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Abstract

Zero-shot learning for Dialogue State Tracking
(DST) focuses on generalizing to an unseen
domain without the expense of collecting in-
domain data. However, previous zero-shot DST
methods ignore the slot dependencies in a multi-
domain dialogue, resulting in sub-optimal per-
formances when adapting to unseen domains.
In this paper, we utilize slot prompts com-
bination, slot values demonstration, and slot
constraint object to model the slot-slot depen-
dency, slot-value dependency and slot-context
dependency respectively. Specifically, each slot
prompt consists of a slot-specific prompt and a
slot-shared prompt to capture the shared knowl-
edge across different domains. Experimental
results show the effectiveness of our proposed
method over existing state-of-art generation
methods under zero-shot/few-shot settings.

1 Introduction

Task-oriented dialog systems help users to achieve
specific goals using natural languages, such as
movie booking and information support. Dialogue
state tracking(DST), as a core component of task-
oriented dialogue systems, tracks the user’s require-
ments as dialogue states, which are typically in
the form of a list of slot-value pairs. In practical
applications, the multi-turn conversation usually
refers to multiple domains. As shown in Figure
1, a user starts the conversation by asking a hotel
and then requests a restaurant with a cheap price
range, where hotel and restaurant are two differ-
ent domains. At the third turn, the DST extracts
multiple (slot, value) pairs like “(hotel-star, 4)” and
“(restaurant-pricerange, cheap)” from the dialogue
context.

In industrial applications, task-oriented dialogue
systems are required to add new domains frequently
based on users’ needs, but collecting extensive
data for every new domain is costly and inefficient.

∗Corresponding author.

Figure 1: An multi-domain dialogue from MultiWOZ
dataset (Budzianowski et al., 2018). Following the
convention of this dataset, each slot is represented
as a special token concatenated by domain and slot
(e.g.,“restaurant-food”).

Therefore, performing zero-shot prediction of di-
alogue states is becoming increasingly important
since it does not require the expense of data acqui-
sition.

The early works utilized the copy mechanism to
handle new slot types in the unseen domain (Wu
et al., 2019; Kumar et al., 2020). But the special-
ized models don’t fully leverage the pre-trained
language models(PLMs), which have shown im-
pressive ability in transfer learning. Recently, a
new paradigm named “prompt-based learning” uti-
lizes language prompts to stimulate the knowl-
edge of PLMs (Han et al., 2021). Compared to
task-oriented fine-tuning, prompt-based learning
is more similar to pre-training in terms of objec-
tives, thereby adapting to downstream tasks faster
even without any training samples. Inspired by
it, some researchers add slot-specific prompt1 into
the sequence-to-sequence based model, achieving
good performances in zero-shot DST(Lee et al.,
2021; Su et al., 2021).

1For example, the prompt of slot “restaurant-area” can be
“what is the location of the restaurant?”.
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However, these approaches treat each slot inde-
pendently, which ignore various slot dependencies
during dialogue state tracking. We conceive that
there exist several types of slot dependencies in
multi-domain DST. For instance, the stars of a ho-
tel and its price range often co-occur in a dialogue
state. It could tell that the stars of a hotel might
have a dependency on its price range. Take Figure
1 as another example, the user asks for a taxi to the
restaurant, meaning that the taxi departure place
can be inferred from the name of the hotel. Ac-
cording to the statistics, there are 36.53% slot-slot
co-occurrence, 4.29% slot-value co-reference rela-
tions and many other types of slot dependencies in
the training set of MultiWOZ 2.1 (Budzianowski
et al., 2018; Feng et al., 2022). Intuitively, mod-
eling these slot dependencies can help the DST
model to handle complex dialogue scenes and infer
the slot-value pairs in the zero-shot DST.

Motivated by above analysis, we consider that
there are three kinds of slot dependencies, i.e. slot-
slot dependency, slot-value dependency and slot-
context dependency. This paper proposes a prompt-
based approach to model above slot dependencies
for zero-shot DST. For the slot-slot dependency,
we combine slot prompts as the specialized prompt
and decode corresponding slot values, making the
model consider semantic information across slots.
Specifically, each slot prompt consists of a slot-
specific prompt and a slot-shared prompt, which
respectively stimulates language understanding and
captures the shared knowledge between slots by
sharing parameters. For the slot-value dependency,
we use value demonstration, i.e., filling partial slot
values into slot prompts, to explore possible de-
pendency between slots and values. For the slot-
context dependency, we use the masked language
model and predict masked tokens inside the context
with the constraint of slot values, further enhancing
the relationships between slots and dialogue con-
text. The experimental results show that our pro-
posed model achieves a significantly higher joint
goal accuracy compared to previous zero-shot DST
approaches.

In summary, our main contributions include:

• We propose a prompt-based method for zero-
shot cross-domain DST, which leverages slot
prompts combination, slot value demonstra-
tion and slot constraint object to explore the
slot dependency among domains and slots.

• Experimental results show that our approach

can transfer into unseen domains effectively
and achieve the new state-of-the-art perfor-
mances on the MultiWOZ 2.1 and SGD
dataset under zero/few-shot settings.

2 Related Work

Multi-Domain Dialogue State Tracking Tra-
ditional statistical dialogue state tracking models
combine semantics extracted by spoken language
understanding models to predict the current dia-
logue state (Williams and Young, 2007; Thomson
and Young, 2010) or jointly learn language under-
standing in an end-to-end way. Recently, many
DST models that are built on deep neural networks
have achieved promising state tracking results(Dai
et al., 2021; Rastogi et al., 2019). Among them,
some recent works attempted to model slot rela-
tionships by predefined schema graphs (Chen et al.,
2020) or attention mechanism (Feng et al., 2021).
But they heavily rely on a huge number of anno-
tated data and human efforts without the generaliz-
ability to new domains (Feng et al., 2022), which
is not suitable for industrial applications. To solve
the above problem, some researchers leverage ma-
chine reading question answering data to facilitate
the low-resource DST (Gao et al., 2020; Lin et al.,
2021a), also called cross-task transfer. However,
cross-task transfer needs a large-scale corpus and
it is hard to learn the semantic consistency with the
task-oriented dialogue. In this paper, we focus on
the zero-shot cross-domain DST (Wu et al., 2019;
Kumar et al., 2020; Lin et al., 2021b),where these
models are first trained on several domains and are
transferred into unknown domains.

Prompt-based Learning Various recent PLMs
like GPT (Radford and Narasimhan, 2018), BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020)
provide a new approach to utilize large-scale unla-
beled data for NLP tasks. However, there is a big
gap between pre-training objectives and fine-tuning
objectives. Recently, prompt tuning attracts many
researchers to design prompt templates and then
fine-tune PLMs to downstream tasks, which ob-
tains successful results (Han et al., 2021; Zheng and
Huang, 2021). For the DST task, Lee et al. (2021)
proposed a slot-specific prompt to augment the
multi-domain prompt-based DST model. However,
these traditional prompt-based DST approaches
handle slots independently while we focus on mod-
eling the dependencies among slots in this paper.
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(a) (b)

Figure 2: Traditional prompt-based DST(a) vs Overview of ours(b).

3 Preliminaries

In this section, we give general notations for multi-
domain DST task and details about the traditional
prompt-based DST, which are the basis of proposed
approach in the next section.

3.1 Notations

In task-oriented dialogue systems, a dia-
logue with T turns can be represented as
{(A1, U1), (A2, U2) . . . , (AT , UT )}, where A rep-
resents the system response and U represents a user
utterance. At turn t, we denote the dialogue con-
text as Ct = {(A1, U1), (A2, U2), . . . , (At, Ut)},
which includes t turns from system and user. For
multi-domain DST, the dialogue state at turn t is
represented as a set of (slot, value) pairs, denoted
as Bt = {(sj , vj)|1 ≤ j ≤ J}, where sj is the slot
name given by schema and vj is its slot value. J is
the total number of slots in all domains. If there
is no information in the dialogue given about the
slot sj , vj is set to “none”. The goal of DST is
to predict the dialogue state Bt given a dialogue
context Ct.

3.2 Traditional Prompt-based DST

In this part, we introduce traditional prompt-based
DST model (Lin et al., 2021b) with a sequence-
to-sequence framework, which is shown in Figure
2(a). A generative model (e.g T5) concatenates
dialogue history Ct and a slot-specific prompt Tj
as input and decodes corresponding slot value vj .

vj = Seq2seq(Ct, Tj) (1)

where Tj is the prompt for slot sj . The learning
objective of the generation process is minimizing
the negative log-likelihood of vj given context Ct

and prompt Tj :

L = −
T∑
t

J∑
j

log p(vj |Ct, Tj) (2)

The example in Figure 2(a) takes slot name as the
slot-specific prompt. For the input with different
slots like “restaurant name” and “taxi arriveby”,
the model generates slot value independently, i.e.
“golden house” and “19:30”.

4 Methodology

As we mentioned before, we argue that traditional
prompt-based DST approaches ignore significant
slot dependencies in a dialogue. In this paper, we
propose a prompt-based approach to model the
dependency of the slot-slot, the slot-value, and
the slot-context. The architecture of our model
is shown in Figure 3.

4.1 Slot-slot Dependency Modeling

The traditional prompt-based DST utilizes the slot-
specific prompt independently. Differently, we
compose multiple slot prompts as the final prompt
to model the slot-slot dependency. A generation-
based model concatenates composed prompt T and
dialogue context Ct as input, and decodes a se-
quence of values:

T = “Q(s1),M1, ...,Q(sJ),MJ”

V = Seq2seq(Ct, T )
(3)

where Q(si) refers the slot prompt of slot si. Here,
V = “M1, v1, . . . ,MJ , vJ” and M∗ are mask to-
kens. Each mask token is inserted after the slot
prompt and it is also the start token for a slot value.
We insert mask tokens inside the prompt because
we hope the model can focus on the specific slot
prompt when generating its corresponding value.
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Figure 3: The architecture of our proposed model. It concatenates dialogue context (in yellow) and several slot
prompts (in green) to model the slot-slot dependency. The model explores slot-value dependency and slot-context
dependency utilizing slot value demonstration (left-shown example) and slot constraint object (right-shown example).
Noted that M∗ and X∗ are mask tokens and Q(slot) represents a slot prompt.

The objective of the generative model is to mini-
mize the sequence of values given context Ct and
prompt T :

L = −
T∑
t

log p(V|Ct, T ) (4)

Figure 2(b) shows the overview of our method, in
which the model concatenates a dialogue context
and two slot prompts, “restaurant-name” and “taxi-
arriveby”, and then generates the sequence “M1

golden house M2 19:30”.

Slot Prompt Design For each slot, we utilize two
types of prompts, a slot-specific prompt and a slot-
shared prompt to construct the slot prompt. The
slot-specific prompt stimulates the language under-
standing from PLMs and the slot-shared prompt
capture the universal knowledge across slots.

Formally, we define a slot-specific prompt as
{P k

1 , P
k
2 , . . . , P

k
I } for the slot sk, and a slot-shared

prompt as {P ′
1, P

′
2, . . . , P

′
Q} for all slots. The I

and Q are the number of slot-specific tokens and
pseudo tokens respectively. For a slot sk, its slot
prompt Q(sk) is written as:

{P k
1 , . . . , P

k
I , P

′
1, . . . , P

′
Q} (5)

For instance, the slot prompt of “restaurant-name”
can be “restaurant name [P ′

1], [P
′
2]”

2. The slot
prompt embedding of slot sk is represented as fol-
lows:

PE(sk) = {ek1, . . . , ekI , h′1, . . . , h′Q} (6)

2We try different value of Q and the optimal value 2 is
selected using the validation set

where e∗ are original word embeddings. h′∗ are
trainable embedding tensors, which are encoded
by a full-connected network and share parameters
across slots.

4.2 Slot-Value Dependency Modeling

Except for the dependency among slots, we find
that many slot values are also highly correlated, i.e.
demonstrated by co-reference and exclusion. For
example, in a dialogue, the value of “taxi-departure”
might be inferred from “hotel-name” but must be
different from the value of “taxi-destination”. We
suppose that considering other slot values helps the
model to capture the slot-value dependency and
understand the dialogue context better.

Specifically, we introduce some ground-truth
slot values into the prompt T , called slot value
demonstration. Since there are multiple mask to-
kens in prompt, we replace each mask token with
its slot value at ratio β (a hyper-parameter). The left
example in Figure 3 takes an input with three slot
prompts and one of them is supplied with the slot
value (in blue). Accordingly, the model only needs
output two slot values, “19:30” for “restaurant-
booktime” and “Indian” for “restaurant-food”.

4.3 Slot-Context Dependency Modeling

To model the dependency between slots and dia-
logue context, we introduce a slot constraint ob-
ject with a masked language model. Specifically,
we first utilize ground-truth slot values to fill mask
tokens, obtaining a new prompt T̃ . After that, we
use other symbols X∗ to mask v∗ inside the con-
text. The slot constraint objective is to predict
the masked values sequence given context C̃t and
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prompt T̃ :

T̃ = “Q(s1), v1, . . . ,Q(sJ), vJ”

Lsc = −
T∑
t

log p(W|C̃t, T̃ )
(7)

where W = “X1, w1, X2, w2, . . . , wZ” and wi

refers the masked value inside context. For the slot
that its value is unable to match strings in dialogue
context (e.g “none”), we skip the mask operation
to it. Therefore, the number of masked values Z
might not be equal to the number of slot prompts,
and wi might not actually be vi.

Take the right-shown example in Figure 3 for
illustration. Although there are three slots in the
prompt, only two mask symbols (X1 and X2) are
used in the context. The reason is that the value
of “taxi-arriveby” is inferred from “restaurant-
booktime”, causing the same location for their val-
ues in context.

4.4 Training and Inference
During training, we have the following loss func-
tion:

Ltrain = −
T∑
t

log p(V|Ct, T ) + λLsc (8)

where T is a specific prompt using slot value
demonstration. λ is a hyper-parameter and con-
trols the weight of slot constraint object. During
Inference, considering that the number of unseen
domains and slots might be huge, we concatenate
single slot prompt and dialogue context as input to
predict slot value, just like traditional prompt-based
DST (shown in Section 3.2).

5 Experiments

5.1 Datasets
We evaluate the proposed model on the most pop-
ular multi-domain task-oriented dialogue bench-
marks, MultiWOZ (Budzianowski et al., 2018; Eric
et al., 2020) and Schema-Guided-Dialogue(SGD)
(Raffel et al., 2020). Both datasets provide turn-
level annotations of dialogue states and descrip-
tions of domain and slot. The MultiWOZ dataset
contains over 10K dialogue across 8 domains. We
follow the previous pre-processing and evaluation
setup (Lin et al., 2021b), where the restaurant, train,
attraction, hotel, and taxi domains are used for train-
ing and testing. Appendix A gives more statistics

of MultiWOZ datasets. The SGD dataset has over
16K dialogues in the training set, spanning 26 ser-
vices belonging to 16 domains. The test set has 18
domains, and 5 domains of them are not presented
in the training set.

5.2 Baselines
We compare the performance of our model with
the following existing models. TRADE (Wu et al.,
2019) leverages context-enhanced slot gate and
copy mechanism to track slot values mentioned in
dialogue history . SUMBT (Lee et al., 2019) pro-
poses a non-parametric method to score each candi-
date slot-value pair in a predefined ontology . MA-
DST (Kumar et al., 2020) designs multiple layers
of cross-attention to capture relationships at differ-
ent levels of dialogue granularity. DSTQA (Zhou
and Small, 2019) models the DST task as a ques-
tion answering problem and uses a dynamically-
evolving knowledge graph to learn the relationships
between domains . T5DST (Lin et al., 2021b) is a
strong prompt baseline that first uses slot descrip-
tions as a prompt in zero-shot cross-domain DST.
TransferQA (Lin et al., 2021a) is a cross-task zero-
shot DST method where the model is pre-trained
on question answering data first and then is ap-
plied to unseen domains. SGD-baseline (Rastogi
et al., 2020) uses schema descriptions and applies
a BERT-based DST model to predict the dialogue
state of unseen domains.

5.3 Evaluation
Following previous works (Lin et al., 2021b), we
use Joint Goal Accuracy(JGA) and Average Goal
Accuracy (AGA) to evaluate our models and base-
lines. Joint goal accuracy is the percentage of turns
for which all the slots are correctly identified. Av-
erage goal accuracy is the average accuracy of the
active slots in each turn. A slot becomes active
if its value is mentioned in the current turn and
is not inherited from previous turns. We compute
JAG per domain in MultiWOZ datasets and use the
official evaluation script in SGD dataset.

In zero-shot settings, all models are trained on
four domains in the MultiWOZ dataset then zero-
shot on the held-out domain. In the SGD dataset,
there are 5 domains in the testing set but are not
in the training set, so all models are trained with
the whole training set and tested on these 5 unseen
domains. For few-shot experiments in MultiWOZ
dataset, all models are first trained on 4 source
domains and then fine-tuned with 1%, 5%, and
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Model Pretrained-Model Joint Goal Accuracy
Attraction Hotel Restaurant Taxi Train Average

TRADE (Wu et al., 2019) N 20.06 14.20 12.59 59.21 22.39 25.69
MA-DST (Kumar et al., 2020) N 22.46 16.28 13.56 59.27 22.76 26.87
SUMBT (Lee et al., 2019) Bert-base 22.60 19.08 16.50 59.50 22.50 28.18
T5DST † (Lin et al., 2021b) T5-small 31.92 20.72 20.09 64.12 28.83 33.56
Ours † T5-small 33.92 19.85 20.75 66.25 36.96 35.55
T5DST †∗ (Lin et al., 2021b) T5-base 35.51 22.48 25.04 65.93 34.82 36.25
TransferQA †(Lin et al., 2021a) T5-large 31.25 22.72 26.28 61.87 36.72 35.77
Ours † T5-base 37.83 26.50 27.05 69.23 40.27 40.18

Table 1: Zero-shot results on MultiWOZ 2.1. All numbers are reported in joint goal accuracy(%). The averaged zero
shot joint goal accuracy among five domains is reported. All results of baselines are from the original public papers,
except for T5DST∗ where we rerun their code with T5-base. † means the model is a prompt-based method. For fair
comparison, all prompt-based methods use the slot-description provided from schema as slot-specific prompt.

10% of target domain data. The zero-shot/few-shot
settings are consistent with the previous works on
zero-shot cross-domain DST (Wu et al., 2019; Lin
et al., 2021a,b).

5.4 Implementation

We implement our approach based on T5-small
(60M parameters) and T5-base (220M parameters)
(Raffel et al., 2020). We train the model with a
batch size of 128 for T5-small and a batch size of
256 for T5-base. Both of them are trained using
AdamW optimizer (Loshchilov and Hutter, 2019).
The peak learning rate is set to 1e-4 for T5 and
2e-4 for other learned modules. To balance the
efficiency and performance of the model, we adopt
a random sampling strategy in slot prompts combi-
nation, i.e. setting a hyper-parameter α as the max
number of slot prompts. Given a dialogue context,
the model randomly selects 1 up to α slots to con-
struct the prompt. And we apply multiple iterations
for training so that almost all slots can be sampled.
In all experiments, the α is set to 3, β is set to 0.5
and the weight λ in loss function is 0.3. We use
greedy decoding for all models.

6 Main Results

6.1 Zero-Shot Cross-Domain Results

Table 1 gives the results of our model and base-
lines under the zero-shot setting. Compared to
previous works, our model using T5-base achieves
significantly higher JGA (3.93% on average) and
even exceeds the cross-task method using T5-large
(TransferQA). Among these baselines, the methods
(T5DST and TransferQA) using T5 model have
much better performances than those without pre-
trained models (TRADE and MA-DST). We ana-

lyze that T5 is pre-trained on a large unlabeled cor-
pus, which can provide a promising language un-
derstanding for unseen slots. Notably, our method
using T5-small outperforms prior prompt-based
DST (T5DST) on almost domains, except for hotel
domain. Appendix B shows that our method ex-
ceeds T5DST on six hotel slots but falls behind on
four slots. The reason is that these four slots are
completely independent from source domains, mak-
ing their prediction mainly depend on the ability of
language understanding. Our proposed model with
small trainable parameters tends to build the slot
dependencies, which might hurt partial language
understanding in PLMs. However, our model with
T5-base brings obvious improvements on all do-
mains, including hotel domain. It also verifies that
the stronger ability of language understanding the
pre-trained model has, the easier to benefit from
slot dependency modeling our method is.

Table 3 summarizes the zero-shot results on
SGD dataset. Compared with SGD-baseline, the
zero-shot performance of our model is consistently
higher in five unseen domains. Compared to trans-
ferQA with T5-large and large labeled training
data (QA dataset), our model with T5-small is still
competitive in zero-shot settings. Particularly, our
model gains a great improvement on “bus” and
“train” domains. We analysis that these two do-
mains are closely related to some seen domains,
e.g “flight” and “travel” domains, which easily ben-
efit from the slot dependency modeling.

6.2 Few-Shot Cross-Domain Results

We further conduct experiments in few-shot cross-
domain settings on MultiWOZ 2.0, as in (Wu et al.,
2019; Lin et al., 2021a,b). The models are first
trained on 4 domains and then fine-tuned with 1%,
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Model Attraction Hotel Restaurant Taxi Train
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

TRADE 35.88 57.55 63.12 19.73 37.45 41.42 42.42 55.70 60.94 63.81 66.58 70.19 59.83 69.27 71.11
DSTQA N/A 70.47 71.60 N/A 50.18 53.68 N/A 58.95 64.51 N/A 70.90 74.19 N/A 70.35 74.50
T5DST 58.77 65.72 69.54 43.07 50.71 54.86 57.63 61.86 63.47 70.12 73.67 74.70 70.82 74.18 77.57
Our Approach 60.03 69.69 71.61 45.76 52.53 56.71 60.56 64.24 67.31 76.23 78.32 79.61 70.93 75.50 77.89

Table 2: Few-shot experiments in MultiWOZ 2.0. The experiments are conducted on MultiWOZ 2.0 for comparing
with previous works. N/A represents the results are not reported in the original paper.

Domain SGD-baseline TransferQA Seq2seq-DU Ours
Bus 9.7/50.9 15.9/63.6 16.8/N 43.9/86.3
Messaging 10.2/20.0 13.3/37.9 4.9/N 36.6/61.4
Payment 11.5/34.8 24.7/60.7 7.2/N 16.5/62.0
Trains 13.6/63.5 17.4/64.9 16.8/N 46.7/86.9
Alarm 57.7/1.8 58.3/81.7 55.6/N 58.3/87.5
Average 20.5/34.2 25.9/61.8 20.3/N 40.4/76.8

Table 3: Zero-Shot results on SGD dataset. All results
are reported in JGA(%)/AVG(%). Seq2seq-DU(Feng
et al., 2021) is seq2seq baseline without any pre-trained
model. N represents the results are not reported in the
original paper.

5%, and 10% of target domain data. In Table 3, the
experiment result shows that DSTQA is a competi-
tive baseline. However, our approach outperforms
previous transfer-learning methods in almost all
domains, except for the situation with 5% Attrac-
tion domain data fine-tuning. We suppose that the
DSTQA introduces an extra schema graph to model
explicit relationships across slots. The significant
improvements on most domains indicate that our
model still keeps a robust learning ability with a
minute quantity of dialogue fine-tuning.

6.3 Full Data Results

We also evaluate our model on full dataset to un-
derstand the full-shot performance, and the results
are shown in Table 4. Compared with prior mod-
els with zero-shot capability, our model improves
the joint goal accuracy by 1.6% in MultiWOZ 2.1
dataset. Particularly, our model exceeds traditional
prompt-based methods, T5DST, illustrating that
modeling slot dependency is helpful even in a full-
data scene. We notice that many training strategies
can be applied into the full-data experiment, such
as additional supervision (Chen et al., 2020) and
pre-process strategies (Heck et al., 2020), that may
improve the performances. In this paper, we focus
on modeling slot dependency for zero-shot DST
not achieving state-of-art on full-data.

Models Pretrained-Model Zero-shot JGA
TRADE (Wu et al., 2019) N 45.60
STARC (Gao et al., 2020) Bert-base 49.48
SGD-baseline (Rastogi et al., 2020) Bert-base 43.40
T5DST (Lin et al., 2021b) T5-small 51.91
T5DST (Lin et al., 2021b) T5-base 53.15
Ours T5-small 52.83
Ours T5-base 54.75
MinTL(Lin et al., 2020) BART 50.95
SOM-DST(Kim et al., 2020) Bert-base 53.68
Tripy (Heck et al., 2020) Bert-base 55.29
Simple-TOD (Hosseini-Asl et al., 2020) GPT-2 55.72

Table 4: Full data results on MultiWOZ 2.1 dataset.

7 Discussion

7.1 Ablation Study

In Table 5, we study the effect of different mod-
ules for the proposed model in the zero-shot setting.
Firstly, we set the hyper-parameter α as 1 to check
the effect of several slot prompts. There has 2%
drop of performance on hotel and taxi domain. Sec-
ondly, we only use the slot-specific prompt to inves-
tigate the effect of the slot-shared prompt. One can
observe that the performance deteriorates consid-
erably, which is similar to the results of removing
composing slot prompts. It indicates that com-
posing specialized slot prompts can enhance the
pre-trained model’s ability on predicting unseen do-
mains and slots. Thirdly, we explore the effect of
slot value demonstration by setting the ratio β as 0.
The performance of the model decreases markedly,
especially for taxi domain. We conclude that value
demonstration in prompt can effectively explore the
slot-value dependency, such as co-reference and ex-
clusion. These relationships mainly occur in some
slots related to time or location, causing a huge
influence on taxi domain. Furthermore, the model
without slot constraint object performs declining
results on different domains, which illustrates that
learning the slot-context dependency is also impor-
tant for zero-shot learning.

7.2 Analysis of Parameters

We further investigate the impacts of hyper-
parameter settings on the performance of the pro-
posed model on MultiWOZ2.1 in zero-shot set-
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Figure 4: Effects of the max number
of slot prompts α.
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Figure 5: Effects of ratio of β in
value demonstrations.
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Figure 6: Effects of the weight of slot
constraint object.

Model Joint Goal Accuracy
Hotel Taxi

Our approach 26.5 69.2
w/o Slot Prompt Combination 24.9(-1.6) 67.1(-2.1)
w/o Slot-shared Prompt 25.3(-1.2) 67.9(-1.3)
w/o Slot Value Demonstration 25.8(-0.7) 67.4(-1.8)
w/o Slot Constraint Object 25.9(-0.6) 67.9(-1.3)

Table 5: Ablation studies on the MultiWOZ 2.1 in zero-
shot setting on target domain hotel and taxi.

tings. We validate the effects of three factors: the
max number α of slot prompts, the ratio of value
demonstrations β, and the weight λ in the loss func-
tion. Figure 4, 5, 6 show the results of proposed
model with varying parameters in zero-shot set-
ting on domain hotel and taxi. We observe that the
optimal parameters are not completely consistent
across different domains. In Figure 4 and 5, the
model achieves a better performance with more
slot prompts and a bigger ratio of value demon-
strations on taxi domain. We conjecture that taxi
domain only has four slots (“taxi-departure” , “taxi-
destination”, “taxi-arriveby” , and “taxi-leaveat”)
and all of them are related to source domains,
such as the co-reference between “hotel-name” and
“taxi-destination” . That means that exploring the
slot-value dependency has a bigger influence on
taxi domain than hotel domain. Figure 6 show the
effect of using different weight λ in the loss func-
tion. When the weight of the slot constraint object
is too low, the model doesn’t own enough strong
constraint for slot-context dependency; when it is
too high, the model tends to over-predict “masked
tokens” not track dialogue state. Finally, we find
that our model achieves a balance with 0.2∼0.4.

7.3 Case Study

In Figure 7, we make a qualitative analysis of the
results of T5DST and our method on the Multi-
WOZ dataset under zero-shot settings. From the

results, we find that both models accurately pre-
dict the “Ballare” of “taxi-destination” and “17:30”
of “taxi-arriveby”. These two slot values are easy
to predict because they don’t depend on any other
domains and slots. Besides, our method generates
the “lovell lodge” for “taxi-departure”, while the
T5DST model outputs a wrong value, i.e., “none”.
We analyze that the T5DST leverages slot-specific
prompt and generates slot value independently,
which can not infer the relations between slots and
values. Our approach leverages slot prompts com-
bination and slot value demonstrations, making it
possible to model the slot-slot and slot-value de-
pendencies.

Figure 7: The zero-shot evaluation results for T5DST
vs. Ours. We mark the key information in blue and the
wrong prediction in red.

8 Conclusion and Future Work

In this paper, we attempt to model three slot depen-
dencies for zero-shot cross-domain DST, i.e. slot-
slot dependency, slot-value dependency, and slot-
context dependency. Experimental results on popu-
lar datasets show that the proposed approach per-
forms much better than baselines in zero-shot/few-
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shot settings. In the future, we would like to ex-
plore more ways to model slot dependency effec-
tively.
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A Dataset Statistics

The MultiWOZ dataset is a fully-labeled collection
of human-human written conversations spanning
multiple domains and topics. Some statistics of
MultiWOZ 2.1 are reported in Table 6. We further
draw a schema graph to illustrate the slot depen-
dency, which is shown in Figure 8.

Domain Slot Train Valid Test

Attraction area, name, type 2717 401 395

Hotel

area, internet, name,

parking, price range,

stars, type, book day,

book people, book stay

3381 416 394

Restaurant
area, food, name,

price range, book day,

book people, book time

3813 438 437

Taxi
arrive by, departure,

destination, leave at
1654 207 195

Train
arrive by, day,

departure, destination,

leave at, book people

3103 484 494

Total 8438 1000 1000

Table 6: The dataset statistics of MultiWOZ dataset.

Figure 8: The schema graph on MultiWOZ dataset.
Each nodes represents a slot and the nodes in same
color belong to a domain. There is an edge between two
nodes if some of their candidate values are same.

B Performance on Per-Slot

Figure 9 shows the difference in performance be-
tween T5DST and ours in the hotel domain when
using T5-small. From the results, our method ex-
ceeds T5DST on six slots while falling behind on
four slots, i.e “stars”, “internet”, “type” and “park-
ing”. In Figure 10, we list the performance of per-
slot on taxi domain when using T5-small. There
are four slots in taxi and all of them are related to
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source domains. Our method can effectively handle
these slots due to the modeling of slot dependency.
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Figure 9: Slot Accuracy in hotel of MultiWOZ 2.1.
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Figure 10: Slot Accuracy in taxi of MultiWOZ 2.1.


