhao et al., 2019)
only considers the characteristic (1). The sequence
tagging models (Liang et al., 2020; Malmi et al.,
2019) take advantage of Characteristic (3) to build
a fixed-size vocabulary for Append_# label but fail
to explicitly model the first and the second points.

In our work, we merge these three characteristics
into one key point: most of tokens appear in both
erroneous and correct sentences, and their positions
in erroneous sentences (denoted as ith) are identi-
cal or close to their positions in the corresponding
correct sentences (denoted as jth). As shown in
Figure 2, this phenomenon could be observed in
GEC datasets of different languages. For instance,
on NLPCC dataset, 48.2% of cue tokens are ex-
actly in the same position (i = j), and about 90%
of them can be moved to the right position within a
length of 3 tokens (abs(i− j) ≤ 3).

Figure 2: Position movement of cue tokens from erro-
neous sentences to paired correct sentences in Chinese,
Japanese and English GEC datasets, which are described
in Section 5.1.

Inspired by the key point summarized above,
we propose a novel Position Offset Label (POL)
prediction task to determine which tokens in the
source sentence are error-free, as well as their po-
sition movement from the source sequence to the
target sentence. As illustrated in Figure 1, our
method could simultaneously model different kinds
of correction editing operations, including inser-
tion, substitution, deletion and re-ordering. At the
decoder, rather than using the conventional atten-
tion distribution, a new copy mechanism (P-copy)
is proposed to take advantage of the result of POL
prediction. Overall, we adopt a multi-task learning
framework named POL-Pc, where the detection
network is to perform POL prediction, and the cor-
rection network then generates words to fill in the
blank positions where no tokens in the source se-
quence are mapped to.

We conduct extensive experiments on CGEC
data NLPCC (Zhao et al., 2018). Experimental
results show that without data augmentation, our

pure model obtains the best result among all non-
pretrained models. After integrating data augmen-
tation methods, our method achieves a new state-of-
the-result for CGEC for single models, outperform-
ing the previous best result by 1.98 points. We also
conduct experiments on English dataset CoNLL-
2014 (Bryant et al., 2019) and Japanese TEC-JL
dataset (Koyama et al., 2020), our POL-Pc model
consistently improves the performance of the Trans-
former, validating the generalization ability of our
approach. We will make our code publicly avail-
able at the GitHub for further research.

To sum, our proposed model for GEC task enjoys
the following advantages:

• Comparing with traditional end-to-end meth-
ods, our model explicitly separates error de-
tection and error correction, bringing a good
interpretability of the neural network.

• Comparing with previous sequence tagging
approaches, our model is free to insert any
words or phrases without the need to build
a specific vocabulary. Moreover, our label
strategy is less affected by the imbalance of
tag number.

• Our model adopts multi-task learning instead
of a pipeline structure to avoid error accumu-
lation.

• Our model outperforms the baseline Trans-
former by a wide margin for Chinese,
Japanese and English GEC tasks. After in-
corporating data augmentation methods, it ob-
tains a new state-of-the-art result on CGEC
task for single models.

2 Related Work

Recently, Transformer-based sequence to sequence
models are introduced to GEC task and make great
progress (Junczys-Dowmunt et al., 2018; Kaneko
et al., 2020). To augment the error-corrected par-
allel corpus, synthetic data is generated from the
Wikipedia revision log (Lichtarge et al., 2019) or
generated by applying token-level insertion, substi-
tution, deletion or swapping on error-free corpus
(Zhao et al., 2019; Grundkiewicz et al., 2019).

Several models are proposed to simplify GEC
task from sequence generation to sequence tag-
ging. LaserTagger (Malmi et al., 2019) predicts
Keep, Delete or Append_# tags for each token in
the source sentence. PIE (Awasthi et al., 2019)
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and GECToR (Omelianchuk et al., 2020) manually
design detailed English-specific labels, regarding
case and tense, which is hard to adapt to other
languages like Chinese. TtT (Li and Shi, 2021)
adopts a non-autoregressive model to directly pre-
dict each token in the correct sentence. ESD-ESC
(Chen et al., 2020) detects erroneous spans and
then utilizes a seq2seq model to only produce cor-
rect text for those annotated spans. Different from
these previous works, we build a multi-task learn-
ing framework by treating the sequence tagging as
an auxiliary subtask, and more importantly, our tag
strategy is novel and effective.

For CGEC task, most of previous works (Wang
et al., 2018; Zhang et al., 2020) focus on the
spelling error correction task on SIGHAN (Tseng
et al., 2015) and Hybrid (Wang et al., 2018)
datasets. The NLPCC-2018 dataset (Zhao et al.,
2018) provides multiple types of grammatical er-
rors and attracts much attention from participated
teams, where the top-3 systems are Alibaba (Zhou
et al., 2018), YouDao (Fu et al., 2018) and BLCU
(Ren et al., 2018). HRG combines language model
base spelling checker, NMT-base model and se-
quence editing model (Hinson et al., 2020). Later,
Zhao and Wang proposes MaskGEC by adding
random noises to source sentences dynamically,
which achieves the state-of-the-art on NLPCC-
2018 dataset. This paper also conducts experiments
on NLPCC dataset and considers these methods as
comparing baselines.

3 Proposed Model

As shown in Figure 1, given an erroneous sen-
tence X = (x1, x2, ...xm) and its corresponding
corrected sentence Y = (y1, y2, ...yn), our model
firstly decides whether a source token xi should
be deleted and if not predicts its position chang-
ing from X to Y . There might exist some blank
positions where no source tokens are mapped to
(denoted as @ in Figure 1). A decoder with copy
mechanism is utilized to copy source tokens and
generate new tokens for blank positions, where the
copy operation is guided by the result of position
offset label prediction. The overview of our frame-
work is illustrated in Figure 3.

3.1 Position Offset Label Prediction

For each token xi in the erroneous sentence X , we
tag its offset (i.e., the distance between its position
in X and Y ) as:

oi =

{
j − i, xi = yj

null, xi /∈ Y
(1)

where oi denotes the position offset label. If there
exist more than one yj equaling to xi , xi will
match the nearest one.

In order to retain the original meaning of the
input sentence, the lengths of inserted or deleted
spans in correction editing should be as short as
possible, and cue tokens’ positions in corrected
sentences are usually close to their positions in er-
roneous sentences. Benefiting by this observation,
we limit the maximum absolute value of offset oi
by a constant k, to reduce the number of possible
categories:

oi =


j − i, xi = yj , abs(i− j) ≤ k

other, xi = yj , abs(i− j) > k

null, xi /∈ Y

(2)

According to the statistics in Figure 2, there are
over 90% of cue tokens whose offsets are less than
or equal to 3 for GEC dataset of any language. We
consistently set k = 3 for experiments on different
languages GEC dataset.

For a clear understanding of the operation of
position offset label, Figure 4 presents two exam-
ples. We can observe that our designed offset label
oi is able to simultaneously model different edit
operations in an elegant way, including insertion,
substitution, deletion and re-ordering.

We also carry a statistic comparison of our po-
sition offset label with previous sequence tagging
methods, as listed in Table 1. The edit label ap-
proach predicts Keep, Delete, Append_# or labels
representing form transformations of each token
(Malmi et al., 2019; Omelianchuk et al., 2020),
where one token might have multiple labels (for
example, one token might have Append_# and
tense transformation label simultaneously). The
right/wrong label (Zhao et al., 2019; Chen et al.,
2020) predicts whether each token in the erroneous
sentence should be kept in the correct sentence,
which suffers from data imbalance. Compared with
them, our strategy avoids all these problems.

We adopt the Transformer encoder to obtain the
sequence representation vectors, and then a linear
layer and softmax operation are utilized to generate
a probability distribution:
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Figure 3: Overview of our POL-Pc framework. For a clear display, we limit the position offset label to {−1, 0, 1},
which respectively means the source token should be moved to the previous position, be kept in the same position or
be moved to the next position.

(a) Example I: Deletion and substitution

(b) Example II: Insertion and reorder

Figure 4: Examples of position offset labels for different
types of operations. N represents null. @ represents a
blank position.

(hL1 , h
L
2 , ..., h

L
m) = Transformer(x1, x2, ..., xm)

(3)

Po(ot|X) = softmax(W T
o hLt + bo) (4)

where Wo and bo are learned parameters. The loss
function for label prediction is defined using log-
likelihood:

Lossoff = −
m∑
t=1

logPo(ot|X) (5)

3.2 Copying with Position Offset Label
Prediction

We employ a decoder with copy mechanism to
generate error-free sentences. Different from con-
ventional copy methods, we propose a new copy

Tag # Class Single label Maj. (%)

Edit ≥ 500 85.6
Right/Wrong 2 ✓ 90.2

Position Offset 9 ✓ 43.5

Table 1: Comparison of different tagging strategies.
Single label refers to whether each token in the erro-
neous sentence has only one label. Maj. refers to the
percentage of the major label that takes up the highest
proportion.

mechanism (P-copy) based on the prediction of
position offset label.

At timestep t, the generation distribution is com-
puted as:

P gen
t = softmax(W T

s st + bs) (6)

where st is the hidden state of decoder, Ws and bs
are parameters to learn.

The copy distribution of each token at timestep t
is computed by:

P copy
t (yt) =


∑

i:xi=yt

Po(oi = t− i), yt ∈ X

0, otherwise
(7)

It means if the source token xi appears at the tth

position in the sequence Y with a probability of
Po(oi = t − i), the model will copy the token
xi at timestep t with the same probability. We
then utilize the softmax function to normalize copy
distribution P copy

t . The copy rate αt is computed
using attention mechanism and sigmoid function:

Qt = Wqst,Ki = Wkh
L
i , Vi = Wvh

L
i (8)
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ai =
exp(QtK

T
i )∑

j exp(QtKT
j )

(9)

hc =

m∑
i=1

aiVi (10)

αt = sigmoid(W T
c hc + bc) (11)

where Wq, Wk, Wv, Wc and bc are parameters to
learn.

We fuse the generation probability and copy
probability to get the final distribution:

Pv = (1− αt)P
gen
t + αtP

copy
t (12)

Moreover, the loss function for generation is:

Lossgen = −
n∑

t=1

logPv(yt|yt−1, yt−2, ...y1, X)

(13)
Combing the generation loss with the loss of

POL prediction, the final optimization object of
our model is:

Loss = Lossgen + γLossoff (14)

where γ is a hyper-parameter to balance two loss
functions.

4 Data Augmentation

In order to provide more training samples for our
model, we do data augmentation by generating
synthetic data and introducing dynamic noises. We
introduce the following types of noises to produce
erroneous sentences.

Deletion: To discard each word with a probabil-
ity of Pdel.

Insertion: To insert a [UNK] symbol before
each word with a probability of Pins.

Substitution: To replace each word using
[UNK] symbol / random token / its homophone
with a probability of Psub.

We set Pins = Pdel = Psub = 0.25 in all experi-
ments.

4.1 Synthetic Data

We select THUCnews1 as the external data which
contains 740,000 news documents. We delete the
format information such as headlines and bylines
in the news corpus and cut the reserved text into

1http://thuctc.thunlp.org/

11.4 million single sentences, from which we ran-
domly select 5 million sentences. In our experi-
ment, we introduce only one type of noises into
each sentence. Since mixing up synthetic data with
training data might dilute human-made corpus and
degrade model performance, we only use synthetic
data to initialize the parameters of our model by
pre-training 10 epoches.

4.2 Dynamic Noise

Inspired by MaskGEC (Zhao and Wang, 2020), we
add dynamic noises to input sentences when train-
ing on NLPCC dataset to provide more instances.
For each human-made erroneous sentence, we ran-
domly choose to keep it unchanged or introduce
one type of noises described above.

5 Experimental Setup

5.1 Dataset

We conduct experiments for Chinese, English and
Japanese GEC tasks. The details of datasets of
different languages is listed in Table 2.

For CGEC task, we choose the dataset of
NLPCC 2018 Task 2 (Zhao et al., 2018) , where
the training data is collected from the language
learning platform Lang-82 while the test data is cre-
ated by teachers. Following the prior work (Zhao
and Wang, 2020), we randomly select 5,000 in-
stances from 1.09 million training samples as the
development set, and evaluate our model on the
official test set containing 2000 sentences. We use
BasicTokenizer from BERT project3 to tokenize
the Chinese texts and keep the non-Chinese words
unchanged. During evaluation, We tokenize texts
with PKUNLP4 toolkit, which has been used offi-
cially at the campaign.

To verify the generalization of our method, we
also conduct experiments on English and Japanese
GEC tasks. For English GEC task, following
Bryant et al. (2019), we use FCE (Yannakoudakis
et al., 2011), Lang-8 Corpus of Learner English
(Mizumoto et al., 2011), NUCLE (Dahlmeier et al.,
2013) and W&I+LOCNESS (Bryant et al., 2019)
as training data, CoNLL-2013 test set as dev set
and evaluate on CoNLL-2014 (Ng et al., 2014) test
set. For Japanese GEC task, we select 1.19 mil-
lion/5000 sentence pairs as training/dev set from

2https://lang-8.com/
3https://github.com/google-research/bert
4http://59.108.48.12/lcwm/pkunlp/downloads/libgrass-

ui.tar.gz
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corpora collected from Lang-8 website5, and evalu-
ate our model on TEC-JL dataset (Koyama et al.,
2020).

We adopt M2 scorer (Dahlmeier and Ng, 2012)
as the evaluation tool, where the value of precision,
recall and F0.5 score is computed.

Language Train Dev Test Dict Vocab

Chinese 1.09 M 5,000 2,000 char 13.8 K
Japanese 1.19 M 5,000 1,874 char 6.5 K
English 1.01 M 1,381 1,312 bpe 32 K

Table 2: Data statistics for Chinese, Japanese and En-
glish GEC tasks.

5.2 Comparing Methods

We compare our model with the top-3 participated
teams of the campaign.

AliGM combines rule-based, SMT-based and
NMT-based approaches (Zhou et al., 2018).

YouDao employs five different hybrid models
and the final result is selected via a language model
(Fu et al., 2018).

BLCU builds a mutli-layer convolutional model
with pre-trained embeddings (Ren et al., 2018).

Furthermore, we compare with some of main-
stream neural network models for text generation.

Transformer adopts a standard encoder-decoder
framework (Vaswani et al., 2017).

Levenshtein-Transformer takes insertion and
deletion as atomic operations (Gu et al., 2019).

LaserTagger predicts edit operations Keep,
Delete or Append_# for each token (Malmi et al.,
2019).

ESD-ESC adopts a pipeline structure to firstly
detect erroneous spans and then output the correct
text for annotated spans (Chen et al., 2020).

Pointer Generator decides to generate a token
or copy a token from the source sentence (See et al.,
2017), where Transformer is used as the encoder
and decoder.

Copy-Augmented introduces copy mechanism
into Transformer-based seq2seq framework and
employs multi-task learning by predicting whether
tokens in input sentence appear in target sentence
(Zhao et al., 2019).

HRG proposes a heterogeneous approach com-
posed of language model base spelling checker,
NMT-base model and sequence editing model (Hin-
son et al., 2020).

5https://sites.google.com/site/naistlang8corpora

BERT-fuse incorporates pre-trained BERT
model to enhance Transformer (Kaneko et al.,
2020).

MaskGEC (Zhao and Wang, 2020) adds random
noises to source sentences dynamically.

5.3 Training Details
Our model is implemented using Fairseq 6. The de-
tail of hyper-parameters of our model is described
in Table 3.

Hyper-parameter Value

encoder layers 6
decoder layers 6
encoder embedding dim 512
decoder embedding dim 512
encoder ffn dim 2048
decoder ffn dim 2048
dropout 0.2
attention dropout 0.1
learning rate 5e-4
Adam β1 0.9
Adam β2 0.998
Adam ϵ 1e-8
lr scheduler inverse_sqrt
warmup updates 8000
max tokens 4096
update-freq 2

loss function label smoothed cross entropy
label-smoothing=0.1

Table 3: Hyper-parameter values of our model.

We average parameters of the last 5 checkpoints.
In inference, the beam size is set as 12. In the final
loss of Equation 14, we set γ = 0.5.

6 Results and Discussion

6.1 Main Results for CGEC task
For Chinese GEC task, the overall results of differ-
ent models are reported in Table 4.

Our pure model POL-Pc yields a 30.64 F0.5

score, which beats all the pure models without data
augmentation or other extra resources. The Copy-
Augmented model reaches 29.85 F0.5 by employ-
ing the copy mechanism and predicting whether
each token in source sentence is kept in the target
sentence. Compared with it, our sub-task of POL
prediction suffers less from the data imbalance,
leading to an improvement of 0.79 F0.5 score.

After applying dynamic noises, our model gets
a 37.97 F0.5 score which outperforms the previ-
ous best model MaskGEC. After pretrained on the
synthetic data, our model achieves a new state-of-
the-art result of 38.95 F0.5.

6https://github.com/pytorch/fairseq
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Models Precision Recall F0.5

LaserTagger* 25.60 10.50 19.90
Lev-Transformer* 24.90 15.00 22.00
Transformer 34.02 15.44 27.42
Pointer Generator 33.51 16.45 27.75
ESD-ESC* 37.30 14.50 28.40
Copy-Augmented 35.03 18.75 29.85

AliGM*▲♢ 41.00 13.75 29.36
YouDao*▲♢ 35.24 18.64 29.91
BLCU*▲♢ 47.63 12.56 30.57
BERT-fuse♢ 35.16 23.32 31.92
HRG*▲♢ 36.79 27.82 34.56
MaskGEC*♡ 44.36 22.18 36.97

POL-Pc 36.75 18.39 30.64
POL-Pc + DN♡ 44.64 23.77 37.97
POL-Pc + DN + SD♡♢ 46.45 23.68 38.95

Table 4: Overall performance of different models on
NLPCC-2018 test dataset. The model performance with
* is from the original published paper and the result of
LaserTagger is from (Chen et al., 2020). Other models
are re-implemented on our data using the released codes
or Fairseq. SD and DN refer to synthetic data and dy-
namic noise described in Section 4. The symbols ▲ / ♡
/ ♢ denote ensemble / data augmentation / pre-training
approaches respectively.

6.2 Results for Various Language GEC tasks
In addition to Chinese, Table 5 reports the exper-
imental results on English and Japanese datasets.
Compared with the baseline Transformer, our pure
model brings a relative performance gain of 11.7%,
7.4% and 4.0% on Chinese, Japanese and English
datasets respectively, validating the effectiveness
of our approach for different language GEC tasks.

It also demonstrates that our model is more suit-
able for Chinese and Japanese GEC task. Both Chi-
nese and Japanese language utilize function words
instead of affixes to represent forms and tenses,
which leads to more insertion and deletion opera-
tion when correcting grammatical errors. In con-
trast, the substitution operation such as shifting of
tenses is the main operation for English GEC task.
As demonstrated in Figure 2, tokens in English
GEC dataset are more likely kept in the exactly
same position. Besides, English word are divided
into subwords by BPE, which makes POL predic-
tion module hard to train. As a result, the prediction
of token position movement is more beneficial for
Chinese and Japanese GEC tasks.

6.3 Results with Different Data Augmentation
Methods

Since data augmentation is intensively studied for
GEC, we implement our model trained on differ-

Models NLPCC TEC-JL CoNLL-14

Lev-Transformer 22.00 16.21 42.48
Pointer Generator 27.75 26.62 49.99
Transformer 27.42 26.11 48.63

POL-Pc 30.64 28.03 50.56
vs. Transformer +11.7% +7.4% +4.0%

Table 5: Performance on Chinese, Japanese and English
GEC datasets.

Data Augmentation Transformer POL-Pc Imp.

None 27.42 30.64 +3.22
MaskGEC 36.97 37.26 +0.29
Dynamic Noise 37.02 37.97 +0.95
Synthetic Data (SD) 32.81 33.37 +0.56
SD + MaskGEC 37.83 38.21 +0.38
SD + Dynamic Noise 37.71 38.95 +1.24

Table 6: Performance of our model after incorporating
different data augmentation methods on NLPCC-2018
dataset. Imp refers to improvement.

ent synthetic data, and the experimental results are
shown in Table 6. Our model consistently out-
performs Transformer utilizing different data aug-
mentation approaches. Compared with MaskGEC
which benefits both Transformer and our POL-Pc
model, our dynamic noise, as described in Section
4, brings more improvement to POL-Pc. It demon-
strates that providing more training samples with
different position movement generated by deletion
and insertion operations could further improve the
performance of our model.

6.4 Results of POL Prediction on Different
Model Architectures

To further evaluate the effectiveness of position off-
set label prediction for GEC task, we apply this
module to other model architectures, including
the standard Transformer, Pointer-Generator and
Copy-augmented models. We evaluate their perfor-
mance on NLPCC test dataset. As shown in Table
7, adding POL prediction as one of jointly-training
tasks consistently improves the performance of dif-
ferent baseline models.

It is noteworthy that combining the POL predic-
tion sub-task with Pointer Generator reaches 29.57
F0.5 score, which is lower than our pure model
(F0.5 = 30.64). Because our model adopts the
probability of POL prediction as the copy score,
which is more effective than making POL predic-
tion and copy mechanism work separately.
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Model Precision Recall F0.5 Imp.

Transformer 34.02 15.44 27.42 -
+ POL 32.59 18.14 28.11 +0.69

Pointer Generator 33.51 16.45 27.75 -
+ POL 36.22 17.05 29.57 +1.82

Copy-Augmented 35.03 18.75 29.85 -
+ POL 37.89 16.89 30.34 +0.49

Table 7: Experimental results of POL prediction based
on different model architectures NLPCC-2018 dataset.

Model Precision Recall F0.5 Imp.

POL-Pc 36.75 18.39 30.64 -
- P-copy 32.59 18.14 28.11 -2.53
- (POL + P-copy) 34.02 15.44 27.42 -3.22

POL-Pc+DN+SD 46.45 23.68 38.95 -
- P-copy 45.87 23.23 38.39 -0.56
- (POL + P-copy) 45.05 22.84 37.71 -1.24
- Synthetic Data 44.64 23.77 37.97 -0.98
- Dynamic Noise 43.43 17.32 33.37 -4.58

Table 8: Ablation study on NLPCC dataset. POL refers
to position offset label prediction, and P-copy refers to
our POL-based copy mechanism. DN refers to dynamic
noises and SD refers to synthetic data.

6.5 Ablation Study

We do ablation study on NLPCC dataset to evalu-
ate the effect of each module, and list the results
in Table 8. On the pure model, removing the POL-
based copy mechanism results in a 2.53 decrease,
and removing both POL prediction and copy mod-
ules leads to a sharp decrease of 3.22 points, which
proves that our proposed copy mechanism is a suit-
able way to take advantage of the results of POL
prediction.

Our full model greatly benefits from data aug-
mentation with a 8.31 increase in F0.5. For the
full model, removing the copy module causes a
decrease of 0.56 F0.5 score. Removing both POL
prediction and copy modules results in a drop of
1.24 F0.5 score, which shows that our proposed
module can improve model performance even after
a huge amount of pseudo data being incorporated.
Discarding the synthetic data, the performance de-
creases from 38.95 to 37.97, suggesting that using
synthetic data for pre-training provides the model
with better initial parameters.

6.6 Hyper-parameter Setting

In this section, we explore the effect of hyper-
parameter γ in Equation 14. As illustrated in Figure
5, F0.5 score shows a single-peaked pattern as γ

increases. In most cases, our pure model surpasses
the basic Transformer model and achieves the best
performance when γ is 0.5. When γ decreases, the
model fails to explicitly predict the position offset
label guided by ground-truth labels, making the
model gradually degrade to the vanilla copy mech-
anism, and when γ increases, the model pays less
attention to the generation ability of decoder which
also harms the performance.

Figure 5: The effect of hyper-parameter γ on multi-task
learning based on the standard Transformer model. The
red line refers to the performance of basic model on
NLPCC dataset.

6.7 Case Study
To investigate how POL prediction and the cor-
rection network work together, we select two ex-
amples from the NLPCC test data to visualize the
intermediate result and final output. As illustrated
in Figure 6, in both examples, most of tokens are
predicted to be moved to the right position. For
tokens which should be deleted or substituted, our
model predicts their probability of moving to any
position to be low, which means the probability of
deletion Po(oi = null) is high. Moreover, in the
first example, the copy rate of tokens not appear-
ing in the target sentence is low, which shows our
copy mechanism works effectively with respect to
different offset labels. These two modules in our
framework can accomplish their respective tasks
and cooperate smoothly with each other.

7 Conclusion

We introduce a detection network to predict POL
of tokens between source erroneous sentences and
target correct sentences. Based on the output of
POL, we design a new copy mechanism P-copy.
Our POL-Pc model exceeds both end-to-end mod-
els and sequence tagging approaches, achieving a
new state-of-the-art result on CGEC task for single
models. For English and Japanese GEC tasks, our
approach also obtains significant performance gain
over the baseline Transformer.



5417

Figure 6: Visualization of POL prediction and copy
mechanism. The color blue represents the probability
of POL, and the color red represents the copy rate αt

defined in Equation 11. The color becomes darker as the
value gets bigger. Label @ represents a blank position.
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