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Abstract

Model explanations are crucial for the transpar-
ent, safe, and trustworthy deployment of ma-
chine learning models. The SHapley Additive
exPlanations (SHAP) framework is considered
by many to be a gold standard for local explana-
tions thanks to its solid theoretical background
and general applicability. In the years following
its publication, several variants appeared in the
literature—presenting adaptations in the core
assumptions and target applications. In this
work, we review all relevant SHAP-based inter-
pretability approaches available to date and pro-
vide instructive examples as well as recommen-
dations regarding their applicability to NLP use
cases.

1 Introduction

Several methods have been proposed to address
the issue of opacity in modern machine learning
models. Most notoriously, explanations are funda-
mental for Deep Neural Networks (DNNs) (Devlin
et al., 2019; Madsen et al., 2021; Mosca et al.,
2021) as these automatically learn millions of pa-
rameters and behave like black-boxes. Lundberg
and Lee (2017) proposes SHapley Additive exPla-
nations (SHAP), a unified local-interpretability
framework with a rigorous theoretical foundation
on the game-theoretic concept of Shapley values
(Shapley, 1953).

SHAP is nowadays considered a core contri-
bution to the field of eXplainable Artificial Intel-
ligence (XAI). Following its publication, a vari-
ety of explainability approaches based on SHAP’s
methodology has populated the literature and this
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Figure 1: This work identifies five research directions
pursued by Shapley- and SHAP-based approaches in
XAI. Each direction, together with a few notable meth-
ods as examples, has been indicated by a different color.

trend continues to grow. Some present a new ver-
sion of SHAP tailored to a certain type of input
data—e.g. graphs (Yuan et al., 2021) and text
(Chen et al., 2020)—or to specific models such
as random forests (Lundberg et al., 2018). Others,
instead, modify SHAP’s underlying assumptions—
e.g. features independence—to increase the origi-
nal framework’s flexibility for cases in which they
are too strict or overly simplistic (Frye et al., 2019).

In this work, we (1) identify five broad research
directions inspired by SHAP, (2) review available
SHAP-based (or Shapley-value-based) approaches
as members of such categories, and (3) investigate
their applicability in the domain of Natural Lan-
guage Processing (NLP).

Our work reviews 41 methods with a particu-
lar focus on their core assumptions, input require-
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ments, explanation form, and available implemen-
tations. Furthermore, we provide NLP researchers
with use-case-based recommendations and instruc-
tive examples.

2 Background

For the sake of clarity, we provide a gentle intro-
duction to Shapley values and the methods for their
estimation, most notably SHAP. All concepts will
be explained informally, resorting to formalities
when necessary.

2.1 Shapley Values
Shapley Values are a concept from game theory,
originally developed as a measure to fairly dis-
tribute a reward among a set of players contribut-
ing to a certain outcome (Shapley, 1953). In the
context of machine learning models, the players in-
volved are the input features and the outcome is the
model’s decision, Shapley values attribute an im-
portance score to each part of the input (Lundberg
and Lee, 2017).

Given the set of input features F =
{1, 2, . . . , p}, all features in a certain coalition
S ⊆ F cooperate towards the outcome val(S)—
with the default val(∅) = 0. Shapley values re-
distribute the total outcome value val(F) among
all features based on their average marginal con-
tribution across all possible coalitions S. More
specifically, feature i’s marginal contribution w.r.t.
a coalition S:

∆val(i, S) = val(S ∪ {i})− val(S)

is averaged across all S ⊆ F \ {i}. Hence, the
corresponding Shapley values ϕval(i) measures its
contribution based on the formula:

ϕval(i) =
∑

S⊆F\{i}

|S|!(p− |S| − 1|)!
p!

∆val(i, S)

Here, the coefficient |S|!(p−|S|−1|)!
p! is used as nor-

malization term based on the number of choices
for the subset S. This redistribution of the total
outcome val(F) respects the four properties of:

Efficiency: All features contributions add up to
the total outcome, i.e.

∑
i∈F ϕval(i) = val(F) .

Symmetry: If val(S ∪ {i}) = val(S ∪ {j}) for
all S ⊆ F \ {i, j}, then ϕval(i) = ϕval(j)

Dummy: If val(S ∪ {i}) = val(S) for all S ⊆
F, then ϕval(i) = 0

Additivity: In the presence of a single game with
two outcomes val1 and val2, then Shapley val-
ues are additive w.r.t. the combined outcome, i.e.
ϕval1+val2(i) = ϕval1(i) + ϕval2(i)

2.2 Shapley Values Approximation and SHAP
The idea of utilizing Shapley values to compute fea-
ture attribution scores precedes the SHAP frame-
work (Lipovetsky and Conklin, 2001; Song et al.,
2016). In this case, the outcome val of the game
is the prediction of a machine learning model f
and Shapley values ϕf (i) measure the influence
that each feature i has based on its current value.
The early literature also worked on approximation
strategies, as the exponential number of coalitions
renders the exact estimation of Shapley values un-
feasible (Štrumbelj and Kononenko, 2014; Datta
et al., 2016). The main idea from these works is to
compute ϕf (i) only for a smaller selection of sub-
sets S ⊆ F and to estimate the effect of removing
a feature by integrating over training samples. This
eliminates the need to retrain the model for each
choice of S.

The work from Lundberg and Lee (2017) in-
troduces a new perspective that unifies Shapley
value estimation with popular explainability meth-
ods such as LIME (Ribeiro et al., 2016), LRP
(Binder et al., 2016), and DeepLIFT (Shrikumar
et al., 2017). Furthermore, they propose SHAP val-
ues as a unified measure of feature importance and
prove them to be the unique solution respecting the
criteria of local accuracy, missingness, and consis-
tency. The authors contribute a library of methods
to efficiently approximate SHAP values in a variety
of settings:

KernelSHAP: Adaptation of LIME—hence
model-agnostic—to approximate SHAP values. As
it works for any model f , it cannot make any as-
sumption on its structure and is thus the slowest
within the framework.

LinearSHAP: Specific to linear models, uses
the model’s weight coefficients and optionally ac-
counts for inter-feature correlations.

DeepSHAP: Adaptation of DeepLIFT—hence
specific to neural networks–to approximate SHAP
values. Considerably faster than its model-agnostic
counterpart as it makes assumptions about the
model’s compositional nature.

While not initially presented in Lundberg and
Lee (2017), the following algorithms were later
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Figure 2: Example of explanation for sentiment analysis that can be generated with the SHAP library, e.g. with
KernelSHAP. The base value indicates the model’s average prediction. Each feature—i.e. word—contributes to the
outcome, thus justifying the difference between the average and the current outcome.

added as part of the framework:

PartitionSHAP: Faster version of KernelSHAP
that hierarchically clusters features. This hierarchy
defines feature coalitions based on their interac-
tions.

GradientSHAP: An extension of the Integrated
Gradients (IG) method (Sundararajan et al., 2017)—
again specific to neural networks—that aggregates
gradients over the difference between the expected
model output and the current output.

TreeSHAP: A fast method for computing exact
SHAP values for both trees and ensembles (Lund-
berg et al., 2020a). In comparison to KernelSHAP,
it also accounts for interactions among features.

Other minor approaches—PermutationSHAP,
SamplingSHAP, ExactSHAP, and MimicSHAP—
are also available in the official library1. To avoid
confusion, we point out that the implementations
have slightly different names: they use "Explainer"
instead of "SHAP". For instance, KernelSHAP and
DeepSHAP are implemented with the names of
KernelExplainer and DeepExplainer respectively.
Figure 2 sketches an explanation generated with
SHAP.

3 Search and Selection Criteria

As the popularity of SHAP increases, also the num-
ber of approaches based on it or directly on Shapley
values has been on the rise. In fact, ∼ 3, 200 of the
∼ 6, 900 papers citing Lundberg and Lee (2017)
are from 2021, an exponential increase when com-
pared to previous years (1563, 567, and 118)2.

Besides the papers already known to us, we
manually screened all works citing SHAP with at
least 15 citations2. This systematical search, based

1https://github.com/slundberg/shap
2All queries are performed with Google Scholar. Accessed

on 10.05.2022.

on the assumption that SHAP-based approaches
should at least reference Lundberg and Lee (2017),
helped us uncover several relevant contributions
and mitigate the selection bias induced by our pre-
vious knowledge. The threshold of 15 citations
was introduced to speed up our manual search and
to filter out works that have not received the re-
search community’s attention. To account for tem-
poral bias—i.e. that publications accumulate cita-
tions over time—we lowered the threshold to 10
for papers published in the most recent years (2021
and 2022)2. We only consider and review papers
that contributed new SHAP-based approaches and
exclude those—like (Wang, 2019) and (Antwarg
et al., 2019)—utilizing SHAP (almost) off-the-
shelf. Similarly, we exclude works such as Wang
et al. (2020) and Huber et al. (2022) utilizing Shap-
ley values for purposes not directly connected with
explainability.

4 Existing Reviews

Previous reviews like Linardatos et al. (2021),
Vilone and Longo (2020), and Madsen et al. (2021)
present extensive overviews of explainability meth-
ods, but only briefly mention SHAP and a few of
its derivates. Others—such as Covert et al. (2021),
Sundararajan and Najmi (2020), and Kumar et al.
(2020)—review some Shapley-based methods in
detail (between 5 and 9) but do not construct a
comprehensive review. Our work, in contrast, sig-
nificantly extends this range and covers more than
40 approaches.

5 Review: SHAP-Based Approaches

Several works proposed methods based on SHAP,
or more generally on Shapley values, following the
contribution from Lundberg and Lee (2017). While
the changes and variations introduced have been at
times criticized for not being as rigorous as SHAP
in following its core assumptions (Sundararajan
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and Najmi, 2020), SHAP-based methods continue
to increase in both quantity and popularity.

Our review categorizes SHAP-based approaches
available to date based on how they differ from and
how they improve on the original SHAP framework.
We identify five broad categories in the existing
literature, each one of them describing a different
research direction pursued by its members:

(C1) Tailored to Different Input Data: This cate-
gory contains approaches specialized on spe-
cific input data structures such as graphs
(Wang et al., 2021), structured text (Chen
et al., 2020), and images (Teneggi et al., 2021).
In some cases, approaches are used comple-
mentary for applications dealing with multi-
modal inputs (Wich et al., 2021; Mosca et al.,
2022b).

(C2) Explaining Different Models: Methods in
this class are specifically designed to explain
predictions from particular types of machine
learning models such as random forests (Lund-
berg et al., 2018; Labreuche and Fossier,
2018) and neural networks (Ghorbani and
Zou, 2021). Hence, these are model-specific.

(C3) Modifying Core Assumptions: SHAP treats
features as independent. Newer methods of-
fer the possibility to account for dependen-
cies between features (Frye et al., 2019) and
for causal structures behind their interactions
(Heskes et al., 2020).

(C4) Producing Different Explanations Types:
SHAP is a framework for local feature-
attribution explanations, i.e. it attributes
scores to input components based on their
instance-level contributions. Methods in this
category have a different scope and generate
explanations that convey a different type of
information. This can vary from global expla-
nations (Covert et al., 2020) to counterfactual
explanations (Singal et al., 2019) and concept
explanations (Yeh et al., 2020).

(C5) Estimating Shapley Values More Effi-
ciently: These approaches comprise alterna-
tive strategies for the approximation of Shap-
ley values. Their focus is on leveraging prior
knowledge about the data and model to im-
prove the approximation efficiency and accu-
racy (Messalas et al., 2019; Chen et al., 2018).

Clearly, these categories are not designed to be
exclusive. Therefore, an approach can fall in more
than one if it differs from SHAP in multiple aspects.
Table 1 provides an overview of all approaches with
their main characteristics. As one can observe, the
majority of approaches are identified as part of
more categories, i.e. research directions.

5.1 Approaches Tailored to Different Inputs

SHAP does not make strong assumptions on the
target model’s input. While this suggests that it is
suitable for all input types, its lack of specificity
results in limitations when applied directly to dif-
ferent inputs than tabular data.
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Figure 3: Example of hierarchical explanation that can
be generated with HEDGE (Chen et al., 2020) for a
sentiment analysis model. Each token is colored by
contribution: negative (red), neutral (yellow), and posi-
tive (green). Going one level lower represents a token-
breakdown step and thus more fine-grained Shapley
values.

For text data, only measuring each individual
feature’s effect is an oversimplification, as words
present strong interactions and their meaning and
contribution heavily rely on the context. Thus,
when it comes to text data, only considering single
words as features is quite restrictive and relevance
scores should be applied to multi-level tokens or
even to entire sentences. Hierarchical Explanation
via Divisive GEneration (HEDGE) (Chen et al.,
2020) is an example of a SHAP-based method ad-
dressing this issue for (long) texts. Based on the
weakest token interactions, it iteratively divides
the text into shorter phrases and words in a top-
down fashion. At each level, a relevance score is
attributed to each token, resulting in a hierarchical
explanation (Chen et al., 2020). PartitionSHAP,
recently added to the official SHAP repository3,
follows a similar strategy by creating hierarchical
features coalitions and measuring their interactions.

3https://github.com/slundberg/shap
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Method Categories Description NLP Applicability
/ Implementation

SHAP The original SHAP framework including the methods: Ready Off-the-Shelf
(Lundberg and Lee, 2017) KernelSHAP, LinearSHAP, DeepSHAP, etc. Python

AVA (C5) Combines the explanations of nearest Adaptable
(Bhatt et al., 2020) neighbors to explain a given instance n.a.

ASV (C1) (C3) Relaxes the symmetry axiom of Shapley values Potentially Applicable
(Frye et al., 2019) to incorporate causal structure into explanations R

BShap (C4) (C5) Baseline approach to facilitate comparison Adaptable
(Sundararajan and Najmi, 2020) between different Shapley value based methods n.a.

C- and L-Shapley (C3) (C5) Efficient feature attribution method that models data Ready Off-the-Shelf
(Chen et al., 2018) as a graph by considering only neighboring features TensorFlow

CASV (C1) (C2) Shapley value adaptation to account for counterfactuals Not Relevant
(Singal et al., 2019) (C3) (C4) by adhering to the Rubin Causal Model n.a.

Causal Shapley (C1) (C3) Computing feature importance on data with (partial) Potentially Applicable
(Heskes et al., 2020) causal ordering using Pearl’s do-calculus R

ConceptSHAP (C4) Unsupervised discover of concepts inherent to the data Ready Off-the-Shelf
(Yeh et al., 2020) and model based on Shapley values PyTorch

DASP (C3) (C5) Polynomial-time approximation of Adaptable
(Ancona et al., 2019) Shapley values in DNNs TensorFlow

Data Shapley (C4) Shapley-based importance attribution method Potentially Applicable
(Ghorbani and Zou, 2019) for individual data instances in the training set TensorFlow

DeepSHAP v2 (C2) (C5) Computes efficiently SHAP values for DNNs with Adaptable
(Chen et al., 2021) an extension to explain stacks of mixed model types n.a.

GrammarSHAP (C1) (C3) Hierarchical explanations for text inputs Adaptable
(Mosca et al., 2022a) based on the sentence grammatical structure n.a.

gSHAP (C4) Generates intuitive Shapley-based global Potentially Applicable
(Tan et al., 2018) by aggregating local explanations n.a.

h-SHAP (C1) (C5) Hierarchical implementation of Shapley values for Potentially Applicable
(Teneggi et al., 2021) their efficient computation in image data PyTorch

HEDGE (C1) (C3) Hierarchical explanations based on feature Ready Off-the-Shelf
(Chen et al., 2020) interaction detection specifically for text data PyTorch
Integrated Hessians (C5) Extension of Integrated Gradients to explain Ready Off-the-Shelf

(Janizek et al., 2021) pairwise feature interactions in NNs PyTorch
lossSHAP (C2) (C4) Obtain global explanations by aggregating Potentially Applicable

(Lundberg et al., 2020b) local explanations with TreeSHAP Python
MCDA Explainer (C1) (C2) Proposes the influence index, which is an Not Relevant

(Labreuche and Fossier, 2018) (C3) extension of Shapley values for MCDA tree models n.a.
Neuron Shapley (C2) (C4) Quantifies the contributions of single neurons to Adaptable

(Ghorbani and Zou, 2021) single predictions and overall model performance TensorFlow
R2 decomposition (C5) Feature importance attribution based on Potentially Applicable

(Redell, 2019) Shapley value variance decomposition R
Shapley Flow (C1) (C3) Enables the addition of a causal graph Potentially Applicable

(Wang et al., 2021) encoding relationships among input features Python
SAGE (C4) (C5) Efficiently quantifies each feature’s contribution to Potentially Applicable

(Covert et al., 2020) the model’s performance for global explainability Python
SealSHAP (C4) Shapley-based usefulness measure of individual Ready Off-the-Shelf

(Parvez and Chang, 2021) data sources for transfer learning TensorFlow
Shap-C (C4) (C5) Combination of computing counterfactuals and Potentially Applicable

(Ramon et al., 2019) Shapley Values Python
Shapley Residuals (C4) Captures information lost by KernelSHAP in Shapley Potentially Applicable

(Kumar et al., 2021) Residuals, which characterize feature dependence n.a.
Shapley Taylor index (C3) (C5) Generalization of the Shapley value that attributes Potentially Applicable

(Dhamdhere et al., 2020) the model’s prediction to interactions of subsets of features n.a.
Shapr (C3) Extends KernelSHAP to handle data with dependent Potentially Applicable

(Aas et al., 2021) features and produce more realistic explanations R
SPVIM (C4) (C5) Global variable importance measure using an efficient Not Relevant

(Williamson and Feng, 2020) regression-based Shapley value estimator Python and R
SubgraphX (C1) (C2) Explain GNNs by identifying important subgraphs Not Relevant

(Yuan et al., 2021) (C5) using Shapley values as importance measures PyTorch
SurrogateSHAP (C5) An XGBoost tree model is trained as a surrogate model Potentially Applicable

(Messalas et al., 2019) on the target model and TreeSHAP is applied to explain it n.a.
TreeSHAP (C2) (C5) Fast and exact method to estimate SHAP values Potentially Applicable

(Lundberg et al., 2018) for tree models and ensembles of trees Python
TimeSHAP (C1) (C2) Adapts KernelSHAP to sequential data and Potentially Applicable

(Bento et al., 2021) (C4 ) produces feature, event and cell-wise explanations n.a.

Table 1: Overview of available Shapley- and SHAP-based methods. For each method we also indicate the categories
it belongs to, its main idea and intuition, and its applicability to NLP together with the available implementations.
See 6.1 for more details about our NLP-applicability assessment.

https://github.com/slundberg/shap
https://github.com/nredell/shapFlex
https://github.com/Jianbo-Lab/LCShapley
https://gitlab.science.ru.nl/gbucur/caushapley
https://github.com/arnav-gudibande/conceptSHAP
https://github.com/marcoancona/DASP
https://github.com/amiratag/DataShapley
https://github.com/Sulam-Group/h-shap
https://github.com/UVa-NLP/HEDGE
https://github.com/suinleelab/path_explain
https://github.com/suinleelab/treeexplainer-study
https://github.com/amiratag/neuronshapley
https://github.com/nredell/shapFlex
https://github.com/nathanwang000/Shapley-Flow
https://github.com/iancovert/sage
https://github.com/rizwan09/NLPDV
https://github.com/yramon/ShapCounterfactual
https://github.com/NorskRegnesentral/shapr
https://github.com/bdwilliamson/spvim_supplementary
https://github.com/divelab/DIG
https://github.com/slundberg/shap
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Figure 3 sketches an example of a hierarchical ex-
planation for text data.

For models trained on graph data, especially
graph DNNs, Yuan et al. (2021) proposed to ex-
plain predictions by using Shapley values as a
measure of subgraph importance. The resulting
method—named SubgraphX—also captures the in-
teractions between different subgraphs.

On images, SHAP can face computational lim-
itations as the number of features, i.e. pixels, can
become extremely large. h-SHAP (Teneggi et al.,
2021) efficiently retrieves exact Shapley values
by hierarchically excluding irrelevant image areas
from the computation. This is done following the
observation that, if a certain area in the image is un-
informative, so are its constituent sub-areas, which
are therefore not worth exploring.

5.2 Approaches Explaining Different Models

Explanation methods making fewer assumptions
on the target classifier benefit from better applica-
bility as they can explain a wider range of models.
However, this can hinder explanations in terms of
accuracy, information granularity, and computa-
tional efficiency. As we have already seen in 2.2:
KernelSHAP has the key advantage of being model-
agnostic, but it is drastically more inefficient than
its DNN-specific counterpart DeepSHAP (Lund-
berg and Lee, 2017).

An example of a highly-specialized explainabil-
ity method is TreeSHAP, presented by Lundberg
et al. (2018) as an extension of the SHAP frame-
work. This approach, only applicable to decision
trees or ensembles thereof, is a highly efficient
algorithm for exact SHAP values retrieval. Not
only the approach needs considerably less compu-
tational effort than the more general variants such
as KernelSHAP, but it leverages the decision tree
structure to compute SHAP interaction values and
thus captures pairwise interactions between fea-
tures.

Ghorbani and Zou (2021) proposes Neuron Shap-
ley, a framework targeting DNN models which
is able to quantify each individual neuron’s con-
tribution to single predictions and overall model
performance. An example of the kind of explana-
tion enabled by Neuron Shapley is visualized in
figure 4. By analyzing interactions between neu-
rons and picking those which exhibit the largest
Shapley value, this method is particularly suitable
for identifying neurons responsible for biases and
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Figure 4: Sketch of a Neuron Shapley explanation for
the 768 neurons of BERT output layer (Devlin et al.,
2019). A Shapley value is assigned to each neuron
depending depending on how they contribute towards
the prediction (green) or against it (red).

vulnerabilities (Ghorbani and Zou, 2021).

5.3 Approaches Modifying Core Assumptions

Assumptions made by SHAP can be at times too
restrictive or simplistic, which can prevent explana-
tions from accessing and leveraging crucial infor-
mation such as dependency relationships between
input features. For instance, already the symmetry
property of Shapley values treats features as inde-
pendent. While this can be true in some cases, for
instance when dealing with tabular data with uncor-
related variables, it is an oversimplification when it
comes to texts, images, and more structured data.

Frye et al. (2019) introduces Asymmetric Shapley
Values (ASV), which drops the symmetry assump-
tion and enables the generation of model-agnostic
explanations incorporating any causal dependency
known to be present in the data. Similar approaches
are:

• Causal Shapley (Heskes et al., 2020), addi-
tionally requiring a partial causal ordering of
the features as input.

• Shapley Flow (Wang et al., 2021), which lever-
ages a causal graph, encoding relationships
among input features.

• Shapr (Aas et al., 2021), an extension of Ker-
nelSHAP relaxing the feature independence
assumption.
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Figure 5: Example of SAGE explanation for a sentiment
analysis model. Since the number of global features is
as large as the vocabulary, words need to be grouped
together (e.g. by similarity) to reduce the number of
features to be explained.

5.4 Approaches Producing Different
Explanation Types

The SHAP framework and many of its deriva-
tives mainly focus on generating local explanations
based on feature importance. However, the general
applicability of Shapley values combined with its
strong foundations also offers potential for differ-
ent explainability settings. More recent works have
explored the usage of Shapley values to build other
types of explanations conveying different kinds of
information about the model and the available data.

For instance, Data Shapley (Ghorbani and Zou,
2019) estimates the importance of each training
sample for a given machine learning model. Sim-
ilarly, SealSHAP (Parvez and Chang, 2021) at-
tributes usefulness scores to data sources for trans-
fer learning.

Covert et al. (2020) introduces Shapley Addi-
tive Global importancE (SAGE), an explainability
method analogous to SHAP but with a core focus
on global explainability. More in detail, SAGE is a
model-agnostic method that quantifies the predic-
tive power of each input feature for a given model
while also accounting for their interactions. An
instructive example for NLP is shown in figure 5.

Alongside local and global explainability, works
like Yeh et al. (2020) adapt the notion of Shapley
values for concept analysis (Sajjad et al., 2021).
Given a set of concepts extracted from a model,
the authors define the notion of completeness as a
measure to indicate how sufficient such concepts

are in explaining the model’s predictive behavior.
Furthermore, they propose ConceptSHAP, an un-
supervised approach able to automatically retrieve
a set of interpretable concepts without needing to
know them in advance.

5.5 Approaches Proposed for Estimation
Efficiency

While Shapley values convey useful information
about the importance or contribution of a certain in-
put component, their computation quickly becomes
infeasible as coalitions grow exponentially w.r.t. in-
put size. The SHAP framework already addresses
this issue by providing more efficient estimation
techniques. Nevertheless, later works continued to
explore improvements to further decrease the com-
putational effort necessary to produce meaningful
explanations.

Chen et al. (2018) leverage features dependen-
cies in image and text data to build two efficient
algorithms, L-Shapley and C-Shapley, for Shapley
values estimation. Their methods only consider
a subset of the possible coalitions based on the
data’s underlying graph structure, which connects
for instance adjacent words and pixels in texts and
images respectively.

SurrogateSHAP (Messalas et al., 2019), instead,
trains an XGBoost tree as a surrogate for the origi-
nal model. The surrogate is then used to generate
SHAP explanations, which considerably reduces
the computational cost compared to directly apply-
ing SHAP to the original (more complex) model.

6 Relevance for NLP Research

Large and complex neural NLP models—such as
BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020)—are used extensively in research and
industry. The trend is justified by the strong corre-
lation between models’ size and their performance
(Madsen et al., 2021; Brown et al., 2020). Natu-
rally, increasing model complexity causes a higher
demand for NLP explainability. In this section, we
match this demand to the reviewed SHAP-based
methods and provide researchers with use-case-
based recommendations.

6.1 Applicability of the Approaches

In table 1 (rightmost column), we also evaluate
each SHAP-based explainability approach based
on its applicability to neural NLP models. In this
regard, our assessment considers availability of
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implementations, suitability for text data, and con-
ceptual complexity as relevant factors. We organize
all reviewed approaches into four tiers:

• Ready Off-the-Shelf : The code is available
and is ready to be used as-is.

• Adaptable: The code is available and there are
straightforward steps for its adaptation to NLP
use cases. Alternatively, no code is available
but there are clear instructions for an ad-hoc
implementation for the NLP domain.

• Potentially Applicable: Strong assumptions
and substantial implementation work are re-
quired to apply the method to NLP.

• Not Relevant: The method is only applicable
to other domains and it does not provide any
apparent value for explaining NLP models.

6.2 Recommendations for NLP Use Cases

To build feature attribution explanations, HEDGE
(Chen et al., 2020) is arguably the most suitable
choice, as hierarchical explanations can contain
more information than their non-hierarchical coun-
terpart, e.g. generated with SHAP. The strength of
HEDGE becomes even more apparent when deal-
ing with long texts, where sentence structure is
of major relevance for the model to be explained.
L-Shapley, C-Shapley (Chen et al., 2018) and Parti-
tionSHAP can also be considered where hierarchi-
cal explanations are not necessary and very compu-
tationally efficient methods are required instead.

For model debugging, Neuron Shapley is suit-
able to identify neurons that are responsible for
unintended biases or that are particularly vulnera-
ble to adversarial attacks (Ghorbani and Zou, 2021).
Pruning these neurons can be an effective method
of alleviating such model defects (Ghorbani and
Zou, 2021). To gain a global understanding of what
the model has learned in practice, SAGE (Covert
et al., 2020) combined with word grouping pro-
vides a summary of the features—e.g. words—that
are most relevant for the model’s performance. In
this case, pruning irrelevant features can be also
tested to improve model accuracy. A similar sum-
mary can be provided by ConceptSHAP (Yeh et al.,
2020), which can compile a comprehensive list of
the concepts identified by the model in an unsuper-
vised fashion. Furthermore, ConceptSHAP can be
used to determine the amount of model variance

covered by the whole set of identified concepts
(Yeh et al., 2020).

If causal structures or dependencies present in
the text are known and can be explicitly modeled,
then methods such as ASV (Frye et al., 2019), Shap-
ley Flow (Wang et al., 2021), and Causal Shapley
(Heskes et al., 2020) can leverage such informa-
tion. For use cases involving graphs as part of
multi-modal inputs—e.g. modeling a social net-
work (Wich et al., 2021)—any of the previous meth-
ods can be combined with SubGraphX (Yuan et al.,
2021) to also produce explanations for the graph
component of the input.

When it comes to sequence-to-sequence tasks
such as question answering and machine transla-
tion, the usage of SHAP-based methods has not
been explored in depth. With a few exceptions4,
available approaches seem particularly tailored
only to classification settings. We believe this is a
strong limitation and we encourage the reader to
look for alternatives.

7 Criticisms

The usage of Shapley values for generating model
explanations has also been criticized. For instance,
Kumar et al. (2020) shows that using Shapley val-
ues for feature importance leads to mathematical
inconsistencies which can only be mitigated by
introducing further complexity like causality as-
sumptions. Moreover, the authors argue that Shap-
ley values do not represent an intuitive solution to
the human-centric goals of model explanations and
thus are only suitable in a limited range of settings.

Sundararajan and Najmi (2020), on the other
hand, criticize some Shapley-value-based methods.
In fact, while a strong case for utilizing Shapley
values can be made thanks to their uniqueness re-
sult in satisfying certain properties (see 2.1), often
methods employing them operate under different
assumptions and hence the uniqueness results loses
validity in their context.

Merrick and Taly (2020) argues that existing
SHAP-based literature focuses on the axiomatic
foundation of Shapley values and their efficient
estimation but neglects the uncertainty of the expla-
nations produced. The authors illustrate how small
differences in the underlying game formulation can
lead to sudden leaps in Shapley values and can at-
tribute a positive contribution to features that do
not play any role in the machine learning model.

4https://shap.readthedocs.io/en/latest/text_examples.html
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8 Conclusion

SHAP is a core contribution to explainable artifi-
cial intelligence and one of the most popular frame-
works for local interpretability. A considerable
amount of recent works has proposed SHAP-based
approaches, which we identify as part of five dif-
ferent yet overlapping research directions. In par-
ticular, the recent literature has worked towards
(C1) tailoring explanations to different input data,
(C2) explaining specific models, (C3) improving
the framework’s flexibility via modifying core as-
sumptions, (C4) producing different explanation
types, and (C5) estimating Shapley values more
efficiently.

This work has reviewed a total of 41 approaches
and has organized them based on the introduced cat-
egories. As expected, given the overlapping nature
of the classification, the majority of existing meth-
ods fall into multiple categories and have therefore
each made distinct contributions to the field. While
most of them are not directly applicable to NLP
settings, we identified a few that can be beneficial
for current practitioners. Furthermore, we have
compiled a list of recommendations for each NLP
use case. We also observe a severe limitation of
SHAP-based methods in terms of applicability to
sequence-to-sequence NLP tasks.

We hope our work provides NLP/XAI practition-
ers and newcomers with a comprehensive overview
of SHAP-based approaches, with references to
stimulate further investigation and future advances
in academic and industrial research.
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