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Abstract

Few-shot text classification aims to classify
the text under the few-shot scenario. Most of
the previous methods adopt optimization-based
meta learning to obtain task distribution. How-
ever, due to the neglect of matching between
the few amount of samples and complicated
models, as well as the distinction between use-
ful and useless task features, these methods suf-
fer from the overfitting issue. To address this is-
sue, we propose a novel Adaptive Meta-learner
via Gradient Similarity (AMGS) method to im-
prove the model generalization ability to a new
task. Specifically, the proposed AMGS allevi-
ates the overfitting based on two aspects: (i)
acquiring the potential semantic representation
of samples and improving model generalization
through the self-supervised auxiliary task in the
inner loop, (ii) leveraging the adaptive meta-
learner via gradient similarity to add constraints
on the gradient obtained by base-learner in the
outer loop. Moreover, we make a systematic
analysis of the influence of regularization on
the entire framework. Experimental results on
several benchmarks demonstrate that the pro-
posed AMGS consistently improves few-shot
text classification performance compared with
the state-of-the-art optimization-based meta-
learning approaches. The code is available at:
https://github.com/Tianyi-Lei.

1 Introduction

As a fundamental task of few-shot learning (Fei-
Fei et al., 2006) in natural language processing
theme, few-shot text classification (Yu et al., 2018;
Geng et al., 2019) requires a model to predict cat-
egories that are not seen in training. Meta learn-
ing (Schmidhuber, 1987; Thrun and Pratt, 2012),
which plays a crucial role in general few-shot learn-
ing, aims to improve generalization ability and fast
adaptation ability of the learner through modelling
the distribution of tasks. To adapt few-shot tasks,
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typical supervised meta-learning methods (Vinyals
et al., 2016; Finn et al., 2017) model task distribu-
tions from a few support tasks over meta-training
episodes. Subsequently, numerous methods based
on meta-learning (Bao et al., 2020; Luo et al., 2021;
Han et al., 2021) are proposed to solve few-shot
text classification problem.

Within the meta-learning frameworks, Bao et al.
(2020) trains an attention-based model to enhance
the text representation of distributional signature,
Luo et al. (2021) leverages label-semantic augmen-
tation to help BERT compensate for the ambiguity
of the class definition caused by the limited data,
and Han et al. (2021) strengthens the generalization
of a model using an adversarial domain adaptation
network. However, these methods are similar to
the traditional meta-learning methods, neglecting
the overfitting problem caused by utilizing the few
number of data in the complicated models under
the meta-learning frameworks.

To address the above problem in few-shot text
classification, several methods are proposed based
on a principle i.e., obtaining more task-distribution
can ameliorate the risk of over-fitting to the train-
ing task distribution. Bansal et al. (2020) alleviates
overfitting through joint training of self-supervised
tasks and classification tasks in pre-trained mod-
els. We also follow this method and use a self-
supervised Mask Token Prediction (MTP) task in
meta training phase. Unfortunately, the increased
task distribution generated by this joint training is
not always positive for meta-training.

In order to further overcome the overfitting chal-
lenge in meta-training, we propose the adaptive
meta-learner via gradient similarity based on an-
other principle i.e., distinguishing positive and neg-
ative features by feature selection of deep model
can enhance generalization by alleviating overfit-
ting. In optimization-based meta-learning frame-
work, the gradient contains all the information
transmitted from the inner-learner to the outer-

https://github.com/Tianyi-Lei
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Figure 1: Diagram of the comparison of different methods for gradient direction optimization. The black arrow,
black dotted arrow, red arrow and red dashed line denote the actual update of base-learner, the update direction
of based-learner, the actual update of meta-learner and the update direction of meta-learner, respectively. (a)
MAML(First order): A set of initial parameters ψ0 is updated in the direction of the red arrow, i.e., the gradient
of query set loss, which is calculated at θ̂ after t-step updates. Note that, since the gradient calculation of MAML
contains the Hessian matrix, it is hard to represent in the figure, we use the First Order MAML (FOMAML) to
replace MAML. (b) REPTILE: ψ0 is updated along the red arrow pointing to the t-step optimization solution. (c)
and (d) are different schemes of our proposed adaptive meta-learner, which distinguish the positive gradient cosine
similarity (scheme 1) and negative gradient cosine similarity (scheme 2). If the gradient direction obtained on the
query set is similar to the gradient direction of the sum of the t updates (black dashed line), ψ0 is updated in the
direction of the sum of all gradients. While if their gradient directions are opposite, we remove the gradient obtained
from the query set.

learner, including “features” mentioned in above
principle. Thus, the gradient obtained by base-
learner can be regarded as the "features". To com-
pare with other training strategies for meta-learner,
we plot Figure 1. Other strategies often adopt all
the gradient obtained by the base-learner without
distinction. They also may consume enormous
computing resources for calculating the Hessian
matrix, sacrifice the stability and accuracy in order
to adopt the first-order algorithm, or discard the
query set in the training Batch in order to sim-
plify the calculation. By contrast, our method
only needs to distinguish the gradient similarity
between the gradient of the loss on the query set
and the current gradient of the base-learner during
the meta-training process. Subsequently, we utilize
the corresponding gradient of its loss to help meta-
learner quickly adapt to the optimization space.
Such method selects the more useful gradients for
meta-learner in current training batch. In addition,
it neither increases the computational complexity
nor causes waste of text information in the same
training episode.

According to the above principles, we propose a
novel Adaptive Meta-learner via Gradient Similar-
ity (AMGS) algorithm based on optimization-based
meta learning scheme. We firstly construct the
self-supervised task called Mask Token Prediction
(MTP) for the base-learner in the inner loop. Such
approach can generate the extension of the task
distribution from unlabeled text and constraint the
gradient updating of primary classification task to

increase the robustness of the model. Moreover, in
the outer loop, we utilize the adaptive meta-learner
to improve the utilization of the task features from
the inner loop. As Figure (1) shows, our strategy
can more efficiently leverage query set samples
in a training episode, which optimizes the scope
of gradient optimization. Therefore, the adaptive
meta-learner directly accomplish additional ame-
lioration of overfitting.

The contributions of this paper are summarized
as follows: (1) We construct an optimization-based
meta-learning framework named AMGS and elab-
orately design a meta-training algorithm to effec-
tively tackle the overfitting issue in few-shot text
classification based on two different principles. (2)
We propose an adaptive meta-learner that selects
the positive gradients and removes the negative
gradients to improve the generalization ability of
the model on the few-shot task (3) Experimental
results demonstrate that the proposed AMGS out-
performs the state-of-the-art optimization-based
meta-learning models.

2 Related Work

Few-shot text classification via meta learn-
ing Few-shot learning is an application of meta-
learning. In most meta-learning frameworks, the
strategies can be divided into two categories:
metric-based meta-learning and optimization-based
meta-learning. Prototypical Network (Snell et al.,
2017), Induction Network (Geng et al., 2019) and
Relation Network (Sung et al., 2018) are dedicated
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to construct a metric space between classes and
samples. In the optimization-based meta-learning
methods, most of them consist of an inner (or
base) algorithm and an outer (or meta) algorithm.
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) and Reptile (Nichol et al., 2018) are
examples of such optimization-based algorithms.
LEOPARD (Bansal et al., 2020) achieves a good
performance on diverse classification tasks by us-
ing BERT (Devlin et al., 2019). Meanwhile, recent
work (Bao et al., 2020) proposes a meta-learning-
based method by using distributional signatures
for few-shot text classification. More recently,
LaSAML (Luo et al., 2021) uses label informa-
tion for few-shot text classification. Another one
(Han et al., 2021) applies a domain discriminator
into a meta-learning framework. However, these
algorithms suffer from overfitting caused by the im-
balance between the few data and the deep model
in the few-shot setting. By contrast, our proposed
AMGS which expands the task distribution in the
inner loop and distinguishes the positive and nega-
tive gradient in the outer loop can address this issue
indirectly and directly.

Auxiliary learning In general, auxiliary learning
can assist the main task to learn more accurately
and quickly in deep learning (Wang et al., 2022,
2019b), especially in the multi-task learning field.
SSL-Reg (Zhou et al., 2021) builds a regularizer
of the loss of self-supervised learning tasks to im-
prove performance on text classification. Besides
constructing a task, external auxiliary data can also
be introduced into the model to obtain more latent
information (Zhang et al., 2018).

Similarly, auxiliary tasks are valuable to adapt
the meta-learning scheme. MAXL (Liu et al., 2019)
adopts a self-supervised learning scheme to gener-
ate auxiliary labels, improving the generalization
ability of the primary task in gradient update. Fur-
thermore, self-supervised auxiliary tasks can pro-
mote fast adaptation during the testing phase (Chi
et al., 2021). Hybrid SMLMT (Bansal et al., 2020)
creates a specific self-supervised auxiliary task for
multi-task learning. Similar to these auxiliary tasks,
our auxiliary task MTP is self-supervised to gener-
ate richer task distribution during meta-training.

3 Methods

In this section, we first introduce the preliminaries
for few-shot classification (Vinyals et al., 2016).

BERT

Support set

Query 

set

Classifier Predictor

[Mask][CLS] 𝑇𝑜𝑘𝑒𝑛1 𝑇𝑜𝑘𝑒𝑛3 …… 𝑇𝑜𝑘𝑒𝑛n

Figure 2: The main framework of the proposed AMGS.

Next, we describe Adaptive Meta-learner via Gra-
dient Similarity (AMGS) method in detail.

3.1 Overview

Problem setup The setting of few-shot classifi-
cation often includes training episode and testing
episode. Suppose we have examples with labels
from the classes ytrainof training episode and need
to predict the labels of examples from unseen but
related classes ytest of testing episode. The training
classes and testing classes are mutually exclusive,
denotes as ytrain ∩ ytest = Φ. To create a training
episode, we need to build a set of N-way K-shot
tasks. For each task, we sampleN classes, k+q ex-
amples of each class randomly. The N ×k {xs, ys}
pairs including examples and corresponding labels
constitute the support set, while the N × q labeled
examples {xq, yq} are known as the query set. It
is the same way to create a support set in testing
episode, but leverage the unlabeled examples {yq}
to create the query set in testing. By repeating
the above procedure, we can obtain enough train-
ing and testing episodes, so that we can use them
in meta-training and meta-testing respectively. In
short, such setting requires the model to have the
ability to generalize from seen classes in training
episodes to unseen classes in testing episodes.

Model architecture BERT (Devlin et al., 2019)
performs well in the conventional text classifica-
tion, thus we leverage it as text encoder in our
proposed AMGS framework to explore the prob-
lem of few-shot text classification. As shown in
Figure (2), the model architecture consists of the
BERT encoder, a classifier and a predictor. The
model performs the primary task (i.e, classifica-
tion) and the auxiliary task (i.e., token prediction)
simultaneously, which constitutes multi-task learn-
ing. In training period, the support set are used
to obtain the BERT encoding and label prediction
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in the primary branch. While in the auxiliary task
branch, BERT encoder updates parameters through
the self-supervised task without labels.

For convenience to explain in following sec-
tion, we define parameters of the total network
θ = {θb, θpric , θauxp }, where θb denotes the shared
weights of BERT encoding, θpric represents classifi-
cation weights for the primary task, and θauxp is pre-
diction weights for the auxiliary task. Concretely,
the primary-branch weights and the auxiliary-
branch weights are respectively denoted as θpri =
{θb, θpric }, and θaux = {θb, θauxp }.

Self-supervised Mask Token Prediction task
As mentioned above, we leverage BERT as text
encoder. Considering that our self-supervised aux-
iliary task should be adapted to BERT, we adopt the
Mask Token Prediction (MTP) task used in BERT
pre-training stage (also known as MLM). MTP ran-
domly masks the tokens in the sentences according
to the specified ratio. These masked tokens are
fed into BERT to be predicted by putting the final
hidden vector corresponding to the masked token
into the output softmax over the vocabulary. The
original strategy of MTP in BERT set 15% proba-
bility for each token to replace with the [MASK]
token 80% of the time, a random token 10% of the
time, and the unchanged token 10% of the time. In
some cases, if the text used to construct MTP task
is very short, none of the tokens in this text would
be masked with high probability. This will cause
the effect of MTP to fail in the downstream task.

Therefore, we improve the replacement probabil-
ity of each token being masked to 30% instead of
15%. Meanwhile, the masking rating of replacing
the target token with a random token and an un-
changed token are both set to 0%, because random
and unchanged replacement both occur for 3% of
all tokens, which leads to instability. This change
helps the model acquire the new task distribution
more stably. The masked strategy is explored in
experiment demonstrated in Appendix A.

3.2 Adaptive Meta-learner via Gradient
Similarity (AMGS)

The optimization-based meta-learning methods
(Finn et al., 2017; Nichol et al., 2018) learn an ap-
propriate initial parameters by meta learner, achiev-
ing encouraging performance. However, these
methods ignore the overfitting issue in the few-
shot learning. Considering that the direction of
gradients could be used to distinguish the positive

and negative gradients, we propose AMGS frame-
work with explicit regularization. The training pro-
cedure of AMGS is decomposed into two steps:
(i) The base-learner collects gradient for adaptive
meta-learner, which utilizes the multi-task network
to learn primary and auxiliary tasks together on
support set. Then it collects the gradient of the
loss on the query set by leveraging the supervised
primary task. (ii) The adaptive meta-learner via
gradient similarity distinguishes the positive and
negative gradient obtained by the first stage, then
updates the parameters of the total meta-network
by meta-learner. By completing two training steps,
our method ensures that the meta-learner learns the
more balanced initial parameters and makes the
loss of new tasks decrease faster.

3.2.1 Collecting gradient for adaptive
meta-learner

This subsection describes that how the base-learner
collects gradient for adaptive meta-learner. We
leverage the self-supervised MTP task to acquire
a more abundant task distribution and improve the
base-learner robustness. In addition, as mentioned
above, we build multi-task learning by using the
MTP to limit the training of classification tasks.
In other words, the constraint on the loss of the
primary task has been enforced via the auxiliary
task. This limitation prevents the base-learner to
obtain extra characteristics of each training task
to alleviate overfitting. Formally, we compute the
total loss of the multi-task network as follows:

Ltotal = (1− ρ)Lpri + ρLaux, (1)

where Ltotal, Lpri, Laux and ρ represent the to-
tal loss, primary classification loss Lpri(x, y; θpri),
auxiliary prediction task loss Laux(x; θaux), and
the contribution of the auxiliary task, respectively.
x and y denote training texts and their labels. We
use cross entropy loss to implement both text clas-
sification and the masked token prediction. In our
experiments, we set ρ = 10−3. The sensitivity
study is shown in Appendix B.

When training on the tasks Ti in the support set,
the total loss Eq.(1) after one or a few gradient
updates can be defined as follows:

θ̂ = θ − α∇θLtotalTi
(xs, ys; θ), (2)

where xs and ys are texts and corresponding labels
in the support set. α is the adaptation learning rate.
By Eq.(1) and Eq.(2), we can obtain more semantic
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Algorithm 1 Training procedure of AMGS

Input: learning rate α, β, texts and corresponding labels x, y
Initialize Ψ = θ = {θb, θpric , θauxp } with BERT

1: while not converged do
2: Sample batch of tasks Ti ∼ p(T )
3: Sample support set (xs, ys), query set (xq, yq)
4: for all Ti do
5: Compute adapted parameters with gradient descents: θ̂ = θ − α∇θLtotalTi

(xs, ys; θ)

6: Compute the gradients of primary task on θ̂: (θb, θ
pri
c ) = (θb, θ

pri
c )−α∇θLpriTi

(xq, yq; θ̂b, θ̂
pri
c )

7: end for
8: if cos(∇θLtotalTi

(xs, ys; θ),∇θLpriTi
(xq, yq; θ̂b, θ̂

pri
c )) ≥ 0 then

9: Update: Ψ̂← Ψ− β∇Ψ
∑

Ti∼p(T )(LtotalTi
(xs, ys; θ) + LpriTi

(xq, yq; θ̂
pri))

10: else
11: Update: Ψ̂← Ψ− β∇Ψ

∑
Ti∼p(T ) LtotalTi

(xs, ys; θ)
12: end if
13: end while

representation to apply explicit regularization to
the primary loss. In general, the query set is used
for testing and inference, while it contains rich task
distribution which can be applied to meta-learn.
We argue that the query set can be used to fine-
tune and enhance the gradient learned by the base-
learner through the multi-task network. In the step,
we accomplish the collection of gradient of the
parameters {θb, θ

pri
c } on the query set. Finally, the

objective can be defined as follows:

argmin
θb,θ

pri
c

LpriTi
(xq, yq; θ̂

pri), (3)

where xq and yq are texts and corresponding labels
in the query set.

3.2.2 Upgrade meta-learner with AMGS

This stage is mainly about updating meta-learner.
Following previous work (Du et al., 2018), we
leverage the gradient cosine similarity to measure
whether the gradients obtained on query set are
positive or negative. Based on Eq.(2) and Eq.(3),
we get the gradient cosine similarity by calculating
cos(∇θLtotalTi

(xs, ys; θ),∇θLpriTi
(xq, yq; θ̂b, θ̂

pri
c )).

If the value of cos(·) is non-negative, such gradient
is regarded as the positive gradient, which
means the query set at this batch is beneficial to
enhance generalization of the model. Therefore
we obtain the gradient of its loss to perform
gradient enhancement on the meta-learner. For this

situation, the meta-objective can be written as:

argmin
θb,θ

pri
c ,θauxp

∑
Ti∼p(T )

(LtotalTi
(xs, ys; θ)

+ LpriTi
(xq, yq; θ̂

pri)).

(4)

On the contrary, if cos(·) is negative, such gra-
dient is considered as the negative gradient. We
remove this query set loss to ensure that the model
is not negatively affected, so the meta-objective is:

argmin
θb,θ

pri
c ,θauxp

∑
Ti∼p(T )

(LtotalTi
(xs, ys; θ)). (5)

According to above training procedure, our pro-
posed meta-objective can distinguish the positive
to use and the negative to by adaptive meta-learner,
which can automatically filter appropriate regular-
ization to limit the gradient optimization. This step
reduces effective model capacity, hence it effec-
tively alleviates overfitting and improves the gen-
eralization ability of the model. The full training
procedure is demonstrated in the Algorithm 1.

3.2.3 Meta testing
The model parameters have been learned in meta
training phase, and fine-tuned in the meta-learning
testing phase for downstream tasks. MTP can con-
tinue to participate in the fine-tuning phase in order
to help the primary classification adapt to the un-
seen classes for the new tasks quickly. From the
perspective of test-time fast adaptation (Chi et al.,
2021), our auxiliary task boosts the fast gradient
descent of the loss function of the primary task in
the testing procedure.
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Methods

HuffPost Banking77 Clinc150 (cross domain)

5-way 10-way 15-way 10-way 15-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Metric

BERT+PROTO 40.59 53.48 63.05 78.60 59.18 74.12 57.43 72.90 52.31 66.06

BERT+RELATION 40.80 51.87 63.88 73.48 56.29 64.57 54.65 60.09 46.54 58.83

BERT+INDUCT 39.96 50.79 48.72 64.32 49.45 55.27 46.52 57.65 41.72 49.98

Optimization

BERT+MAML 41.03 57.13 59.21 85.55 55.69 81.48 60.14 80.24 55.00 65.20

BERT+REPTILE 40.80 58.96 58.36 82.81 56.69 81.14 59.89 81.23 53.32 63.04

BERT+R2D2 40.78 61.98 70.45 87.80 63.46 85.65 62.72 87.13 57.61 80.76

DS+R2D2 41.34 62.48 59.33 83.71 53.37 78.96 55.56 78.76 53.41 79.69

MLADA+R2D2 41.55 59.82 61.69 80.81 55.63 74.77 65.28 85.45 51.76 77.77

BERT+AMGS (OURS) 43.47 63.40 71.41 88.81 63.62 84.93 69.19 88.26 62.12 84.13

Table 1: Results of 5-way 1-shot and 5-way 5-shot on HuffPost headlines dataset, 10-way 1-shot, 10-way 5-shot,
15-way 1-shot and 15-way 5-shot on Banking77 and Clinc150 datasets (cross domain) by using our proposed
method and all baselines.

4 Experiments

4.1 Datasets

We use three datasets to evaluate the performance
in experiment.

HuffPost headlines includes 36900 news head-
lines among 41 classes, which contains less infor-
mation than other datasets. In order to complete a
fair comparison test, we divide each training, vali-
dation, and testing set into 20, 5, and 16 classes by
following the setting of Bao et al. (2020). Bank-
ing77 (Casanueva et al., 2020) consists of 13083
fine-grained intents and 77 classes. As for the set-
ting of data distribution and N-way K-shot classi-
fication tasks, we assign 30, 15, and 32 classes
fixedly for training, validation, and testing set.
Clinc150 (Wang et al., 2019a) is a cross-domain in-
tent classification dataset with 150 classes in 10 do-
mains. It provides 22500 examples that cover 150
intents from 10 domains without overlap among
classes. We allocate for each training, validation,
and testing with 4, 1, 5 domains, respectively.

4.2 Baselines

In order to evaluate our AMGS, we compare with
three metric-based methods and five optimization-
based algorithms for few-shot text classification.

Proto (Snell et al., 2017) provides a metric-
based method to learn the class vector by com-
puting distances to prototype representations of
each class. Induct (Geng et al., 2019) learns a gen-
eralized class-wise representation by leveraging
the dynamic routing algorithm. Relation (Sung

et al., 2018) compares the class vector and the
query feature through a relation-based meta-learner.
MAML (Finn et al., 2017) is one of the most typ-
ical optimization-based meta-learning algorithms,
which trains a favorable initial point for the base
learner by utilizing the meta learning that learns
among tasks. Reptile (Nichol et al., 2018) is a first-
order variant method of MAML. It achieves that
the speed of calculation is greatly improved and
the complexity is reduced, while the accuracy is
almost the same as MAML. The base learner used
by Ridge Regression Differentiable Discriminator
(R2D2) (Bertinetto et al., 2019) is ridge regres-
sion based on linear regression model. The amount
of calculation is related to the sample size of the
task, which is conducive to the learning of the meta
learner. DS (Bao et al., 2020) shows the best per-
formance by leveraging the model that builds an
attention generator and a ridge regressor to enhance
the representational power of distributional signa-
ture. MLADA (Han et al., 2021) uses the meta-
learning adversarial domain adaptation network to
improve the adaptation and new classes embedding
generation by creating a domain discriminator.

4.3 Implementation details

BERTbase is used as the text encoder of all base-
lines. Because DS and MLADA have special re-
quirements for textual representation and feature
extraction, forcibly using BERT as encoder will
be counterproductive. Thus, we re-implement the
pre-train fastText embeddings (Joulin et al., 2016)
for those model, and follow other settings in the
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original papers (Bao et al., 2020; Han et al., 2021).
For the sake of fairness, the classifiers of these two
algorithms use R2D2, so we constructed a compar-
ison item with BERT as encoder.

All parameters are optimized with Adam opti-
mizer (Kingma and Ba, 2015). The initial learning
rates α, β are separately set to 5e−5 and 2e−5, and
we utilize 5 gradient updates for the base adaptation
step. As for the N-way K-shot classification setting,
all experiments use 25 examples for the query set.
We randomly sample 100 training episodes, 100
validation episodes, and 1000 testing episodes per
epoch and apply early stopping on validation for 20
epochs. We evaluate the performance of the model
based on 5 different random seeds. All experiments
are conducted on a GEFORCE RTX 3090 GPU.

4.4 Experimental results

The total results of experiments are reported in
table 1. By observing these experimental results,
we obtain the following conclusions:

(1) Whether it is for texts with minimal seman-
tics (Huffpost), fine-grained categorized (Bank-
ing77) or cross domains (Clinc150), our proposed
method AMGS has an average improvement of
0.2-6.5% over the state-of-the-art model on both
1-shot and 5-shot classification. In particular, com-
pared with our AMGS and MAML (Finn et al.,
2017), Reptile (Nichol et al., 2018), we can draw
the following observations from the Table 1: (i)
Our proposed method achieves better performance
on all tasks. In especial, in the 15-Way 5-shot
task on Clinc150 dataset, our proposed method
outperforms the best counterpart by 18.9%. (ii)
MAML and Reptile perform better on fine-grained
classification Banking77 dataset with more similar
categories than on cross-domain Clinc150 dataset
with less similar categories, and have a smaller gap
with our AMGS. To verify that our AMGS perform
better than MAML on alleviating overfitting, we
plot their accuracy learning curves in Figure 3. In
the figure, the training procudure of our AMGS is
more stable than that of MAML from the beginning
to the end. Besides, the gap between the accuracy
of seen classes and unseen classes of our AMGS is
less than that of MAML. These results are demon-
strated that our AMGS can make model more stable
in meta-training and more readily generalizeds to
unseen classes by addressing the overfitting issue.

(2) With leveraging BERT as our text encoder,
our method is better than all compared methods

Methods
Banking77 Clinc150

15-way 15-way

1-shot 5-shot 1-shot 5-shot

AMGS w que 56.39 82.32 55.72 65.61

AMGS w sup 57.03 81.84 54.17 64.12

AMGS w que+sup 58.51 82.10 55.97 83.73

AMGS w our strategy 63.62 84.93 62.12 84.13

Table 2: Ablation study results for different strategies
of meta-learner on Banking77 and Clinc150 (cross do-
main) datasets.

on Huffpost dataset. In Bao et al. (2020), it points
out that BERT can better deal with highly con-
textual classification but not the keyword-based
news classification, e.g., Huffpost dataset. Thus,
"DS+R2D2" performs better on Huffpost than
"BERT+R2D2", but worse on Banking77 and
Clinc150. Nonetheless, our "BERT+AMGS" sur-
passes all BERT-based and non-BERT-based ap-
proaches on Huffpost dataset, which shows the
superiority of our AMGS method. Furthermore,
the performance of our model is increased by 2.1%
on 1-shot classification and 0.9% on 5-shot classifi-
cation when compared with BERT-based models.

Overall, the above observations point that
AMGS can learn the commonalities and charac-
teristics between few-shot task distribution well by
mitigating overfitting, thereby obtaining a better
initialized parameter for fast adaptation.
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Figure 3: Learning curves of AMGS (a) and MAML
(b) on 15-way 5-shot task of the Banking77 dataset.
We plot average accuracy from seen classes (red) and
unseen classes (blue).

4.5 Ablation studies

In this section, we conduct several ablation exper-
iments to verify the effectiveness of the adaptive
meta-learner, MTP in the meta training phase, and
MTP in the meta-testing fast adaptation phase.

The effectiveness of the adaptive meta-learner
In this section, we further investigate the impact of
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(b) REPTILE

Figure 4: t-SNE visualization of the input representation for the query set of a testing episode (N=10, K=5, L=120)
sampled from Banking77 dataset.

Methods
Banking77 Clinc150

15-way 15-way

1-shot 5-shot 1-shot 5-shot

AMGS w/o MTP 62.82 84.73 61.82 83.17

AMGS w/o MTP (testing) 63.26 84.32 61.97 84.01

AMGS w MTP 63.62 84.93 62.12 84.13

Table 3: Ablation study results of MTP in meta-training
and meta-testing fast adaptation phase (testing) on Bank-
ing77 and Clinc150 (cross domain) datasets.

the different strategies for meta-learner. To com-
pare with our strategy, we design three other com-
parison strategies. As shown in Table 2, "AMGS w
que", "AMGS w sup", "AMGS w que+sup" respec-
tively represent the meta-learner in AMGS only
use the gradients of the query set, support set and
both query and support set. None of these three
strategies pay attention to distinguishing the pos-
itive or the negative of the gradients. Comparing
our strategy with "AMGS w que+sup" strategy, we
have improved significantly more on 1-shot task
than on 5-shot task. From all the results, our adap-
tive meta-learner which filters the impact of the
negative gradient achieves the better performance
among these compared strategies.

The effectiveness of MTP in meta-training phase
and in meta-testing fast adaptation phase As
shown in Table 3, we first eliminate MTP in train-
ing stage. After losing a richer distribution of tasks,
the performances of AMGS decrease by about
0.8%, which verifies the effectiveness of MTP in
meta-training phase. Further, we explore MTP in
meta-testing fast adaptation phase. The empirical
results demonstrate that after joining the auxiliary

task in meta-testing, the model performances have
increased by about 0.5%. The testing auxiliary task
makes the primary task more robust on the support
set, and has some suppression effects on the occur-
rence of overfitting. All these results demonstrate
that MTP task have a certain effect on Banking77
and Clinc150 datasets, but it can not significantly
improve the experimental results.

4.6 Visualization
We visualize the results of the experiments to
demonstrate that our model can generate a high-
quality text representation for unseen classes.

T-SNE (Van der Maaten and Hinton, 2008) vi-
sualization illustrates the experimental results in
Figure (4), we take out the generated sentence em-
bedding layer before sending it to the classifier for
visualization. Comparing Figure 4(a) and Figure
4(b), it is obvious that our method AMGS produces
better separation than REPTILE, Especially for
the categories represented by gray and lime, the
sentence representations obtained by REPTILE are
very similar, so that it is difficult to distinguish their
categories. The above observations demonstrate the
effectiveness of AMGS to generate a high-quality
text representation for few-shot text classification.

5 Conclusion

In this paper, we present an Adaptive Meta-learner
via Gradient Similarity (AMGS) framework for
few-shot text classification. To be specific, we
first leverage the self-supervised Mask Token Pre-
diction (MTP) task to enrich the task distribution
with the unlabeled text. Such approach can reduce
the impact of overfitting caused by the mismatch-
ing between the few samples and the deep model.
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Secondly, we construct an adaptive meta-learner
via gradient similarity for the outer loop to distin-
guish the positive and negative gradient. Thus, the
meta-learner alleviates overfitting by preventing
the influence of negative features. Experimental
results validate that our model achieves significant
improvement on the few-shot text classification
tasks by effectively alleviating the overfitting issue.
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A Ablation for different MTP masking
strategies

In section 3.1, we mention that MTP adopts a dif-
ferent masking strategy from the one used in BERT
pre-train stage. We explore the effect of different
masking strategies in following ablation.

Masking prob.
Masking strategy Banking77

Mask Same Random 10-way 1-shot

15%
100% 0% 0% 73.38

80% 10% 10% 72.06

30%
100% 0% 0% 74.06

80% 10% 10% 72.20

45%
100% 0% 0% 72.56

80% 10% 10% 72.42

Table 4: Ablation study results of different masking
strategies on the validation episodes of Banking77.

As Table 3 shows, we explore the effect of differ-
ent masking probabilities and strategies on Bank-
ing77. In the table, "Mask" means that we replace
the token with [MASK] in MTP, "Same" means
that we keep the target token unchanged and "Ran-
dom" means that the token is replaced with the
random token except itself. From the table, we can
see that the masking strategy in BERT pre-training
is not the best choice in the few-shot text classi-
fication. Therefore, in this paper, we attempt to
alter the masking strategy which 100% changes the
target token to [MASK].

B Sensitivity study on the trade-off
parameter ρ

In order to set an appropriate value for the trade-off
parameter of MTP mentioned in section 3.2.1, we
study a sensitivity study for this hyper-parameter
in 10-way 5-shot on Banking77 dataset.

trade-off ρ 0.9 0.5 10−1 10−3 10−5 0

Accuracy 89.98 90.10 94.80 95.60 94.00 93.40

Table 5: Sensitivity study results of 10-way 5-shot on
the validation episodes of Banking77.

The results of validation episodes have shown
in Table 4. We explore a large scale trade-off ρ.
demonstrating MTP has the greatest contribution
when the trade-off ρ equals 0.001. Especially, ρ
equals 0 means we remove the impact of MTP,
which verifies the effectiveness of our MTP.
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