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Abstract

Knowledge Graphs (KGs) stores world knowl-
edge that benefits various reasoning-based ap-
plications. Due to their incompleteness, a fun-
damental task for KGs, which is known as
Knowledge Graph Completion (KGC), is to
perform link prediction and infer new facts
based on the known facts. Recently, link pre-
diction on the temporal KGs becomes an active
research topic. Numerous Temporal Knowl-
edge Graph Completion (TKGC) methods have
been proposed by mapping the entities and rela-
tions in TKG to the high-dimensional represen-
tations. However, most existing TKGC meth-
ods are mainly based on deterministic vector
embeddings, which are not flexible and expres-
sive enough. In this paper, we propose a novel
TKGC method, TKGC-AGP, by mapping the
entities and relations in TKG to the approx-
imations of multivariate Gaussian processes
(MGPs). Equipped with the flexibility and ca-
pacity of MGP, the global trends as well as the
local fluctuations in the TKGs can be simul-
taneously modeled. Moreover, the temporal
uncertainties can be also captured with the ker-
nel function and the covariance matrix of MGP.
Moreover, a first-order Markov assumption-
based training algorithm is proposed to effec-
tive optimize the proposed method. Experimen-
tal results show the effectiveness of the pro-
posed approach on two real-world benchmark
datasets compared with some state-of-the-art
TKGC methods.

1 Introduction

Knowledge Graphs (KGs) provide an efficient way
to store world knowledge. Various KGs such as
DBpedia (Auer et al., 2007), NELL (Carlson et al.,
2010), YAGO (Suchanek et al., 2007) and Freebase
(Bollacker et al., 2008) have been constructed and
benefited downstream applications such as informa-
tion retrieval, question answering, etc (Hao et al.,
2017; Zhang et al., 2021). Generally, a fact in KG
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Figure 1: Illustration of three types of embedding-based
TKGC methods which share the same embedding posi-
tion function. Blue points denote the ideal position for
the embeddings of entity Obama, red lines denote the
embedding evolution function estimated by three types
of methods, and shade areas denote the uncertainty es-
timated by density-based and stochastic process-based
methods.

can be represented as a triple (s, p, o), where s (sub-
ject) denotes head entity node, o (object) denotes
tail entity node and p (predicate) denotes relation
edge between them. However, in the real world,
some facts are time-aware. For example, the fact
(Joe Biden, presidentOf, the United States) is not
valid until January 21, 2021, the United States presi-
dential inauguration of Joe Biden. Therefore, some
KGs store time-aware facts or events as the quadru-
ple (s, p, o, t), where t is the timestamp. Such
KGs are referred as Temporal Knowledge Graphs
(TKGs), which mainly include YAGO3 (Mahdis-
oltani et al., 2014), GDELT (Leetaru and Schrodt,
2013), Wikidata (Erxleben et al., 2014) and ICEWS
(Lautenschlager et al., 2015).

Temporal Knowledge Graph Completion
(TKGC), aiming at inferring the missing edges
based on known facts, is a fundamental task for
the incomplete real-world TKGs. A large class
methods perform TKGC by mapping nodes and
edges in TKGs into high-dimensional latent feature
spaces while preserving the semantic and structural
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information as much as possible. In recent
years, extensive research have been conducted on
embedding-based TKGC with notable process,
which is also known as temporal knowledge graph
embeddings (TKGEs). Early works extend the
translation-based Knowledge Graph Embedding
(KGE) approaches by mapping each timestamp
into a specific time embedding (Leblay and Chekol,
2018; Dasgupta et al., 2018). Obviously, such ap-
proaches cannot deal with the unseen timestamps.
To tackle this problem, some researchers model
the entity and relation embeddings in TKGE as the
continuous functions of time (García-Durán et al.,
2018; Goel et al., 2020), which can be categorised
as deterministic-based approaches. Recently, some
researchers model TKGE as multivariate Gaussian
density embeddings (Xu et al., 2019), which can
be considered as density-based methods.

Although the notable progresses have been made,
most of existing TKGE methods still suffer from
the following two disadvantages. (1) Most of them
are not flexible enough, the entity and relation em-
beddings are usually learned as the deterministic
function of time, which is good at capturing the
global trend while failing to model the surging lo-
cal fluctuation. For example, as shown in Figure
1, the semantic meaning of Obama should have a
violent fluctuation on 2008 − 11 − 04 as he won
the presidential election, which is hard to model
solely based on the deterministic function of time.
(2) Most of them are not expressive enough, the
temporal uncertainties of entity and relation embed-
dings are often ignored or under-fitted. As shown
in Figure 1, existing deterministic-based methods
often ignore the uncertainties while density-based
methods learn embeddings with stationary uncer-
tainties.

The above disadvantages could be naturally tack-
led by the stochastic process-based method. On
the one hand, a stochastic process-based method
is flexible to deal with the local fluctuations by
modeling the correlations of embeddings at neigh-
boured timestamps. On the other hand, a stochastic
process-based method is expressive to model the
dynamic changes of temporal uncertainties with
the covariance matrix and kernel function.

Therefore, in this paper, we propose a novel
method to learn flexible and expressive temporal
knowledge graph embeddings based on approx-
imated multivariate Gaussian processes (TKGC-
AGP). In specific, each entity and relation in TKGs

are mapped into a specific multivariate Gaussian
process. The evolution dynamics of the entities
and relations are modeled using the mean func-
tion of multivariate Gaussian process. The tem-
poral correlation for each entity/relation are cap-
tured by the kernel function. The temporal uncer-
tainty of the entities and relations is modeled by the
entity/relation-specific covariance matrix. Further
more, a first-order Markov assumption based algo-
rithm is proposed to approximate the likelihood of
multivariate Gaussian process. To investigate the
effectiveness of the proposed approach, extensive
experiments have been conducted on two large-
scale TKG datasets. Experimental results show the
effectiveness of the proposed approach compared
to various competitive baselines.

In general, our contributions are listed as fol-
lows.

• A novel temporal knowledge graph embed-
ding approach based on multivariate Gaussian
process, TKGC-AGP, is proposed. Both the
correlations of entities and relations over time
and the temporal uncertainties of the entities
and relations are modeled. To our best knowl-
edge, we are the first one to utilize multivariate
Gaussian process in TKGC.

• A novel first-order Markov assumption based
algorithm is proposed to approximate the like-
lihood of multivariate Gaussian process.

• Experimental results show that TKGC-AGP
outperforms several competitive baselines on
two TKG datasets.

2 Related Work

Our work is mainly related to two lines of research,
described as follows.

2.1 Temporal Knowledge Graph Completion

Temporal knowledge graph completion has been
an attractive research topic in recent years. Works
have been done with notable progress. Leblay and
Chekol (2018) proposed TTransE, which extended
the translation-based knowledge graph embedding
methods to temporal knowledge graph by map-
ping the time information into low-dimensional
vector space. Similar to TTransE, Dasgupta et al.
(2018) proposed HyTE by incorporating the time
information by assigning each timestamp with a
temporal hyperplane. García-Durán et al. (2018)
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proposed TA-TransE and TA-DistMult to learn the
time-aware relation embedding by concatenating
relation with time information as the input of a
recurrent neural network. Xu et al. (2019) pro-
posed ATiSE to represent the entity and relation in
TKG as additive time series with Gaussian white
noise to capture the temporal uncertainty. Goel
et al. (2020) introduced the diachronic embedding
method to model the evolution of entities along
with time. Lacroix et al. (2020) presented an exten-
sion of ComplEx by introducing new regularization
schemes to control the evaluation rate of embed-
dings. Xu et al. (2020) defined the temporal evolu-
tion of entities as the rotation in the complex vector
space to deal with the symmetric and asymmetric
relation simultaneously.

However, all aforementioned methods focus on
modeling the evolution of entities and relations
over time, ignoring the local correlations within
them. To our best knowledge, we are the first one
to consider model the correlation of entities and
relations over long and short term in TKGs.

2.2 Probabilistic Representation Learning

Probabilistic embeddings have been extensively ex-
plored in many natural language processing tasks.
Vilnis and McCallum (2015) introduced Gaussian
embedding into the word representation learning
task to tackle polysemy with the variance of Gaus-
sian distributions. Brazinskas et al. (2018) fur-
ther explored to learn the context-specific Gaussian
word embeddings with a Bayesian learning frame-
work. Athiwaratkun and Wilson (2018) proposed
to learn the entailment relationships in the visual-
semantic hierarchy with the Gaussian density or-
der embeddings. Beyond probabilistic distribution,
stochastic processes have also been considered. For
example, Bamler and Mandt (2017) proposed a re-
cursive stochastic process to model the dynamic
changes of word semantics over time. To model
uncertainty in KG, He et al. (2015) first employed
Gaussian distribution to represent entities and rela-
tions in KG. Xiao et al. (2016) proposed a genera-
tive KGE method with a Bayesian non-parametric
framework to generate Gaussian embedding and ad-
dress the polysemy of relations. Other distributions
such as Beta distribution have also been explored.
Ren and Leskovec (2020) presented to model the
first-order logic queries with Beta distributions by
translating the logic operators with operations on
Beta distribution.

However, all the aforementioned methods fo-
cus on specific-designed probabilistic distributions
or stochastic processes. To our best knowledge,
we are the first one to explicitly learn represen-
tations based on nontrivial multivariate Gaussian
processes.

3 Method

In this section, we will discuss the details about
the proposed method. We will start from the back-
ground knowledge of multivariate Gaussian pro-
cess. Then we will talk about how to construct
the entity and relation embeddings based on mul-
tivariate Gaussian process. Finally, the training
and inference process of the proposed approach is
explained.

3.1 Multivariate Gaussian Process
In this subsection, we will introduce the definition
of multivariate Gaussian process and some com-
mon properties. We will start from matrix Gaussian
distribution, which is the base for defining a multi-
variate Gaussian process.
Definition 1 (Matrix Gaussian Distribution). A
random matrix X ∈ Rn×p is matrix Gaussian dis-
tribution with location parameter M ∈ Rn×p and
scale parameters U ∈ Rn×n and V ∈ Rp×p if and
only if

vec(X) ∼ Nnp(vec(M),V ⊗U) (1)

where Nnp(µ,Σ) denotes multivariate Gaussian
distribution on Rn×p with mean vector µ and co-
variance matrix Σ, vec(X) denotes the vectoriza-
tion of X and ⊗ denotes the Kronecker product. In
this case, we denote

X ∼MN n×p(M,U,V) (2)

With definition of matrix Gaussian distribution,
we can define the multivariate Gaussian process.
Definition 2 (Multivariate Gaussian Process
(MGP)). f is a multivariate Gaussian process on Rp

with vector-valued mean function µ = {µj}di=1 :
Rp ⇒ Rd, kernel k : Rp × Rp ⇒ R and positive
semi-definite covariance matrix Ω ∈ Rd×d if and
only if any finite collection of variables have a joint
matrix Gaussian distribution,

[f(x1), ..., f(xn)] ∼MN d×n(M,Ω,Σ) (3)

where M ∈ Rd×n with Mij = µj(xi) and Σ ∈
Rn×n with Σij = k(xi, xj). In this case, we de-
note

f ∼MGP(µ, k,Ω) (4)



4700

3.2 Temporal Knowledge Graph Embedding
based on Multivariate Gaussian Process

In this subsection, we describe how to construct
the entity and relation embeddings based on MGP.
Without loss of generality, we can denote a tempo-
ral knowledge graph as G = {E ,R, T }, where
E , R and T are the set of entities, relations
and timestamps respectively. Given a quadruplet
(es, rp, eo, t) from E × R × E × T , the goal is to
learn temporal representations for {ei,t|ei ∈ E}
and {rj,t|rj ∈ R} and a score function f : E ×
R×E ×T ⇒ R that is maximized for quadruplets
in valid dataset D+ and minimized for quadruplets
in corrupted dataset D−.

To model the temporal correlations and uncer-
tainty simultaneous, entity or relation will be rep-
resented as a d-dim MGP on t ∈ R, where d is the
dimension of embeddings and t is time variable:

ei(t) ∼MGP(µei(t), kei(t, t
′),Ωei)

rj(t) ∼MGP(µrj (t), krj (t, t
′),Ωrj )

(5)

From Definition 2, we know that an MGP can be
fully specified by its mean function, kernel func-
tion and covariance matrix. We can define a MGP-
based entity/relation embeddings by specifying
those three components.

For the mean function, which controls the lo-
cation and evolution trend of the embedding, we
define it as a second order function of time variable
t to make it more flexible:

µei(t) = bei + αeiϕeit+ βeiψeit
2

µrj (t) = brj + αrjϕrj t+ βeiψrj t
2

(6)

where bei , brj ∈ Rd are time-irrelevant bias vectors,
αei , αrj ∈ R are scalar first-order evaluation rates,
ϕei , ϕrj ∈ Rd are first-order evaluation direction
vectors, βei , βrj ∈ R are scalar second-order eval-
uation rates and ψei , ψrj ∈ Rd are second-order
evaluation direction vectors.

For the kernel function, it controls the correlation
of the embeddings between different timestamps.
The common choices of kernel functions for GP
are various, such as white noise kernel, exponen-
tial quadratic kernel, rational quadratic kernel, etc.
Here we assume that the correlations in TKG are
mainly smooth and short-term, so we choose expo-
nential quadratic kernel as the kernel function of

TKGC-AGP. Formally we define:

kei(t, t
′) = σ2ei exp(−

∥t− t′∥2

2l2ei
)

krj (t, t
′) = σ2rj exp(−

∥t− t′∥2

2l2rj
)

(7)

For the covariance matrixes that reflect random-
ness of entity (relation) in the real world, we set
them as time-irrelevant diagonal matrixes for sim-
plification:

Ωei = diag(ωei)

Ωrj = diag(ωrj )
(8)

where ωei , ωei ∈ Rd denote the diagonal vectors of
covariance matrixes, diag(x) means making matrix
with x as diagonal.

Given a quadruple q=(es, rp, eo, t), a translation-
based score function is employed to measure the
validity:

f(q) = f(es, rp, eo, t) = DB(es,t − eo,t, rp,t)
(9)

whereDB(d, d
′) ∈ R is the Bhattacharyya distance

between distribution d and d′, es,t, eo,t, rp,t ∈ Rd

are multivariate Gaussian distribution embeddings
specific for timestamp t generated by the corre-
sponding MGP:

ei,t = Nd(µei(t),Ωei)

rj,t = Nd(µrj (t),Ωrj )
(10)

3.3 Approximation of MGPs and Training
In this subsection, we will describe the learning
process of TKGC-AGP. To improve the robustness
of training, it is common to train the model based
on the valid dataset D+ as well as a corrupted
dataset D− (Leblay and Chekol, 2018; Dasgupta
et al., 2018). Following (Xu et al., 2019), a valid
quadruple (s, p, o, t) is randomly corrupted by re-
placing the subject or object with a sampled entity
from E to construct the corrupted dataset D−. A
common learning objective of probabilistic method
is to maximize the joint likelihood of the data and
the parameters, which is

p(D+, D−, E,R)

= p(D+, D−|E,R) · p(E) · p(R)

=
∏
t∈T

∏
q∈D+

t

∏
q′∈D−

t

σ(γ − f(q))σ(−γ + f(q′))

∏
ei∈E

p(ei)
∏
ri∈R

p(rj)

(11)
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where E,R are the set of entity and relation em-
beddings respectively, σ(·) is Sigmoid function and
γ is margin parameter. However, it is intractable
to calculate the joint distribution p(ei) or p(rj) be-
cause they have a joint matrix Gaussian distribution
over all possible timestamps t. That is,

p(ei) = p(ei,1, ei,2, ..., ei,t)

p(rj) = p(rj,1, rj,2, ..., rj,t)
(12)

To approximate these joint distributions, we take
a first-order Markov assumption that the current
state of one entity or relation embedding is only
depended on the last state of it. That is,

p(ei,t|ei,t−1, ei,t−2, ..., ei,1) = p(ei,t|ei,t−1) (13)

To approximate the joint distributions of the entity
or relation at adjacent timestamps p(ei,t, ei,t+1) or
p(rj,t, rj,t+1), we further approximate the effect
of this likelihood with a l2 norm between kernel
function kei(t, t + 1) or krj (t, t + 1) and the dis-
tances between their embeddings at the adjacent
timestamps DB(ei,t, ei,t+1) or DB(rj,t, rj,t+1).

Then the learning objective can be transformed
in minimizing the approximated negative log likeli-
hood, which could be decomposed into four parts,

l1 =
∑
t∈T

∑
q∈D+

t

−logσ(γ − f(q))

l2 =
∑
t∈T

∑
q′∈D−

t

−logσ(−γ + f(q′))

l3 =
∑
t∈T

∑
ei∈E
∥DB(ei,t, ei,t+1)− kei(t, t+ 1)∥2

l4 =
∑
t∈T

∑
rj∈R

∥∥DB(rj,t, rj,t+1)− krj (t, t+ 1)
∥∥2

(14)

where l1, l2 are the losses for valid dataset D+ and
corrupted dataset D−, l3, l4 are the approximations
to the log likelihood for entity and relation embed-
dings. We train the model by adding those losses
together.

l = l1 + λ2 · l2 + λ3 · l3 + λ4 · l4 (15)

where λ2, λ3, λ4 are weights for losses.
To align the embedding across time, inspired by

(Kumar et al., 2019), we further propose a time-
batch training strategy, which takes the data be-
tween timestamp t and timestamp t+ L as a batch,
where L is the length of time window. The de-
tailed learning algorithm of TKGC-AGP is shown
in Algorithm 1.

Algorithm 1 Training of TKGC-AGP
Input: the entity set E , the relation setR, the

arranged timestamp set T , the valid dataset D+,
the negative sample rate η, the number of epoch
n, the margin γ, the embedding dimension d, the
length of time window L.

Output: the parameters for TKGC-AGP P =
{b, α, ϕ, β, ψ, σ, l, ω}.

1: randomly initialize P
2: for i = 1, · · · , n do
3: for t′ ∈ T do
4: D+

t ← {q = (es, rp, eo, t)|t ∈ [t′, t′ +
L], q ∈ D+}

5: for (es, rp, eo, t) ∈ D+
t do

6: D−
t = +{(eks , rp, eko , t)}k=1,··· ,η

7: end for
8: Update P = {b, α, ϕ, β, ψ, σ, l, ω}

w.r.t. Loss l
9: end for

10: end for

3.4 Complexity Analysis
Though the structure of TKGC-AGP is com-
plex, as shown in Table 1, the space complex-
ity and time complexity of TKGC-AGP remains
the same as that of most of static and temporal
KGE methods. For the space complexity, the
parameter space of TKGC-AGP comprises P =
{b, α, ϕ, β, ψ, σ, l, ω}. So the total number of pa-
rameters of TKGC-AGP is 8 × (|E| + |R|) × d.
Since the length of time window is constant, the
time complexity is also constant with embedding
dimension d.

Method Space complexity Time complexity

TransE O(|E|d+ |R|d) O(d)
ComplEx O(|E|d+ |R|d) O(d)

TTransE O(|E|d+ |R|d+ |T |d) O(d)
DE-SimplE O(|E|d+ |R|d) O(d)
ATiSE O(|E|d+ |R|d) O(d)

TKGC-AGP O(|E|d+ |R|d) O(d)

Table 1: Complexity analysis of some existing methods.

4 Experiments

In this section, we perform extensive experiments
on link prediction to investigate the effectiveness
of TKGC-AGP on two real-world TKG datasets
compared to some state-of-the-art KGE methods
and TKGC methods.
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4.1 Dataset

Two standard benchmark datasets, ICEWS-14 and
ICEWS05-15, for TKGC are employed for experi-
ments, which are two subsets of the Integrated Cri-
sis Early Warning System (ICEWS) dataset (Laut-
enschlager et al., 2015). ICEWS-14 includes events
happened in 2014 while ICEWS05-15 includes
events happened between 2005 to 2015. The fact
stored in ICEWS follows the form (s, p, o, t) with
specific time point, such as (Barack Obama, in-
vestigate, Iraq, 2008-07-21). Following (Xu et al.,
2019), we employ the filtered version of ICEWS-
14 and ICEWS05-15. The detailed statistics of two
datasets are listed in Table 2.

Dataset ICEWS-14 ICEWS05-15

# Entities 6,869 10,094
# Relations 230 251
# Timestamps 365 4,017

# Training 72,826 368,962
# Validation 8,941 46,275
# Test 8,963 46,092

Table 2: Dataset statistics.

4.2 Baselines

We compare TKGC-AGP with the following base-
lines:

• TransE (Bordes et al., 2013): static method
that considers relation as a translation between
entities in the embedding space.

• DistMult (Yang et al., 2015): static method
that deals with the problem of symmetric rela-
tion with a bilinear objective function.

• CompleEx (Trouillon et al., 2016): static
method that maps entities and relations into
complex space with tensor factorization tech-
nique.

• RotatE (Sun et al., 2019): static method that
regards relation as the rotation in the complex
space.

• TTransE (Leblay and Chekol, 2018): tem-
poral method that extend TransE to TKG by
mapping each timestamp as specific embed-
ding.

• HyTE (Dasgupta et al., 2018): temporal
method that extend TransH (Wang et al., 2014)
to TKG by learning time-specific hpyerplanes.

• TA-TransE (García-Durán et al., 2018): tem-
poral method that employs a LSTM to encode
the time information into relation representa-
tions.

• DE-SimplE (Goel et al., 2020): tempo-
ral method that represents entities with di-
achronic embeddings.

• ATiSE (Xu et al., 2019): temporal method
that maps entities and relations as additive
time series with Gaussian white noise.

4.3 Evaluation Metrics

In the link prediction experiment, following the pre-
vious literature (Goel et al., 2020), for each valid
quadruple (es, rp, eo, t) in validation and test set,
we generate query by masking the subject entity or
object entity of it. Then we rank all the possible
entities by filling the missing entity with candidate
entity. Followed by previous work(Xu et al., 2019),
we employ two kinds of metrics to evaluate the per-
formance of all the methods, the Mean Reciprocal
Rank (MRR), which is the average of reciprocal
of the rank of golden entity and Hit@K, which is
the frequency that the rank of golden entity is no
greater than K.

4.4 Implementation Details

TKGC-AGP is implemented with PyTorch (Paszke
et al., 2019). Part of results are taken from (Goel
et al., 2020; Xu et al., 2019). The embeddings
are trained with ADAM optimizer (Kingma and
Ba, 2015) with learning rate = 0.001, maximum
epoch = 1000, negative sample rate = 5, dimension
of embedding = 100, length of time window = 3,
margin = 1. All vector parameters are normalized
to have unit l-2 norm.

4.5 Link Prediction Results

The link prediction results on the two dataset
are shown in Table 3. It can be observed: 1)
Some static methods outperform the temporal meth-
ods. For example, the performances of ComplEx
and DistMulti are generally better than those of
TTransE and HyTE. Capturing the basic structure
of knowledge graph is still important for TKGC.
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ICEWS14 ICEWS05-15
Metrics MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
TransE 0.280 0.094 - 0.637 0.294 0.090 - 0.663

DistMult 0.439 0.323 - 0.672 0.456 0.337 - 0.691
ComplEx 0.467 0.347 0.527 0.716 0.481 0.362 0.535 0.729
TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616

HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681
TA-TransE 0.275 0.095 - 0.625 0.299 0.096 - 0.668

TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728
DE-TransE 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748

ATiSE 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794
TKGC-AGP 0.561 0.458 0.631 0.738 0.532 0.398 0.621 0.797

Table 3: Link prediction results on ICEWS14 and ICEWS05-15 datasets. Bold values indicate the best-performing
models under corresponding settings.

2) With temporal information, some KGE meth-
ods perform better on TKG. For example, DE-
SimplE and TA-DistMult generally outperform
other methods except ATiSE and TKGC-AGP. 3)
The time series or stochastic process based methods
achieve the best performance. TKGC-AGP outper-
forms ATiSE on all meatrics except Hit@10 for
ICEWS14. The improvement is mainly attributed
to the correlation modeled by the kernel function of
MGP, although ATiSE employs a Gaussian white
noise component to model temporal uncertainty.

4.6 Ablation Study
In this section, we analyze how the hyperparame-
ters and the key components of TKGC-AGP affect
the final performance. We focus on embedding
dimension, length of time window and kernel func-
tion.

4.6.1 Effect of Embedding Dimension
The embedding dimension is one of the important
hyperparameters for the representation learning
methods. On the one hand, too small embedding
dimension prevents methods to encode sufficient
information. On the other hand, too large embed-
ding dimension leads to the time and computation
overhead, which is critical for TKGC with over ten
thousands parameters. In this part, we evaluate the
performance of TKGC-AGP under different embed-
ding dimension (50, 100, 200, 300, 400, 500) on
ICEWS14 dataset. The results are shown in Figure
2.

It can observed that in general the performance
of TKGC-AGP on ICEWS14 dataset is increasing
at first and then decreasing with peak at 100 dim.

0.4

0.5

0.6

0.7

100 200 300 400

metrics

Hit@1

Hit@10

Hit@3

MRR

Figure 2: The performances of TKGC-AGP on
ICEWS14 dataset under different embedding dimen-
sion setting.

The reason may be that when the dimension is too
small, the embeddings cannot encode sufficient
information while when the dimension is too large,
the embeddings become too sparse to learn from
the dataset. It should be pointed out that the optimal
dimension of TKGC-AGP is generally smaller than
that is other KGE or TKGC methods. It could
be attributed to the complex structure of TKGC-
AGP where there is no need for large dimension to
encode sufficient information.

4.6.2 Effect of Length of Time Window
As described in Algorithm 1, the length of time
window L is important for training TKGC-AGP.
On the one hand, too small L will result in under-
fitted correlation. On the other hand, too large
L will lead to more computational overhead and
have the risk of over-fitting. To investigate the
effect of the length of time window L on the perfor-
mance of TKGC-AGP, experiments were conduct
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Metrics MRR Hit@1 Hit@3 Hit@10

L = 1 0.551 0.439 0.627 0.733
L = 2 0.555 0.443 0.629 0.734
L = 3 0.561 0.458 0.631 0.738
L = 4 0.531 0.420 0.599 0.724
L = 5 0.526 0.415 0.595 0.727
L = 10 0.458 0.357 0.529 0.676

Table 4: The performances of TKGC-AGP with dif-
ferent lengths of time window on ICEWS14 dataset.
Bold values indicate best-performing models under cor-
responding settings.

on ICEWS14 dataset with the length of time win-
dow L among (1, 2, 3, 4, 5, 10). The results are
shown in Table 4.

From the results, we can observe that in gen-
eral the performance of TKGC-AGP on ICEWS14
dataset is firstly increasing as the length of time
window increases and then quickly saturates at
L = 3. It might be explained by the processing of
TKGC-AGP from under-fitting to over-fitting. Es-
pecially when L = 10, the performance of TKGC-
AGP is affected seriously because of over-fitting.

4.6.3 Effect of Kernel Function
As described in Section 3.1, the kernel function
is an important component of MGP that controls
the correlation across the index set. To investi-
gate the effect of kernel function on the perfor-
mance of TKGC-AGP, we perform experiments on
ICEWS14 dataset with the following kernel func-
tions besides exponential quadratic kernel. The
results are shown in Table 5.

• White noise kernel, which means any two
points from MGP are uncorrelated.

k(t, t′) = σ2In (16)

• Exponential quadratic kernel, a smooth cor-
relation decreasing with the distance between
two points.

k(t, t′) = σ2exp(−∥t− t
′∥2

2l2
) (17)

• Rational quadratic kernel, which is similar
to the exponential quadratic, when α → ∞,
the rational quadratic kernel converges into
the exponential quadratic kernel.

k(t, t′) = σ2(1 +
∥t− t′∥2

2αl2
)−α (18)

Metrics MRR Hit@1 Hit@3 Hit@10

TKGC-AGP-E 0.561 0.458 0.631 0.738
TKGC-AGP-W 0.548 0.435 0.626 0.732
TKGC-AGP-R 0.559 0.460 0.627 0.735
TKGC-AGP-P 0.479 0.370 0.532 0.685

Table 5: The performances of TKGC-AGP on ICEWS14
dataset with different kernel functions. Bold values
indicate best-performing models under corresponding
settings. -E, -W, -R, -P denotes TKGC-AGP with ex-
ponential quadratic kernel, white noise kernel, rational
quadratic kernel and periodic kernel respectively.

• Periodic kernel, which allows to model pe-
riodic functions, where p denotes the period.

k(t, t′) = σ2exp(− 2

l2
sin2(π

∥t− t′∥
p

)) (19)

It can be observed that TKGC-AGP with expo-
nential quadratic kernel achieves the best perfor-
mance. It should be pointed out that ATiSE (Xu
et al., 2019) can be considered as a MGP-based
method with white noise kernel. With white noise
kernel, TKGC-AGP is similar to ATiSE. Therefore
their performances are also very similar. Since
rational quadratic kernel is very similar to exponen-
tial quadratic kernel, the performances of TKGC-
AGP-E and TKGC-AGP-R are also very similar.
For periodic kernel, it has the worst performance,
we attribute this to little periodic pattern in the ex-
periment dataset.

5 Conclusion

In this paper, we proposed TKGC-AGP, a novel
temporal knowledge graph completion method
based on approximated Gaussian process embed-
dings. With the flexibility and capacity, we can
naturally model the global trends of entity and rela-
tion embeddings as well as the surging local fluc-
tuations. Moreover, the temporal uncertainties can
be also naturally modeled with the kernel function
and corvariance matrix of MGP. To training TKGC-
AGP, we employ the fisrt-order Markov assump-
tion to approximate the joint distribution of MGP as
well as a time-batch-based training strategy to align
the embeddings across the time. The experimental
results demonstrate that the proposed method out-
perform various static and temporal KGE baselines.
Further work could be done by taking a Bayesian
perspective to learn the proposed method.
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