
Proceedings of the 29th International Conference on Computational Linguistics, pages 5398–5408
October 12–17, 2022.

5398

Revisiting the Practical Effectiveness of Constituency Parse Extraction
from Pre-trained Language Models

Taeuk Kim
Dept. of Computer Science & Dept. of Artificial Intelligence

Hanyang University, Seoul, South Korea
kimtaeuk@hanyang.ac.kr

Abstract

Constituency Parse Extraction from Pre-trained
Language Models (CPE-PLM) is a recent
paradigm that attempts to induce constituency
parse trees relying only on the internal knowl-
edge of pre-trained language models. While
attractive in the perspective that similar to
in-context learning, it does not require task-
specific fine-tuning, the practical effectiveness
of such an approach still remains unclear, ex-
cept that it can function as a probe for in-
vestigating language models’ inner workings.
In this work, we mathematically reformulate
CPE-PLM and propose two advanced ensem-
ble methods tailored for it, demonstrating that
the new parsing paradigm can be competitive
with common unsupervised parsers by intro-
ducing a set of heterogeneous PLMs combined
using our techniques. Furthermore, we explore
some scenarios where the trees generated by
CPE-PLM are practically useful. Specifically,
we show that CPE-PLM is more effective than
typical supervised parsers in few-shot settings.

1 Introduction

With the increasing interest in the inner workings of
pre-trained language models (PLMs; Devlin et al.
(2019); Liu et al. (2019); Radford et al. (2019);
Conneau et al. (2020)),1 much work that attempts
to explore the inherent knowledge embedded in the
models has been recently proposed. One of the
main topics in this direction is to reveal whether
PLMs understand syntactic knowledge of human
language, usually represented as parse trees. While
a line of work (Hewitt and Manning (2019); Chi
et al. (2020)) has investigated the existence of syn-
tax in PLMs via structural probes with supervision
from gold-standard parse trees, some studies (Kim
et al., 2020, 2021; Wu et al., 2020) have found that

1We use the term pre-trained language models (PLMs) to
refer to the models that are based on Transformer (Vaswani
et al., 2017) and pre-trained in a self-supervised manner, e.g.,
BERT (Devlin et al., 2019) and its variants.

one can extract reasonable parse structures directly
from the patterns presented in PLMs’ hidden rep-
resentations or attention distributions even without
extra fine-tuning. In other words, the studies have
shown that PLMs implicitly store their understand-
ing of syntactic knowledge in their parameters, and
that such information can be easily reformulated
into syntactic trees with almost no additional cost.

Although the aforementioned approach, dubbed
Constituency Parse Extraction from Pre-trained
Language Models (CPE-PLM; Kim et al. (2021)),
is undoubtedly a useful tool with many analytic
uses (Rogers et al., 2020), it still remains a research
question whether this algorithm can also work for
practical purposes. For instance, as CPE-PLM is
free from fine-tuning of PLMs, it may be appealing
in few-shot settings, akin to in-context learning
for natural language understanding (Brown et al.,
2020). Moreover, there exists a potential that the
new parsing paradigm can substitute the role of
supervised or unsupervised parsers for the case
where an NLP model requires a parse tree as input.

In this work, we focus on revealing the practical
effectiveness of CPE-PLM. Specifically, we first
rewrite the procedure of CPE-PLM in a more rig-
orous form to clarify its working mechanism. We
then introduce two new ensemble algorithms tai-
lored for it, i.e., Greedy and Beam, making its
parsing performance competitive with that of un-
supervised parsers (Kim et al., 2019b; Zhu et al.,
2020). We show that it is crucial to combine syntac-
tic clues from heterogeneous PLMs for achieving
comparable performance, and that this trend holds
in not only English but also multilingual cases.

Equipped with the improved variants of CPE-
PLM, as the next step, we investigate some sce-
narios in which their outputs (i.e., generated trees)
can be practically utilized. We show that (1) it is
viable to introduce the trees from CPE-PLM as
auxiliary data for improving Recurrent Neural Net-
work Grammars (RNNG; Dyer et al. (2016); Kim



5399

et al. (2019c)), that (2) on classification with Tree
LSTMs (Tai et al., 2015), the induced trees can re-
place gold-standard parses with a minimal loss, and
that (3) CPE-PLM can be even more data-efficient
than supervised parsers in few-shot settings.

2 Background and Related Work

2.1 Constituency Parse Extraction from
Pre-trained Language Models

The term “Constituency Parse Extraction from Pre-
trained Language Models (CPE-PLM)” coined
by Kim et al. (2021) represents a range of pars-
ing methods (Mareček and Rosa, 2019; Rosa and
Mareček, 2019; Kim et al., 2020, 2021; Li et al.,
2020) that aim to infer the parse tree of an input sen-
tence by only exploiting the features obtained from
PLMs. In detail, the approaches belonging to this
paradigm attempt to directly (i.e., without training)
apply simple heuristics or existing parsing algo-
rithms, such as top-down (Shen et al., 2018a) and
chart-based (Kitaev and Klein, 2018) ones, on the
hidden representations or attention maps retrieved
from PLMs. In the following, we illustrate the
exact formulation of some representative methods.

As CPE-PLM does not demand more than frozen
PLMs as its ingredient, which means training-free,
it can be particularly useful when there are no re-
sources available for training supervised parsers in
terms of either (1) computing resources or (2) train-
ing data consisting of gold-standard annotations.
However, its use has been limited to analytic pur-
poses in the literature, utilized as a tool for probing
the inner workings of PLMs. Our goal in this paper
is therefore to investigate the utility of CPE-PLM
in practical scenarios. Among several options, we
select the chart-based variant (Kim et al., 2021) as
our baseline, which generally outperforms others.

Chart-based CPE-PLM. Kim et al. (2021) pro-
pose a method that combines PLMs with the chart
parsing algorithm without extra training. For-
mally, each tree candidate T for an input sentence,
w1, w2, . . . , wz , is assigned a score stree(T ) that
decomposes as stree(T ) =

∑
(i,j)∈T sspan(i, j),

where sspan(i, j) is a score for a constituent that is
located between positions i and j in the sentence.
sspan(i, j) is defined as follows:

sspan(i, j) =

{
scomp(i, j) + mini≤k<j ssplit(i, k, j) if i < j

0 if i = j
,

where ssplit(i, k, j) = sspan(i, k)+sspan(k+1, j).
In other words, scomp(i, j) measures the composi-

tionality of the span (i, j) itself while ssplit(i, k, j)
indicates how plausible it is to divide the span
(i, j) into two subspans (i, k) and (k + 1, j). Note
that every sspan(i, j) can be easily calculated in a
bottom-up fashion with the aid of the CKY algo-
rithm (Cocke, 1969; Kasami, 1966; Younger, 1967),
once scomp(i, j) is properly defined.

Although the authors suggest two derivations for
sspan(i, j), in this work, the pair score function
sp(·, ·) is chosen as the main target of our interest,
which is defined as follows:

sp(i, j) :=
(
j−i+1

2

)−1∑
(wx,wy)∈pair(i,j) f(g(wx), g(wy)),

where pair(i, j) returns a set consisting of all
combinations of two words from a span (i, j),
e.g., pair(1, 3) = {(w1, w2), (w1, w3), (w2, w3)},
while f(·, ·) and g(·) are a distance measure func-
tion and representation extractor function respec-
tively. To realize f(·, ·) and g(·), the authors con-
sider two sets of functions, F and G. Given l as
the number of layers in a PLM and a as the num-
ber of attention heads per layer, G refers to the set
of functions {g(m,n)|m = 1, . . . , l, n = 1, . . . , a},
each of which outputs the attention distribution of
an input word computed by the nth attention head
on the mth layer of the PLM. F is specified as
{JSD, HEL}, where JSD and HEL correspond to
the Jensen-Shannon and Hellinger distance. Here,
HEL is only considered for simplicity.

Intuitively, a series of the operations described
so far can be understood as (1) splitting an attention
map by rows (i.e., into attention distributions) for
representing each word and (2) comparing similari-
ties between the rows to gauge the syntactic prox-
imity of the corresponding words. Finally, chart-
based CPE-PLM outputs T̂ , the tree that requires
the lowest cost to build, as a prediction for the parse
tree of the input sentence: T̂ = argminT stree(T ).

2.2 Ensemble Methods for CPE-PLM

In Section 2.1, we merely mentioned the case
where only an element of G is adopted for com-
puting the scores used in CPE-PLM. However, it
is also feasible to employ more than just one, such
that the method is provided with diverse informa-
tion from different attention maps (i.e., g(m,n)) to
derive more reasonable parse trees. In fact, the pre-
vious work on CPE-PLM (Kim et al., 2020, 2021)
already exploits such ensemble strategies in an am-
biguous and implicit manner to boost its perfor-
mance. As the introduction of those techniques can



5400

𝒍

𝒂

𝒍: # of layers
𝒂: # of attention heads

Pre-trained 
Language Model

(2,2): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(4,1): [0.2,-0.2,0.2,0.6,⋯, 0.2]
(4,4): [0.1,-0.3,0.4,0.1,⋯, 0.1]
(5,3): [0.3,-0.1,0.2,0.6,⋯, 0.5]

1

2

3

4

5

1 2 3 4 5

(5,5): [0.1,-0.3,0.2,0.1,⋯, 0.4]

(2,1): [0.1,-0.3,0.5,0.1,⋯, 0.8]
(2,2): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(2,3): [0.4,-0.3,0.4,0.1,⋯, 0.1]
(2,4): [0.3,-0.1,0.2,0.5,⋯, 0.5]
(2,5): [0.3,-0.7,0.0,0.6,⋯, 0.1]

Representation
Extraction

Parsing Modules
(e.g., chart parser)

Single 
Attention 

Head

Top-K
Ensemble

Layer-wise
Ensemble

Tree Ensemble

𝑔(",")

𝑔(%,&)

�̃�'(&)*+ = {𝑇&(",")}→	𝑇&,(&-*

�̃�./01= {	𝑇& 2,2 , 𝑇& 3,4 , 𝑇& 3,3 , 𝑇& ",5 }→	𝑇&,(&-*

�̃�*-6+7 = {	𝑇& 2,4 , 𝑇& 2,2 ,… ,𝑇& 2," }→	𝑇&,(&-*

Figure 1: Concept diagram explaining the procedure of CPE-PLM with various ensemble methods. Given a PLM
that has l = 5 Transformer layers, each of whose self-attention module consists of a = 5 individual attention
heads, an input sentence is inserted into the PLM to compute the model’s attention maps. Then, we construct parse
candidates using the information from each g(m,m) and the CKY algorithm. Here, the role of ensemble methods is
to determine which trees to be engaged in the final prediction of the resulting parse tree.

lead to a considerable gap in the final result, we
claim that it is essential to clarify which ensemble
method is employed and to develop more advanced
ones. Accordingly, we here explicitly formulate the
previous ensemble methods, which is one of our
contributions in this work.

Figure 1 explains the process of applying en-
semble methods to CPE-PLM. Formally, let τ :=
{T̂(m,n)|m = 1, . . . , l, n = 1, . . . , a} denote a
pool of all the possible tree predictions computed
with CPE-PLM using every g(m,n). The objective
of the ensemble methods is to derive the best parse
prediction from a subset of τ , denoted τ̃ , so that it
closely resembles the corresponding gold-standard
tree. Once τ̃ is decided, every T̂(m,n) from τ̃ is
converted into the form of syntactic distance (Shen
et al., 2018a) d(m,n) ∈ Rz−1. 2 Then, the result-
ing vectors are averaged to derive dfinal, which
is finally restored to the tree form T̂final.3 In the
following, we illustrate the characteristics of each
ensemble technique shown when determining τ̃ .

Naïve Baseline: Single Attention Head. The
simplest way of implementing CPE-PLM is to uti-
lize just a single attention head as a representative.
To be specific, this baseline constructs τ̃single :=

{T̂(m∗,n∗)|∀m∀n, val(g(m,n)) ≤ val(g(m∗,n∗))},
where val(g(m,n)) indicates the performance of
CPE-PLM on the validation set, given g(m,n). In
other words, it directly outputs the parse T̂(m∗,n∗)

2Note that z is the number of words in the input sentence.
3Refer to Kim et al. (2021) for the exact procedure of

converting a tree into a syntactic distance and vice versa.

generated by the best function g(m∗,n∗).

Layer-wise Ensemble. Kim et al. (2020) sug-
gest to merge a group of trees that originated from
the attention heads located in the same layer of a
PLM. Specifically, this ensemble method defines
τ̃mlayer := {T̂(m,n)|n = 1, . . . , a} to consider layer-
specific information. The best layer of the PLM
(i.e., m∗) is also determined by its performance on
the validation set. The intuition behind this heuris-
tic is that attention heads of the same layer might
be complementary cooperative in grasping a lin-
guistic concept, considering that particular layers
of a PLM seem specialized to capture a specific
aspect of linguistic knowledge (Tenney et al., 2019;
Jawahar et al., 2019; Jo and Myaeng, 2020).

Top-K Ensemble. Kim et al. (2021) propose uti-
lizing the top-K g(·) functions instead of only us-
ing the best, g(m∗,n∗). First, a sorted set τsorted :=

{T̂(mi,ni)|i, j ∈ {1, . . . , l× a} ∩ val(g(mi,ni)) ≥
val(g(mj ,nj)) whenever i ≤ j} is specified as a
variant of the set τ . That is, τsorted is identical to τ
except that the elements of τsorted are arranged in
descending order according to the validation perfor-
mance of their corresponding functions {g(mi,ni)}.
Then, the top-K ensemble method defines τ̃topK as
the set consisting of the first K elements of τsorted.

3 Proposed Methods

In this section, we additionally introduce two novel
ensemble methods for CPE-PLM, which are more
effective than the previous counterparts in improv-



5401

Filter attention heads by adding one at a time to the cluster and checking 
whether the final performance improves

(PLM_3, 2, 4): [0.0,-0.1,0.0,0.0,⋯, 0.7] → improved? O → preserve 
(PLM_5, 5, 5): [0.2,-0.3,0.2,0.1,⋯, 0.4] → improved? O → preserve
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2] → improved? X → discard
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1] → improved? O → preserve
…

1 2 3 4 5

1

2

3

4

5

PLMs (𝟏~𝑷)

…

…
List of repr.s from 𝑷 different PLMs
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(PLM_1, 5, 5): [0.1,-0.4,0.3,0.1,⋯, 0.4]
…
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1]
(PLM_𝑷, 4, 1): [0.3,-0.1,0.2,0.6,⋯, 0.5]
(PLM_𝑷, 4, 4): [0.2,-0.1,0.1,0.2,⋯, 0.4]
(PLM_𝑷, 5, 3): [0.3,-0.1,0.2,0.1,⋯, 0.1]

↓ Sort
Repr.s sorted by their performance
(PLM_3, 2, 4): [0.0,-0.1,0.0,0.0,⋯, 0.7]
(PLM_5, 5, 5): [0.2,-0.3,0.2,0.1,⋯, 0.4]
(PLM_1, 5, 1): [0.2,-0.2,0.2,0.9,⋯, 0.2]
(PLM_𝑷, 2, 2): [0.1,-0.3,0.4,0.1,⋯, 0.1]
…

Representation Extraction & Sorting

Greedy Ensemble

Beam Ensemble

Select the most probable sequences of attention heads using beam search 
(already selected heads are not considered in the next step)

(PLM_3, 2, 4) (PLM_5, 5, 5)

(PLM_1, 5, 1)

(PLM_P, 2, 2)

(PLM_1, 5, 1)

(PLM_P, 2, 2)

(PLM_3, 3, 3)

(PLM_5, 5, 5)

(PLM_1, 5, 1)

Figure 2: Concept diagram explaining the operation of
Greedy and Beam in multi-PLM environments.

ing parsing performance. Furthermore, we propose
to allow several PLMs to collaborate with each
other to provide CPE-PLM with more diverse syn-
tactic information (Figure 2).

Greedy Ensemble. We first consider a method
that collects every helpful attention head in a greedy
fashion. Unlike the previous ensemble methods
which allow only a fixed number of attention heads
to be engaged in the ensemble process, this sets no
limit on the number of participants (i.e., attention
heads), diversifying the source of syntactic clues.

Sticking to the notations defined in Section 2.2,
we specify the Greedy ensemble algorithm in Al-
gorithm 1. Its core logic is to append one attention
head at a time to the cluster and test whether each
augmentation is beneficial for making progress in
the final (validation) performance (val(Ggreedy)).

Beam Ensemble. Even though the greedy en-
semble method is simple and effective, there still
exists a need for exploring more diverse groups
of attention heads that have the potential to show
better performance than the group chosen by the
greedy algorithm. To this end, inspired by the beam
search algorithm widely adopted in the natural lan-
guage generation (NLG) literature, we introduce
the Beam ensemble method in Algorithm 2.

Algorithm 1 Greedy Ensemble Algorithm
1: Gsorted := {g(mi,ni)|i, j∈{1, . . . , l×a}∩val(g(mi,ni))
≥ val(g(mj ,nj)) whenever i ≤ j}

2: g(mi,ni) := The ith element of Gsorted

3: T̂(mi,ni) := A tree prediction generated using g(mi,ni)

4: function GREEDY(Gsorted)
5: Ggreedy, τ̃greedy, µ← {}, {}, 0
6: for i = 1, . . . , l × a do
7: Ggreedy ← Ggreedy ∪ {g(mi,ni)}
8: ψ ← val(Ggreedy)
9: if ψ > µ then

10: µ← ψ

11: τ̃greedy ← τ̃greedy ∪ {T̂(mi,ni)}
12: else
13: Ggreedy ← Ggreedy\{g(mi,ni)}
14: end if
15: end for
16: return τ̃greedy
17: end function

Algorithm 2 Beam Ensemble Algorithm
1: b := beam size
2: Gsorted := {g(mi,ni)|i, j∈{1, . . . , l×a}∩val(g(mi,ni))
≥ val(g(mj ,nj)) whenever i ≤ j}

3: g(mi,ni) := The ith element of Gsorted

4: function BEAM(Gsorted, b)
5: Gbeam, e← {}, 0
6: for i = 1, . . . , b do
7: Gbeam ← Gbeam ∪ {{g(mi,ni)}}
8: end for
9: while e < b do

10: Ĝ, ψ, e← {}, {}, 0
11: for each H ∈ Gbeam do
12: µ← The largest index j given ∀g(mj ,nj)∈H .
13: for i = 1, . . . , b do
14: if µ+ i > l × a then
15: e← e+ 1
16: break
17: else
18: Hi ← H ∪ {g(mµ+i,nµ+i)}
19: Ĝ← Ĝ ∪ {Hi}
20: ψ ← ψ ∪ {val(Hi)}
21: end if
22: end for
23: end for
24: ψtopB ← The set consisting of the top b elements of ψ.
25: Gbeam ← {H|H ∈ Ĝ ∩ val(H) ∈ ψtopB}
26: end while
27: G∗

beam ← {H∗|∀H∈Gbeam, val(H
∗) ≥ val(H)}

28: τ̃beam ← {T̂(mi,ni))|T̂(mi,ni) is predicted using
g(mi,ni) ∈ H∗ (H∗ is the sole element of G∗

beam)}
29: return τ̃beam
30: end function

Our beam ensemble algorithm is similar to one
for NLG (Graves, 2012; Sutskever et al., 2014) ex-
cept that the beam search procedure is not stochas-
tic, but determined by the order of the elements
of Gsorted. Furthermore, the already selected at-
tention heads are not considered in the next search
step, unlike NLG which allows the same word to be
generated twice or more (see Figure 2 for example).



5402

The merit of Beam is that it can explore a wider
range of potential paths that might not be covered
by the greedy algorithm.

Extension to Multi-PLM Settings. Until now,
we have assumed that CPE-PLM is only applica-
ble for only a single PLM. However, we propose
for the first time extending its usage to the sce-
nario in which multiple PLMs are available to-
gether. In other words, we expand τ to τmulti :=
{T̂(p,m,n)|p ∈ {1, . . . , P},m ∈ {1, . . . , l}, n ∈
{1, . . . , a}}, where P is the number of the PLMs
involved. By doing so, it is expected that CPE-PLM
can infer more accurate parse trees with the aid
of diverse perspectives from heterogeneous PLMs.
We show in Section 4.2 that this simple and intu-
itive extension leads to a significant improvement
in the final performance. It also has value in that
it is one of the initial attempts in the literature to
leverage different PLMs simultaneously.

4 Experiments on Parsing

In this chapter, we aim to validate the effective-
ness of the proposed ensemble algorithms, i.e.,
Greedy and Beam, which enable CLE-PLM to
have a higher potential of being properly adopted
for downstream tasks.

4.1 General Configurations

Datasets. To evaluate the parsing performance of
CPE-PLM and other related models, we utilize the
Penn Treebank dataset (PTB, Marcus et al. (1993))
for English and the SPMRL (Seddah et al., 2013)
dataset for eight other languages, following Kim
et al. (2021).4 We also adhere to the standard of
the previous work for preprocessing the datasets.

Evaluation Metrics. We utilize the unlabeled
sentence-level F1 score as a main metric to evalu-
ate the extent to which induced trees resemble cor-
responding gold-standard trees. It was originally
introduced by Shen et al. (2018b, 2019), becoming
the de-facto standard in unsupervised parsing.

Model Selection & Hyperparameters. As men-
tioned in Section 2.1, we build our approach upon
chart-based CPE-PLM (Kim et al., 2021). More-
over, we employ twelve English PLMs and four
multilingual PLMs to provide syntactic informa-

4We use national codes to represent languages, i.e., en:
English, eu: Basque, fr: French, de: German, he: Hebrew, hu:
Hungarian, ko: Korean, pl: Polish, and sv: Swedish.

PLMs / Methods Previous work Chart CPE-PLM w/ ensemble methods
Top-down† Chart‡ Single Layer Top-K Greedy Beam

Encoder-based
BERT-base 32.4 42.7 34.1 35.3 42.5 43.0 42.8
BERT-large 34.2 44.2 38.7 40.6 44.4 45.0 44.5
RoBERTa-base 33.8 44.9 40.9 39.2 44.2 45.4 45.4
RoBERTa-large 34.1 41.9 39.5 38.9 44.9 47.2 43.7
ELECTRA-base - - 40.2 41.2 43.3 46.9 43.2
ELECTRA-large - - 44.3 41.3 46.6 47.9 47.2

Decoder-based
GPT2 37.1 37.2 34.5 26.4 36.9 37.2 37.1
GPT2-medium 39.4 38.4 38.0 28.2 38.2 38.0 40.8
CTRL - - 35.7 28.7 44.4 45.8 44.9

Hybrid
BART-large - - 37.5 32.6 39.8 37.5 38.5
XLNet-base 40.1 46.4 36.7 39.7 46.0 47.0 46.7
XLNet-large 38.1 46.4 39.5 38.9 45.7 47.2 46.8

Multilingual
MBERT - 45.0 39.0 40.3 44.6 47.1 45.7
XLM - 47.7 41.9 42.1 47.1 47.5 47.1
XLM-R - 46.7 41.6 44.2 46.5 48.5 47.4
XLM-R-large - 44.6 40.7 36.7 44.3 46.8 46.9

Multiple PLMs
Only multilingual - - - - 49.6 51.9 49.8
All models - - - - 50.4 55.3 55.7

Table 1: F1 scores of CPE-PLM on the PTB test set
conditioned on the different combinations of PLMs and
ensemble methods. We show that Greedy and Beam
are more effective than baselines, and that we attain
much more competitive scores in multiple PLM settings.
The best score for each column is in bold. We also
report numbers from two previous studies for reference.
†: From Kim et al. (2020). ‡: From Kim et al. (2021).

tion.5 To handle various PLMs in an integrated
manner, we use the Transformers library de-
veloped by HuggingFace (Wolf et al., 2019). We de-
termine hyperparameters for the Top-K and Beam
ensemble methods using grid search. In conse-
quence, we use K=20 and b=5 for single PLM
cases and K=30 and b=30 in multi-PLM settings.

4.2 Verification of CPE-PLM’s Performance

We first conduct experiments on the English PTB
dataset using CPE-PLM, with the objective of com-
paring the effects of different PLMs and ensemble
methods on the paradigm. We also test the settings
in which multiple PLMs are employed at the same
time. From Table 1, we confirm that our Greedy
and Beam algorithms are more effective than other
techniques in most cases and that their impact is
amplified when combined with multiple PLMs. As
a result, we succeed in achieving the state-of-the-

5The list of PLMs we use is (1) English PLMs: BERT-
base/large (Devlin et al., 2019), RoBERTa-base/large (Liu
et al., 2019), ELECTRA-base/large (Clark et al., 2020),
GPT2(-medium) (Radford et al., 2019), CTRL (Keskar et al.,
2019), BART (Lewis et al., 2020), XLNet (Yang et al., 2019),
(2) multilingual PLMs: MBERT, XLM (Conneau and Lample,
2019), XLM-R(-large) (Conneau et al., 2020).



5403

Models F1 SBAR NP VP PP ADJP ADVP

Unsupervised parsers
PRPN† 47.3 50 59 46 57 44 32
ON-LSTM † 48.1 51 64 41 54 38 31
Neural PCFG† 50.8 52 71 33 58 32 45
Compound PCFG † 55.2 56 74 41 68 40 52
Neural L-PCFG‡ 55.3 53 67 48 65 49 58

CPE-PLM (Ours)
XLM-R + Greedy 48.5 46 69 29 62 48 73
All PLMs + Greedy 55.3 54 75 36 76 50 76
All PLMs + Beam 55.7 53 74 42 75 46 72

Table 2: Comparison of the best CPE-PLM variants
with unsupervised parsers. We show that with the aid of
Greedy and Beam, CPE-PLM becomes competitive
with unsupervised PCFGs. We also report recall scores
on six phrasal categories in addition to F1 scores. The
best result for each column is in bold. †: From Kim
et al. (2019b). ‡: From Zhu et al. (2020).

art F1 score (55.7) on PTB in the CPE-PLM liter-
ature, improving by up to eight points compared
against the previous best (47.7). We also observe
that Transformer encoder-based and multilingual
PLMs are more attractive options for CPE-PLM.

Second, we take the best instances of CPE-PLM
from Table 1 and compare them with a set of un-
supervised parsers on PTB. In particular, we con-
sider PRPN (Shen et al., 2018b), ON (Shen et al.,
2019), Neural PCFG, Compound PCFG (Kim et al.,
2019b), and Neural L-PCFG (Zhu et al., 2020) as
baselines. Note that all the models including CPE-
PLM are evaluated on the same condition where
we assume we have access to the validation set
(for tuning hyperparameters), following the prior
work (Kim et al., 2019b). From Table 2, we show
that with the introduction of Greedy and Beam,
CPE-PLM becomes comparable to off-the-shelf un-
supervised parsers in terms of F1. Specifically, our
CPE-PLM instance with Beam succeeds in achiev-
ing the best F1 score among all the candidates, and
the variant with Greedy accomplishes the best
recall scores on four phrasal categories (NP, PP,
ADJP, and ADVP). Based on these quantitative re-
sults, we claim that CPE-PLM is proper to be an
alternative for unsupervised parsers in some cases.

Finally, we extend the language domain of our
experiments from English to eight other languages.
We exploit four multilingual PLMs that are capa-
ble of processing all the languages we consider,
and each ensemble method is optimized for respec-
tive languages. In Table 3, we demonstrate that
our ensemble methods are universally more effec-
tive than the top-K algorithm across different lan-
guages. Furthermore, we confirm that CPE-PLM

Models / Language en eu fr de he hu ko pl sv Avg.

Single PLM
MBERT

Top-K ensemble 44.6 39.3 35.9 35.9 37.8 33.2 47.5 51.1 32.6 39.8
Greedy ensemble 47.1 40.2 36.9 37.5 38.6 30.2 49.1 52.4 31.9 40.4
Beam ensemble 45.7 41.2 36.1 37.6 38.0 33.8 49.1 51.4 32.6 40.6

XLM
Top-K ensemble 47.1 34.6 36.4 43.8 41.0 36.3 33.6 58.5 36.0 40.8
Greedy ensemble 47.5 38.4 37.0 45.4 41.5 36.4 35.1 58.0 36.4 41.7
Beam ensemble 47.1 38.7 36.8 43.6 41.9 36.3 35.2 56.8 36.2 41.4

XLM-R
Top-K ensemble 46.5 39.5 35.8 37.5 40.1 36.6 49.8 52.7 32.8 41.3
Greedy ensemble 48.5 39.4 36.1 39.0 40.3 36.5 50.8 53.5 33.1 41.9
Beam ensemble 47.4 39.0 35.3 37.9 39.7 37.0 50.2 53.9 32.7 41.5

XLM-R-large
Top-K ensemble 44.3 37.2 29.7 36.3 35.8 31.0 45.5 44.7 27.6 36.9
Greedy ensemble 46.8 39.5 32.9 40.1 37.0 34.0 46.4 47.1 31.0 39.4
Beam ensemble 46.9 39.2 33.0 39.2 36.1 33.4 45.8 50.7 29.0 39.3

Multiple PLMs
All models

Top-K ensemble 49.6 40.9 38.8 44.3 44.5 38.5 51.1 58.7 37.2 44.8
Greedy ensemble 51.9 44.0 41.9 47.3 48.1 40.1 53.7 61.4 39.0 47.5
Beam ensemble 49.8 42.7 40.4 47.0 45.9 39.4 53.4 60.8 38.2 46.4

Table 3: CPE-PLM with three ensemble methods for
nine languages. We observe that it is optimal for every
language to leverage Greedy on top of the integration
of all the four multilingual PLMs considered. The best
result for each column is in bold.

with Greedy attains the best performance in every
case when operated on the combination of all the
four PLMs and, showing 47.5 F1 score on average.

5 Experiments on Downstream Tasks

In the previous section, we demonstrated that CPE-
PLM’s performance can be significantly improved
by introducing the techniques proposed in this
work. We now turn our attention towards its out-
puts (i.e., generated parse trees) and investigate the
utility of such trees in two application scenarios
where tree structures are taken as input.

5.1 Training (U)RNNG with Induced Trees
Recurrent Neural Network Grammar (RNNG)
(Dyer et al., 2016) and its unsupervised variant
(URNNG, Kim et al. (2019c)) are neural architec-
tures which perform language modeling and pars-
ing together. In Kim et al. (2019b), the authors
showed that training (U)RNNG with the trees gen-
erated by other unsupervised parsers results in a
parsing model that is even better than the parsers
which provided the trees used in training. Follow-
ing the previous work, we here examine whether
the output trees from CPE-PLM can also function
as meaningful signals for training (U)RNNG. For
our experiments, we acquire the best two instances
from Table 1 (which accomplished 55.3 and 55.7
parsing F1 scores respectively) and use them as
our pseudo parsers. We employ Compound PCFG
(Kim et al., 2019b) as an unsupervised parser base-
line.



5404

From Kim et al. (2019b) (The best over trials) PPL (↓) F1 (↑)

LSTM LM 86.2 −
PRPN 87.1 47.9

Induced RNNG 95.3 47.8
Induced URNNG 90.1 51.6

ON 87.2 50.0
Induced RNNG 95.2 50.6
Induced URNNG 89.9 55.1

Neural PCFG 252.6 52.6
Induced RNNG 95.8 51.4
Induced URNNG 86.0 58.7

Compound PCFG (best) 196.3 60.1
Induced RNNG 89.8 58.1
Induced URNNG 83.7 66.9

Our results (Averaged over several trials) PPL (↓) F1 (↑)

Compound PCFG (re-experimented, average) − 54.0
Induced RNNG 91.5 54.7
Induced URNNG 85.4 57.8

CPE-PLM (All PLMs + Greedy) − 55.3
Induced RNNG 86.3 55.0
Induced URNNG 81.3 57.2

CPE-PLM (All PLMs + Beam) − 55.7
Induced RNNG 87.3 57.0
Induced URNNG 82.0 60.7

Table 4: Experiments on training (U)RNNG with the
trees induced by unsupervised parsers and CPE-PLM.
The upper section presents the results reported by Kim
et al. (2019c) while the bottom shows the outcomes from
our experiments. The best numbers for each column of
the respective sections are in bold. We show that the
(U)RNNGs trained with the trees induced by CPE-PLM
attain better language modeling and parsing abilities
compared to the cases of unsupervised parsers.

In Table 4, we present results from Kim et al.
(2019b) and our experiments on PTB. Note that
our results and ones from the previous study are
not directly comparable, because we report the
performance of each model averaged over 4 dif-
ferent runs while Kim et al. (2019b) utilize the
best instance. From the experimental results, we
confirm that the (U)RNNG models trained with
CPE-PLM have better language modeling capa-
bility than those trained with other unsupervised
parsers. In particular, we attain the perplexity of
81.3 when leveraging our greedy ensemble algo-
rithm for CPE-PLM, outperforming the strong base-
line (Compound PCFG: 85.4). Moreover, we suc-
ceed in obtaining a more powerful parsing model
by training (U)RNNG with the aid of CPE-PLM
(All PLMs + Beam). Using this, we achieve 60.7 in
F1, 5 points higher than that of the original (55.7).

5.2 Text Classification using Tree LSTM
Recursive neural network (RvNN; Socher et al.
(2013); Tai et al. (2015)) is a type of neural architec-
ture, whose composition order is determined by an
input tree structure. In spite of RvNNs’ strong per-
formance on several sentence-level tasks and robust
linguistic motivation on which they were invented,

Models / Tasks (Metric: Acc.) SST2 MR SUBJ TREC

Tree LSTM
+ Right-branching trees 85.72 83.37 94.80 94.50
+ CPE-PLM (All PLMs + Beam ensemble) 86.10 83.62 94.85 94.75
+ Supervised parser (Klein and Manning, 2003) 86.70 83.62 95.12 95.05

Table 5: Text classification with Tree LSTMs. We ob-
serve that CPE-PLM-oriented parses outperform right-
branching trees but are inferior to silver-standard trees.
All the results are averaged over four different runs.

the usage of RvNNs is generally restricted due to
their reliance on gold/silver-standard trees.6 We
here attempt to mitigate this limitation by taking
advantage of CPE-PLM. To this end, we conduct
experiments on four text classification tasks with
Tree LSTMs: the target tasks are SST2 (Socher
et al., 2013), MR (Pang and Lee, 2005), SUBJ
(Pang and Lee, 2004), and TREC (Li and Roth,
2002). We use a variant of Tree LSTM (Kim et al.,
2019a) whose leaf nodes are processed by a sep-
arate LSTM in advance. We inject three distinct
types of trees—right-branching trees, which are
a strong heuristic-based approach in English, the
trees induced by CPE-PLM (with Beam), and those
generated by a supervised parser—into the model
and evaluate their impact on the final performance.

In Table 5, we present the accuracy of diverse
Tree LSTM instances on four tasks. Although the
absolute difference in accuracy between the in-
stances is marginal, we discover a clear pattern that
silver-standard trees (ones from supervised parsers)
are always the most helpful while the parses in-
duced by CPE-PLM rank second, outperforming
right-branching trees. This outcome supports our
claim that CPE-PLM can be an attractive option
when supervised parsers are not available.

On the other hand, we find that the performance
of Tree LSTMs is not that sensitive to their tree
inputs, which was similarly observed by Shi et al.
(2018). However, we highlight that the trees closer
to their gold-standard counterparts are more benefi-
cial across all the tasks considered. We leave as fu-
ture work the application of CPE-PLM to advanced
tree models that are more input structure-sensitive.

6 Discussion

So far, we have focused on verifying the utility
of CPE-PLM through the lens of (1) its improved
parsing performance and (2) the effectiveness of its

6We use the term silver-standard trees to indicate parse
trees predicted by sophisticated supervised parsers.



5405

CPE-PLM configurations Used proportion of validation set
1% 2% 5% 10% 100%

All PLMs
+ Greedy 49.4 49.9 52.7 54.3 55.3

Relative loss (-) 5.9 5.3 2.5 0.9 -
+ Beam 51.3 49.8 51.8 52.9 55.7

Relative loss (-) 4.5 6.0 4.0 2.9 -

Table 6: Relative performance loss of CPE-PLM on
PTB with regard to the proportion of the validation set
used. We obtain reasonable performance only with 1%
(17 examples) of the validation set.

Models Number of used annotations
1 2 5 10 17 (1%) 2% 5% 10% 100%

CPE-PLM (All PLMs)
+ Greedy 46.2 48.4 49.9 49.1 49.4 49.9 52.7 54.3 55.3
+ Beam 45.4 45.9 47.7 49.6 51.3 49.8 51.8 52.9 55.7

Supervised (Benepar) - 11.6 12.5 14.0 17.0 31.1 50.2 71.4 92.2

Table 7: Comparison between CPE-PLM and a super-
vised parser (Benepar) in few-shot settings.

output trees for downstream tasks. In this section,
we conduct in-depth analysis on the limitations of
the current form of CPE-PLM and propose coun-
termeasures to alleviate the problems.

Reliance on the validation set. CPE-PLM is
training-free, but it exploits gold-standard trees
from the validation set to decide the best combina-
tion of attention heads (g(m,n)). Although we allow
this configuration in this work to have a fair com-
parison with some previous work on unsupervised
parsing (Kim et al., 2019b) that also made use of
the validation set to optimize hyperparameters, it
is always better to reduce such reliance as argued
in the few-shot classification literature (Perez et al.,
2021). Therefore, we here attempt to examine the
robustness of CPE-PLM with respect to the number
of data instances from the validation set. Specifi-
cally, we conduct a controlled experiment where
CPE-PLM is provided with only a limited propor-
tion of the validation set. In Table 6, we confirm
that CPE-PLM only loses roughly five points in
performance when just 17 (1%) gold standard trees
are available, implying that they work quite well
even with a limited number of validation trees.

Furthermore, to showcase the data-efficiency of
CPE-PLM in few-shot settings, we compare the
performance of CPE-PLM and an off-the-shelf su-
pervised parser (Benepar; Kitaev and Klein (2018))
in few-shot settings.7 From Table 7, we discover
that CPE-PLM shows much better performance

7Specification on training a supervised parser in few-shot
settings can be found in Appendix A.

Models F1 w/ ensemble (↑) Inference
Greedy Beam time (↓)

Unsupervised parsers/CPE-PLM
Compound PCFG (Kim et al., 2019b) 55.2 31 min.
CPE-PLM (All PLMs) 55.3 55.7 27 min.

Parsers trained with induced trees
Distance (Shen et al., 2018a) 53.8 55.0 36 sec.
Benepar (Kitaev and Klein, 2018) 56.6 59.3 32 sec.

Table 8: Training normal parsers with supervision from
the trees induced by CPE-PLM. We show that it is viable
to build a much faster parser while preserving (or even
boosting) the performance of CPE-PLM by relying on
existing techniques for supervised parsing.

than the normal parser in extreme cases where few
dozen trees are provided. When trees more than
10% of the validation set are available, the super-
vised parser starts to outperform CPE-PLM.

Issues on the execution time. As identified in
Table 8, where we estimate the accuracy and exe-
cution time of different approaches on PTB, CPE-
PLM and Compound PCFG are still too slow to
be readily utilized, compared to supervised coun-
terparts which are generally highly optimized. To
relieve this inefficiency, we propose to exploit nor-
mal parsers (Shen et al., 2018a; Kitaev and Klein,
2018) by training them with the trees generated by
CPE-PLM if a suitable amount of gold annotations
are not available for supervision. In Table 8, we
demonstrate that it is possible to transfer syntactic
knowledge from PLMs to supervised parsers with-
out loss of accuracy, while significantly reducing
the execution time at the same time. We even obtain
performance gain in some cases, achieving nearly
60 in F1 score. We expect that this direction can
be particularly useful for low-resource languages
for which it is hard to collect gold annotations.

7 Conclusion

In this paper, we introduce two ensemble methods
and multi-PLM configurations for Constituency
Parse Extraction from Pre-trained Language Mod-
els (CPE-PLM). We demonstrate that the perfor-
mance of CPE-PLM can be competitive with that
of unsupervised parsers with the aid of the pro-
posed approaches, and that the parses induced by
CPE-PLM are practically useful in several applica-
tions where parse trees are required as input. We
also propose solutions for mitigating some inher-
ent limitations of CPE-PLM. We anticipate that its
potential will be further greater in the near future
with the introduction of more sophisticated PLMs.



5406

Acknowledgements

We would like to thank anonymous reviewers for
their fruitful feedback. This work was supported
by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2020-
0-01373, Artificial Intelligence Graduate School
Program (Hanyang University)). This work was
supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No.2022R1F1A1074674).

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners.

Ethan A. Chi, John Hewitt, and Christopher D. Manning.
2020. Finding universal grammatical relations in
multilingual BERT. In ACL.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In ICLR.

John Cocke. 1969. Programming languages and their
compilers: Preliminary notes. New York University.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In NAACL.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In NAACL.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In ACL.

Jae-young Jo and Sung-Hyon Myaeng. 2020. Roles and
utilization of attention heads in transformer-based
neural language models. In ACL.

Tadao Kasami. 1966. An efficient recognition and
syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Taeuk Kim, Jihun Choi, Daniel Edmiston, Sanghwan
Bae, and Sang-goo Lee. 2019a. Dynamic composi-
tionality in recursive neural networks with structure-
aware tag representations. In AAAI.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang goo
Lee. 2020. Are pre-trained language models aware
of phrases? simple but strong baselines for grammar
induction. In ICLR.

Taeuk Kim, Bowen Li, and Sang-goo Lee. 2021. Mul-
tilingual chart-based constituency parse extraction
from pre-trained language models. In Findings of the
Association for Computational Linguistics: EMNLP
2021.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019b.
Compound probabilistic context-free grammars for
grammar induction. In ACL.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019c. Unsupervised
recurrent neural network grammars. In NAACL.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In ACL.

Dan Klein and Christopher D Manning. 2003. Accurate
unlexicalized parsing. In ACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL.

Bowen Li, Taeuk Kim, Reinald Kim Amplayo, and
Frank Keller. 2020. Heads-up! unsupervised con-
stituency parsing via self-attention heads. In AACL-
IJCNLP.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics.



5407

David Mareček and Rudolf Rosa. 2019. From
balustrades to pierre vinken: Looking for syntax in
transformer self-attentions. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. TACL, 8:842–866.

Rudolf Rosa and David Mareček. 2019. Inducing syn-
tactic trees from bert representations. arXiv preprint
arXiv:1906.11511.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018a. Straight to the tree: Constituency parsing
with neural syntactic distance. In ACL.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron
Courville. 2018b. Neural language modeling by
jointly learning syntax and lexicon. In ICLR.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
ICLR.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020.
On the role of supervision in unsupervised con-
stituency parsing. In EMNLP.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018.
On tree-based neural sentence modeling. In EMNLP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NeurIPS.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
ACL-IJCNLP.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In ACL.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020. The
return of lexical dependencies: Neural lexicalized
pcfgs. In TACL.



5408

A Appendix: Details on Training
Few-shot Parsers

Following Shi et al. (2020), we train a su-
pervised parser (Benepar; Kitaev and Klein
(2018)) in few-show learning settings to pro-
vide a robust baseline for our experiments.
To be specific, we leverage the official code
and hyperparameters of the parser obtained
from https://github.com/nikitakit/
self-attentive-parser. Given a desig-
nated number of parses from the PTB validation set,
we utilize 90% of them as the training set while the
remaining 10% are used as the real validation set.
We train the parser for 100 epochs, similar to Shi
et al. (2020). Compared against the experimental
results reported from Shi et al. (2020), our few-shot
parsers show relatively weaker performance. We
conjecture this gap comes from the methods Shi
et al. (2020) exploited to boost their performance.
For instance, (1) they further pre-trained their word
embeddings on sentences from PTB and (2) utilized
data augmentation and self-training techniques, all
of which are not applied in our case.

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser

	Introduction
	Background and Related Work
	Constituency Parse Extraction from Pre-trained Language Models
	Ensemble Methods for CPE-PLM

	Proposed Methods
	Experiments on Parsing
	General Configurations
	Verification of CPE-PLM's Performance

	Experiments on Downstream Tasks
	Training (U)RNNG with Induced Trees
	Text Classification using Tree LSTM

	Discussion
	Conclusion
	Appendix: Details on Training Few-shot Parsers

