
Proceedings of the 29th International Conference on Computational Linguistics, pages 4640–4650
October 12–17, 2022.

4640

MockingBERT: A Method for Retroactively Adding Resilience to NLP
Models∗

Jan Jezabek
Hedgefrog Software LLC

jjezabek@hedgefrogsoft.com

Akash Singh
Salesforce Inc.

singh.akash@salesforce.com

Abstract

Protecting NLP models against misspellings
whether accidental or adversarial has been the
object of research interest for the past few years.
Existing remediations have typically either
compromised accuracy or required full model
re-training with each new class of attacks. We
propose a novel method of retroactively adding
resilience to misspellings to transformer-based
NLP models. This robustness can be achieved
without the need for re-training of the original
NLP model and with only a minimal loss of
language understanding performance on inputs
without misspellings. Additionally we propose
a new efficient approximate method of gener-
ating adversarial misspellings, which consid-
erably reduces the cost needed to evaluate a
model’s resilience to adversarial attacks.

1 Introduction

While artificial neural networks have been able to
achieve human level performance on many real-
world tasks, they sometimes fail in surprising ways.
(Szegedy et al., 2013) showed that state of the art
computer vision models can be fooled into mis-
classifying objects with only limited perturbations
imperceptible to human viewers. Along similar
lines, it was shown in (Pruthi et al., 2019) that very
constrained attacks can successfully trick classifica-
tion algorithms into making incorrect predictions.
In fact such attacks have been used for a long time,
chiefly for evading spam classifiers while remain-
ing legible to human readers.

Protecting against such misspellings, whether
accidental or intentional, has been a focus of re-
search in the NLP field for many years (Lee and
Ng, 2005). Recently, defenses suggested by (Pruthi

*MockingBERT is a reference to mockingbirds, a group
of birds known for mimicking the sounds of other animals.
The code for reproducing our results as well as instructions
for obtaining the trained models are available at https://
github.com/akash13singh/resilient_nlp/.

et al., 2019) and (Jones et al., 2020) can par-
tially remediate adversarial attacks by adding a
pre-processing step, at the cost of a drop in classi-
fication performance. (Liu et al., 2020) proposed
replacing a fixed word embeddings with trained
character-based ones and observed improved re-
silience to adversarial attacks.

In existing systems a tension exists between
modularity and accuracy. (Pruthi et al., 2019) and
(Jones et al., 2020) propose fully modular systems
that are completely oblivious of the downstream
language understanding model. This provides ex-
plainability (by providing a verbatim sequence of
corrected tokens) but comes at a cost of reduced
accuracy on unperturbed inputs. Additionally there
is an added drawback of not being able to preserve
potential ambiguity present in the input, making
these systems ‘destructive’. Conversely, (Liu et al.,
2020) is able to represent ambiguous inputs, how-
ever at the cost of losing modularity.

Our central hypothesis is that original accuracy
can be preserved while at the same time ensuring
modularity. In particular we show that existing clas-
sifiers based on BERT and RoBERTa, two widely
used pre-trained models, can be retroactively made
resilient to perturbations even if only unperturbed
data was used during the initial finetuning. This
can be done by replacing the heuristic subword
tokenizer and token embedding with a machine
learned replacement which we call MockingBERT.
The MockingBERT tokenizer and embedder learns
to mimic a transformer model’s tokenization and
layer 0 embedding mechanism while providing re-
silience to input perturbations.

We evaluate the performance of such models
when trained on both unperturbed and perturbed
training sets to understand their suitability for data
augmentation. We perform a comparative analysis
with the methods proposed in (Jones et al., 2020),
as well as with a regular finetuned BERT model
trained with data augmentation.

https://github.com/akash13singh/resilient_nlp/
https://github.com/akash13singh/resilient_nlp/

4641

We also propose and evaluate WORDSCOREAT-
TACK, an efficient and effective method for gen-
erating adversarial samples without the need for
exhaustively considering all possible perturbations.
WORDSCOREATTACK works by carefully choos-
ing information bearing words in the input text.
This provides a much faster alternative to the ex-
haustive method proposed by (Pruthi et al., 2019) at
the cost of perturbing a larger number of characters
in the sentence. Crucially this method requires sig-
nificantly fewer calls to the underlying NLP model,
which more closely approximates real world sce-
narios that are likely to involve rate limiting and/or
a limited query budget. We manually verify that the
outputs of this perturbation can still be classified
correctly by a human reader with a high probability.

Our central findings are that the MockingBERT
tokenizer and embedder model paired with a fine-
tuned BERT or RoBERTa classifier achieves a high
level of resilience to character-level adversarial per-
turbations when pre-trained on perturbed data. This
results in a higher accuracy on perturbed inputs on
multiple well known datasets than state of the art
methods for combating adversarial misspellings
such as the one described in (Jones et al., 2020).
Crucially, the impact on accuracy for unperturbed
inputs, while measurable, is noticeably lower than
for comparable methods for protecting against ad-
versarial attacks.

Additionally, WORDSCOREATTACK signifi-
cantly reduces the number of model queries re-
quired to find adversarial inputs. This dramatically
speeds up evaluation, while also making the attack
more practical in real scenarios.

2 Related Work

Previous research has explored both adversarial
attacks against NLP systems as well as possible
defenses. This section gives a brief overview of
related work and concepts.

2.1 Adversarial Attacks

(Pruthi et al., 2019) proposes an attack that exhaus-
tively searches for a modification of up to two char-
acters with the intent of causing a wrong predic-
tion. The allowed modifications are from a narrow
set: Adding or deleting a single internal charac-
ter, swapping two neighboring internal characters
or replacing an internal character with one of its
neighbors in the QWERTY keyboard layout. This
choice of perturbations was based on linguistic re-

search which suggests that modifications to internal
characters in a word do not significantly hinder leg-
ibility for a human reader (Rawlinson, 1976).

Another approach to adversarial attacks works
by replacing individual characters with similarly
looking symbols or letters from different alphabets.
In this scenario the text remains easily understand-
able to the reader even in the presence of a large
number of misspellings (Eger et al., 2019; Sokolov
et al., 2020).

2.2 Defenses Against Attacks
In addition to the attack described previously,
(Pruthi et al., 2019) proposes a remediation in
the form of a subcharacter recurrent neural net-
work (ScRNN), which attempts to reverse any per-
turbations present in the input sentence. (Jones
et al., 2020) proposes a system named RobEn that
clusters misspellings of vocabulary words with a
bounded edit distance and maps them to the most
frequent word in the cluster. This approach works
even in the case where every word in the sentence
is misspelled, at the cost of reduced accuracy on
unperturbed inputs.

Both of these approaches are highly modular,
i.e. they can be used with any language under-
standing model as a preprocessing step. In con-
trast (Liu et al., 2020) proposes joinly training a
character-based word embedder and the main NLP
model. A similar approach is also considered in
(El Boukkouri et al., 2020) where a character-level
word embedding is passed to a transformer model
with a number of parameters similar to BERT. Fi-
nally, (Provilkov et al., 2020) proposes a modifica-
tion to the BPE tokenization procedure commonly
used in transformer models, using a mechanism
similar to dropout.

These three approaches allow the representation
of ambiguous misspellings and their handling in
the NLP model. Even in cases of architectures not
specifically aiming for resilience to misspellings,
the authors observe such resilience as a side effect
of their embedding procedure.

2.3 Alternatives to Subword Tokenization
Our research specifically targets NLP models based
on the transformer architecture (Vaswani et al.,
2017), with a focus on models derived from BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019). Such models are pre-trained on large cor-
pora of unlabeled data, and can then be adapted
(in a process known as finetuning) to many NLP

4642

tasks. This substantially reduces the amount of data
needed for each individual task.

An important aspect of understanding BERT is
that it uses the WordPiece subword tokenization
(Wu et al., 2016) process. This means that while
common words are typically mapped to a single
token, uncommon or invented words can still be
represented by a sequence of tokens without the
need to resort to a catch-all token (typically denoted
as UNK). During the operation of the transformer
model, tokens corresponding to subwords are first
represented as context-free vectors of numbers (that
had been learned during training), with subsequent
layers incrementally adding contextual information
from other tokens using the self-attention mecha-
nism.

There are known alternatives to subword em-
beddings that are similarly able to avoid emitting
out-of-vocabulary tokens. One prominent example
is ELMo (Peters et al., 2018), which uses character-
level embeddings in addition to a word’s surround-
ing context to come up with an embedding for a
particular word in a sentence. Similar techniques
have been successfully used with transformer based
models (El Boukkouri et al., 2020; Ma et al., 2020).

The tokenization schemes described so far all
rely on whitespace tokenization, which means they
are likely to be susceptible to adversarial attacks
that insert or remove whitespace. In contrast some
recent transformer based models avoid using heuris-
tic tokenizers altogether while still using a compa-
rable number of parameters to BERT (Clark et al.,
2022), (Tay et al., 2021). This is achieved by us-
ing a convolution-like process to map the sequence
of input characters to embeddings before passing
them to the transformer blocks.

3 Data

For training the MockingBERT tokenizer and em-
bedder we use the unlabeled BookCorpus dataset
(Zhu et al., 2015), with minimal pre-processing
to reverse the existing tokenization present in that
dataset. The goal is to utilize textual data that is as
close as possible to unprocessed text.

For evaluation purposes we use the Large
Movie Review (IMDb) dataset (Maas et al., 2011),
the Stanford Sentiment Treebank (SST) dataset
(Socher et al., 2013) and the Large Yelp Review
dataset (Zhang et al., 2015). For the latter two
datasets we use both the 2-class (binary) and 5-
class variants. We subsequently refer to these

datasets as IMDb, SST-2, SST-5, Yelp-2 and Yelp-
5.

For each task we evaluate each model’s accuracy
on a randomly chosen subset of 500 sentences from
each dataset’s test set. The reason for the limited
size of the test set is that adversarial attacks require
potentially hundreds of model inferences for each
sentence to find a successful perturbation.

4 Models

We propose a model, MockingBERT, that can be
used in place of a transformer model’s tokenizer
and word embedding. The model consists of a
character embedding layer that transforms each in-
put character into a numeric vector of size 768.
Characters are converted to lower case before em-
bedding, but no other preprocessing is done (e.g.
no special handling for whitespace or punctuation).
The layer is followed by three stacked bidirectional
LSTM layers, with a hidden size of 768. The final
LSTM layer is connected to two parallel dense lay-
ers: The subword boundary detection layer and the
subword embedding layer (Figure 1). The subword
boundary detection layer uses a sigmoid activation
function and has an output dimension of 1. The
subword embedding layer uses hyperbolic tangent
as its activation function and has an output dimen-
sion of 768, matching the subword embedding size
of both BERT Base and RoBERTa Base.

The model is trained with two objectives. The
first objective is a character-level sequence clas-
sification task. The subword boundary detection
layer is used as a classifier. For every input charac-
ter it predicts whether the character is a subword
boundary, i.e. the last character of a subword. The
second objective is a regression task where the sub-
word embedding layer outputs the embedding for
each subword. The embeddings are only used for
input characters deemed to be subword boundaries.
For non-boundary characters the embeddings are
discarded by using a mask.

The tokenizer and embedder model is trained
on sentences from BookCorpus (Zhu et al., 2015).
During training an unperturbed sentence is pro-
cessed by the transformer model’s regular tokenizer
and its context free word embedding (trained layer
0 embeddings without the position and segmen-
tation embeddings). This gives us the subword
boundaries and embeddings which are used as la-
bels to train the model. The sentence may sub-
sequently be perturbed by adding or deleting a

4643

Figure 1: Structure of the MockingBERT tokenizer and embedder. In this example the phrase ‘My hovercraft’
is split into five tokens. An embeddings is only used if the corresponding subword boundary is detected with
confidence of at least 0.5.

character, swapping two neighboring characters,
inserting whitespace in the middle of long words,
or removing whitespace between two words. The
subword boundaries are updated accordingly. In
the case of character deletion, special handling is
present for characters that are subword boundaries.
In this case the immediately preceding character
is marked as a subword boundary. In the uncom-
mon case when the preceding character is already a
subword boundary, the embedding for the deleted
character is simply discarded. In our opinion this
situation is sufficiently rare that it does not warrant
adding more complexity to the models.

When training, we can choose which context-
free subword embedding MockingBERT will ap-
proximate:

• We can target the embedding of the generic
(that is not finetuned) BERT or RoBERTa
model. An advantage of this is that the trained
MockingBERT embedder is independent of
the finetuned task.

• Alternatively we can target the embedding of
a finetuned transformer model. In this case the
MockingBERT instance is no longer task ag-
nostic, but can potentially better match the em-
beddings expected by the transformer model.

In our experiments we evaluate both of these ap-
proaches to understand the tradeoffs.

The models are trained on 64000 randomly se-
lected sentences from BookCorpus for 5 epochs.
The loss function is a combination of the mean
squared error (MSE) losses for the subword bound-
ary detection task and for the embedding prediction

task. MSE was chosen since it can be applied both
for subword boundary detection (classification) and
embedding prediction (regression). The loss values
for the two components are scaled to have the same
magnitude. This is to prevent one of the subtasks
from dominating the other one during training.

When training on perturbed data and targeting
generic embeddings for BERT and RoBERTa, the
models achieved accuracies for the subword bound-
ary detection task of 99.30% and 99.25% respec-
tively on a held-out evaluation set.

During evaluation and inference, the input text
is converted to lower case and the characters are
embedded as a 768-dimensional vector representa-
tion. Subsequently the MockingBERT model is ex-
ecuted to obtain subword embeddings for the input
sequence. The embeddings are then bookended by
the fixed representations of the transformer’s spe-
cial tokens, [CLS] and [SEP] in the case of BERT
and <s> and </s> for RoBERTa. Finally, the se-
quences of embeddings are passed to the finetuned
transformer model.

The transformer models are based on the pre-
trained BERT Base and RoBERTa Base models
and finetuned using the HuggingFace Transformers
package (Wolf et al., 2020).

For finetuning we attach a linear layer on top
of the [CLS] (for BERT) or <s> (for RoBERTa)
output embedding, and train the entire model using
cross-entropy loss. We restrict the sequence length
to 128 tokens, and the model is trained with a batch-
size of 32, learning rate of 2e-05, for up to 5 epochs.
We used an early stopping patience of 10, evaluated
every 100 training steps.

4644

5 Proposed Attacks

We propose WORDSCOREATTACK , a cost effec-
tive way to generate adversarial attacks which can
occur in an real-world setting. Typically trained
models are hosted and exposed through an API
and the users including adversaries can only query
the models by sending input and receiving output.
Thus we only focus on black-box attacks, where
one does not have access to the trained model.

WORDSCOREATTACK intelligently selects input
words to perturb in order to maximize the chances
of finding an adversarial example with the mini-
mum number of perturbations. This is achieved by
computing corpus specific word scores which are
based on per-word conditional class probabilities
for the corpus. For a binary classification task we
compute the log likelihood of each word as shown
in equations 1 to 3, where freqpos, freqneg are the
frequencies of the word in positive and negative
classes respectively. Npos, Nneg are the total words
in the positive and negative corpus and V is the to-
tal vocabulary size. We remove stop words and low
frequency words before computing word scores. In
the case of multi-class classification, for each class
a separate score is computed by considering that
class as positive and combining all other classes
into the negative class.

word_score = log(
P (wordpos)

P (wordneg)
) (1)

P (wordpos) =
freqpos + 1

Npos + V
(2)

P (wordneg) =
freqneg + 1

Nneg + V
(3)

Given an input text and the original predicted
class, WORDSCOREATTACK targets words in the
input text which have the highest scores for the
given class and perturbs them in the decreasing or-
der of scores, until the model prediction is flipped.
Our hypothesis here is that the words with the high-
est scores are critical to the model’s predictions
and perturbing them can fool the model to make
the wrong classification.

We impose a query budget setting expressed
by two parameters: (max_words_to_perturb,
max_tries_per_word). The first one denotes the
maximum number of words that can be perturbed
for each input text. The second parameter denotes
the number of perturbation attempts allowed per
word. When the max_tries_per_word for a word

are exhausted and do not yield a successful attack,
the attack greedily preserves the perturbation that
decreases the model confidence the most (i.e. the
one with the lowest score for the original predicted
class) and moves to the next word in the order
of word scores. The maximum number of model
queries per input text are max_words_to_perturb *
max_tries_per_word.

In order to mimic real world misspellings, we
only allow one perturbation per input word. The
perturbations considered are adding or deleting
a character, swapping of adjacent characters, as
well as splitting of a word (adding whitespace) and
merging of adjacent words (deleting whitespace).
Furthermore for the non-whitespace perturbations,
only the internal letters of a word are perturbed, and
the first and last letters remain unmodified. This
ensures the perturbed text can be comprehended by
humans (Rawlinson, 1976; Pruthi et al., 2019).

Though we allow one perturbation per word,
multiple words per input text can be perturbed until
a successful attack is found. This is in contrast
to (Pruthi et al., 2019), where the authors do an
exhaustive search to find a single character pertur-
bation that flips the model prediction.

The design goal for WORDSCOREATTACK is
to find an adversarial perturbation with a signifi-
cantly lower query budget compared to an exhaus-
tive search. This is done with the objective of con-
structing a practical framework for both simulating
adversarial attacks to analyse model resilience as
well as for constructing adversarial samples for
data augmentation and adversarial training.

6 Experiments

We evaluated each model’s performance on an un-
perturbed version of the test sets, as well as on
WORDSCOREATTACK. We also evaluated the fine-
tuned BERT model on the IMDb task using the ex-
haustive adversarial attack as described in (Pruthi
et al., 2019). TextAttack (Morris et al., 2020), a
Python framework for adversarial attacks, was used
to execute the exhaustive attacks. Due to the pro-
hibitive computational cost of this attack we were
not able to evaluate it on the other models.

We evaluated variations both including and ex-
cluding whitespace modifications. This is because
the remediations proposed in (Jones et al., 2020)
have not been specifically designed for combating
such modifications.

For WORDSCOREATTACK, we allowed the at-

4645

Model IMDb SST-2 SST-5 Yelp-2 Yelp-5
BERT
(no remediations) 88.0/60.6/58.6 91.4/42.2/38.8 56.2/5.8/5.0 95.2/71.2/70.4 61.8/27.2/25.0
with RobEn CONNCOMP 77.6/69.2/52.6 69.4/64.6/27.4 33.4/28.2/7.6 86.6/80.6/64.8 44.8/37.4/23.8
with RobEn AGGCLUST 78.6/72.0/53.8 75.8/72.6/33.8 41.0/34.6/6.0 90.4/86.4/71.0 52.4/42.6/26.0
MockingBERT with BERT
targeting generic embedding 86.8/70.6/69.0 86.2/57.0/56.8 51.6/10.8/13.2 95.2/88.6/89.8 60.0/40.8/41.0
targeting finetuned embedding 86.4/69.8/68.6 86.8/57.4/56.8 49.0/10.8/9.4 95.4/88.4/89.0 61.2/40.2/40.2
RoBERTa
(no remediations) 90.8/68.4/69.6 93.2/48.6/46.8 57.2/8.2/7.8 96.4/76.0/78.0 63.8/36.8/36.0
with RobEn CONNCOMP 68.4/62.6/56.0 75.0/70.0/37.6 33.6/30.4/5.8 88.0/80.6/68.6 50.0/41.6/31.4
with RobEn AGGCLUST 75.8/71.6/60.8 78.2/74.8/40.6 39.8/34.8/7.6 91.4/87.2/75.2 56.8/48.8/36.6
MockingBERT with RoBERTa
targeting generic embedding 87.2/75.4/77.0 88.8/62.0/62.2 52.4/16.2/15.0 96.0/88.0/88.2 62.8/47.0/47.4
targeting finetuned embedding 87.8/76.2/76.0 90.0/60.4/62.2 52.8/18.6/17.0 96.6/87.4/88.2 62.6/46.8/45.8

Table 1: For each combination of model and task we provide an accuracy score for the following three variations of
the test set: An unperturbed test set; a test set using WORDSCOREATTACK excluding whitespace modifications;
and a test set using WORDSCOREATTACK including whitespace modifications. The reason for providing a score
when excluding whitespace modifications is that some of the remediations have not been designed to counteract
whitespace perturbations.

tack to change up to ten words, with a single modi-
fication allowed per word as described in section
5. For each word, up to four attempts were made
in order to find the perturbation that decreased the
model’s confidence the most. As before, we evalu-
ated both variants that allow and disallow whites-
pace modifications.

To establish baselines, we evaluated finetuned
BERT and RoBERTa models with their default
tokenizers, both with and without data augmen-
tation. We also evaluated the CONNCOMP and
AGGCLUST approaches proposed in (Jones et al.,
2020). Accuracy is used as the primary evaluation
metric.

A second stream of experiments is focused
on evaluating the efficacy and efficiency of
WORDSCOREATTACK. We attack the BERT
model finetuned for the IMDb task and vary
the max_tokens_to_perturb from 1 to 40 and
max_tries_per_token from 1 to 4. For each set-
ting, we calculate the model accuracy on the 500
reviews in the test set. The results are shown in Fig-
ure 2. The original accuracy on the test set is 88%.
which is reduced to 26.6% in the most adversarial
setting of (40, 4).

In order to compare WORDSCOREATTACK to
the exhaustive adversarial attack of (Pruthi et al.,
2019), we evaluate a forgetful mode for WORD-
SCOREATTACK, where an unsuccessful perturba-
tion is reset when the attack moves to a new token.
In this mode, the attack tries to flip the model’s
prediction by making only one perturbation to the
input text. The results are shown in Table 2, where

0 5 10 15 20 25 30 35 40
max_tokens_to_perturb

20

30

40

50

60

70

80

m
od

el
_a

cc
ur

ac
y

(%
)

max_tries_per_token
1
2
3
4

Figure 2: WORDSCOREATTACK analysis with different
budget parameter settings.

the normal mode is denoted as WSA and the for-
getful model is denoted as WSA-Forgetful. Both
modes operate with the query budget setting of
(40,4). As expected the efficacy of the attack suf-
fers in forgetful mode, with only a 15% attack
success rate and model accuracy dropping to only
72.8% from the original 88%. The exhaustive ad-
versarial attack (Pruthi et al., 2019) on the other
hand reduces the accuracy to 66.8%. However this
comes at the expense of 1,574 queries on average
per attack compared to only 133 queries for WSA-
Forgetful. In comparison the normal mode of WSA
reduces the model accuracy to 26.6%, with an at-
tack success rate of 70% while only requiring 83
queries on average.

7 Analysis

Our experiment results (Table 1) show that Mock-
ingBERT consistently achieves the highest accu-

4646

Pruthi WSA-Forgetful WSA
Orig. Accuracy 89.6% 88% 88%
Attack Success % 25.45% 18% 70%
Final Accuracy 66.8% 72.6% 26.6%
Avg. Queries 1574 133 83

Table 2: Comparison of exhaustive attack of Pruthi,
2019 with the forgetful (WSA-Forgetful) and nor-
mal mode of WORDSCOREATTACK(WSA). Pruthi and
WSA- Forgetful are constrained to perturb only one
character per input text. The budget setting for both
WSA attacks is (40,4)

racy scores for adversarial attacks that allow whites-
pace modifications by a margin of between 5.6%
and 18.8%. When whitespace modifications are
disallowed, MockingBERT performs similarly to
RobEn, with the exception of the SST datasets
where the RobEn models achieve noticeably higher
accuracy. It should be noted that pretraining Mock-
ingBERT on adversarial data with whitespace mod-
ifications results in noticeably lower performance
on test sets without such modifications, as noted in
subsection 7.1 (Ablation Studies).

Crucially, our model’s accuracy on unperturbed
data is typically only slightly lower than when
using the standard BERT or RoBERTa tokeniza-
tion/embedding procedure, with the accuracy
scores ranging from being 0.2% better to being
4.6% worse than the standard model. This is in
contrast with RobEn, where the accuracy on unper-
turbed data is lower by between 4.8% and 17.4%.

Interestingly the version of the tokenizer that
targets default pre-trained transformer embeddings
performed slighly better overall than the version
targeting embeddings finetuned specifically for in-
dividual tasks. This suggests that a universal to-
kenizer and embedder model can be used for a
variety of tasks, with no need to adapt it specifi-
cally for each task. This hypothesis requires more
research on a wider variety of tasks.

Through our analysis of the WORDSCOREAT-
TACK, we demonstrated that it is a cost effective
way of constructing adversarial examples. It pro-
vides a flexible framework for evaluating models
under attack. As shown in Figure 2 model accu-
racy drops steadily as the max_tokens_to_perturb
is increased. Accuracy declines faster with higher
values of max_tries_per_token as more random
perturbations can be tried per token.

The cost effectiveness of the attack is borne by
the fact that the most adversarial budget setting of
(40,4) requires an average of 83 model queries and

reduces the accuracy to 26.6%. On the other the
setting of (20,1) will require at most 20 queries
on average but still reduces the model accuracy to
60%.

We wanted to construct adversarial samples such
that humans can infer the original intent without
much difficulty. Thus we considered a limited set
of perturbations with constraints such as perturbing
only one internal character per token, in addition
to adding/deleting whitespace. Two examples of
original inputs and their adversarial counterparts
are given in Table 4 in the appendix.

7.1 Ablation Studies

To understand how data augmentation impacts the
performance of MockingBERT, we have trained
and evaluated variants of our approach trained on
unperturbed training sets and on training sets where
no whitespace perturbations were allowed. As with
the main experiment we considered MockingBERT
variants mimicking both the subword embeddings
of generic (that is not finetuned) transformer mod-
els, as well as those mimicking finetuned trans-
former models. For comparison we have also fine-
tuned a standard BERT model using data augmenta-
tion using the same perturbations as when training
MockingBERT.

For experiments in this section we have used
BERT as the underlying transformer architecture
and we have evaluated it on the IMDb test set. The
results (Table 3) suggest that MockingBERT mod-
els require data augmentation to develop robustness
to attacks. Indeed without data augmentation the
accuracy of MockingBERT based models is strictly
lower than that of pure BERT models. However
MockingBERT based models trained with data aug-
mentation consistently outperform similarly trained
pure BERT models in the presence of test set per-
turbations.

Interestingly it appears that the presence of
whitespace perturbations in the training set nega-
tively affects the MockingBERT models’ accuracy
on test sets without such perturbations (74.4% vs.
70.6% for the generic embedding variant and 72.8%
vs. 69.8% for the finetuned embedding variant).
Conversely it appears that including perturbed data
when finetuning the pure BERT model improves
the model’s accuracy on unperturbed test data. A
possible explanation is that in the presence of mis-
spellings the transformer model learns to look for
multiple redundant signals for its classification, in

4647

Model IMDb
BERT
no augmentation 88.0/60.6/58.6
augmentation (incl. w/s) 88.4/53.6/55.4
MockingBERT targeting generic embedding
no augmentation 86.4/56.4/53.6
augmentation (no w/s) 87.2/74.4/60.2
augmentation (incl. w/s) 86.8/70.6/69.0
MockingBERT targeting finetuned embedding
no augmentation 86.4/57.6/55.6
augmentation (no w/s) 86.4/72.8/58.8
augmentation (incl. w/s) 86.4/69.8/68.6

Table 3: Accuracy scores for models with various data
augmentation strategies. The format is the same as in
Table 1.

a way similar to the effects of dropout.

8 Future Work

In our opinion it would be interesting to see if an
approach similar to MockingBERT would work
with other practical transformer-based models such
as T5, XLNet or ELECTRA. Due to differences in
how their tokenizers work some adaptations might
be necessary. Nevertheless we see no fundamental
issue that would prevent this approach from being
applicable for these other model architectures.

Another potentially interesting direction would
be to evaluate whether character-based transformer
models such as Canine (Clark et al., 2022), Char-
Former (Tay et al., 2021) or ByT5 (Xue et al.,
2022) are better suited to data augmentation with
character-level perturbations than subword based
transformer models. Intuitively subword based
models are not well equipped for handling mis-
spellings due to the fact that misspelled words
might end up being mapped to unrelated tokens and
that the number of possible misspellings for each to-
ken is very large. It should be noted that Mocking-
BERT has a very clean separation between the tok-
enization/embedding procedure (which provides re-
silience to misspellings) and the main transformer-
based language understanding layers. This means
that it is easy to swap out the tokenizer and em-
bedder if a new attack is devised, which may not
be trivial for purely character-based transformer
models.

9 Conclusion

We have demonstrated that our proposed Mocking-
BERT embedder is able to successfully mimic the
operation of a traditional tokenizer and embedder
as used in the BERT and RoBERTa models, with

only a modest decrease in performance on classifi-
cation tasks. In the presence of input perturbations,
MockingBERT outperforms both a data augmented
BERT model and the state of the art RobEn proce-
dure. Furthermore we have provided evidence that
a universal embedder can achieve similar results
to one that is specifically trained for a particular
finetuned embedding, suggesting that embeddings
might not need to be trained with specific tasks in
mind. We have also proposed an efficient and ef-
fective method for constructing adversarial attacks,
WORDSCOREATTACK, which allows constructing
such attacks at a fraction of the cost of an exhaus-
tive search, at the expense of possibly perturbing
more words within a sentence in order to achieve a
similar attack success rate.

Acknowledgements

The authors would like to thank prof. Christo-
pher Potts and the course facilitators and staff of
XCS224U for their support and feedback.

Akash Singh would like to thank Salesforce Inc.
for funding his participation in XCS224U.

We would like to thank the authors of the Hug-
gingFace and TextAttack packages for making
these highly useful tools freely available.

Authorship Statement

The ideas presented in this article have been jointly
developed and refined by all the authors. Akash
Singh implemented WORDSCOREATTACK, and
performed the finetuning of the BERT model as
well as the exhaustive adversarial attacks. Jan Jez-
abek implemented and trained the joint tokenizer
and embedder models, and implemented the per-
turbers and the evaluation notebook.

Impact Statement

Our main motivation for this research is to coun-
teract intentional adversarial techniques designed
to evade spam or toxic/obnoxious speech detection
systems. We think that making such systems more
robust results in more efficient moderation systems
and more civil online discourse.

That said techniques such as MockingBERT can
potentially be abused for surveillance and censor-
ship purposes, by making it harder to fool and
evade systems used for monitoring.

Similarly, WORDSCOREATTACK can make it
practical to evade text classification systems, re-

4648

gardless of whether such systems’ goals can be
considered noble or nefarious.

Training of the MockingBERT models described
in this article took slightly over 20 hours of com-
pute time on Nvidia Tesla K80 and Nvidia GeForce
GTX 1070Ti GPUs. Evaluation of the models on
WORDSCOREATTACK took 25 hours, with an ad-
ditional 50 hours of GPU time spent during devel-
opment.

References
Jonathan H Clark, Dan Garrette, Iulia Turc, and John

Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy
Liang. 2020. Robust encodings: A framework for
combating adversarial typos. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2752–2765, Online. Asso-
ciation for Computational Linguistics.

Honglak Lee and A. Ng. 2005. Spam deobfuscation
using a hidden markov model. In CEAS.

Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin,
and Yige Chen. 2020. Joint character-level word em-
bedding and adversarial stability training to defend

adversarial text. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8384–8391.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin
Wang, and Guoping Hu. 2020. CharBERT: Character-
aware pre-trained language model. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 39–50, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5582–5591, Florence, Italy. Asso-
ciation for Computational Linguistics.

Graham Ernest Rawlinson. 1976. The significance of
letter position in word recognition. Ph.D. thesis,
University of Nottingham.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.1609/aaai.v34i05.6356
https://doi.org/10.1609/aaai.v34i05.6356
https://doi.org/10.1609/aaai.v34i05.6356
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.coling-main.4
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P19-1561
https://aclanthology.org/D13-1170

4649

semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Mark Sokolov, Kehinde Olufowobi, and Nic Herndon.
2020. Visual spoofing in content-based spam detec-
tion. In 13th International Conference on Security of
Information and Networks, pages 1–5.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies

and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

A Supplemental Data

https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

4650

Original Input Adversarial Input
the hand of death most definitely rates a ten on a scale of one
to- due, in no small part, to john woo’s masterful direction,
coupled with kat’s superb cinematography: some of the
leisurely tracking shots alone are worth the price of a rental;
there are moments when this one borders on becoming an
art-house film. both james tien and sammo hung make for
the kind of villains you can’t help but love to hate. tien
is particularly good as the baddest of the bad. it’s a role
reversal the likes of which i don’t think i’ve ever seen before
(tien normally played a hero and, in fact, with his,

the hand of death most defini tely rates a ten on a scale of one
to- due, in no small part, to john woo’s mastreful direction,
coupled with kat’s supreb cinematography: some of the
leisurely tracking shots alone are worth the price of a rental;
there are moments when this one borders on becoming an
art-house film. both jtames tien and sammo hung make for
the kind of villains you can’t help but loe to hate. tien is
particularly good as the baddest of the bad. it’s a rloe reversal
the likes of which i don’t think i’ve ever seen before (tien
normally played a hero and, in fact, with his

i caught this movie right in my eye when i was passing by
a hall of posters in the nearby cinema. the tag line was sort
of confusing and immediately after reading it, i thought of
the possibility of it being similar to national lampoon’s dorm
daze. i liked that movie, aside from having a huge collection
of such genres, i decided to hit it to the cinemas right after
my exams for a tension releaser.

delightfully, i
came out smiling from cheek to cheek and had an equally
great amount of laughter at bits and points of the movie.
amanda aynes definitely kicked it off better than keira

i caughtthis movie right in my eye when i was passing by
a hlal of posters in the nearby cin ema. the tag line was
sort of confusing and immediately after reading it, i thought
of the possibility of it being similar to national lampoon’s
dorm daze. i lciked that movie, aside from having a huge
collection of such genres, i decided to hit it to the cinemas
right after my exams for a tension releaser.

delig
htfully, i came out smliing from cheek to cheek and had
an equallygreat amount of laughter at bits and points of the
movie. amanda bynes definitely kicked it off better than
keira

Table 4: Examples of original inputs with adversarial counterparts.

