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Abstract

Elastic weight consolidation (EWC, Kirk-
patrick et al. 2017) is a promising approach
to addressing catastrophic forgetting in sequen-
tial training. We find that the effect of EWC
can diminish when fine-tuning large-scale pre-
trained language models on different datasets.
We present two simple objective functions to
mitigate this problem by rescaling the com-
ponents of EWC. Experiments on natural lan-
guage inference and fact-checking tasks indi-
cate that our methods require much smaller
values for the trade-off parameters to achieve
results comparable to EWC.1

1 Introduction

New training data may arrive after we have spent
considerable time training our model on the data
at hand. A simple method for exploiting both new
and old training data is to mix them and retrain the
model from scratch. However, this mix-and-retrain
method is neither always practical nor economi-
cal, especially in academic environments where
computational resources are limited.

Sequential training is a potential alternative ap-
proach but faces a difficult challenge called catas-
trophic forgetting in which the performance on old
data drastically drops when we train a model on
new data. There exists a line of work that has ad-
dressed this challenge (Rusu et al., 2016; Li and
Hoiem, 2018; Kirkpatrick et al., 2017; Mallya et al.,
2018; He and Jaeger, 2018; Zhang et al., 2020). In
this paper, we are particularly interested in elas-
tic weight consolidation (EWC, Kirkpatrick et al.
2017), which has been shown to be helpful for do-
main adaptation (Saunders et al., 2019; Thompson
et al., 2019).

EWC adds a regularization term to the objec-
tive function to ensure that the model works well
on both new and old data. We empirically find

1Our code is available at https://github.com/
nii-yamagishilab/ewc.
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Figure 1: Accuracy vs. trade-off parameter λ. We se-
quentially fine-tune BERT (Bidirectional Encoder Rep-
resentations from Transformers, Devlin et al. 2019) on
MNLI (Williams et al., 2018) and FEVER (Thorne
et al., 2018) and evaluate performance on the balanced
dev sets. EWC starts to increase the accuracy of the
prior dataset (MNLI) when increasing λ to 105 and
yields the highest average accuracy at 107.

that EWC requires unexpectedly large values for
the trade-off parameter (λ) between the regular-
izer and the loss to be effective when applying
to pre-trained language models. Figure 1 shows
such a phenomenon in which EWC has no effect
in preventing catastrophic forgetting of the prior
dataset (MNLI) with λ in the range of [100, 104].
We have to scale λ up to [105, 107], which is an un-
usual range of hyperparameters. To the best of our
knowledge, this phenomenon has not been reported
in the literature.

We propose two simple objective functions for
mitigating the diminishing effect of EWC. Our ob-
jective functions rely on rescaling the components
of EWC. Specifically, the first objective function
involves taking the square root of the regularization
term, while the second one involves using the ab-
solute value of the gradient instead of the squared
gradient. Both of our objective functions can re-
duce the values of the trade-off parameter λ by
three to seven orders of magnitude while producing
results similar to those of the original EWC.

https://github.com/nii-yamagishilab/ewc
https://github.com/nii-yamagishilab/ewc
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2 Background

2.1 Problem formulation
We consider a supervised learning problem in
which the task is to map an input x ∈ X to a label
y ∈ Y . We need to train a model hθ : X → Y
with parameters θ ∈ Rd. Given a dataset D =
{(xi, yi)}Mi=1, we typically estimate θ on the ba-
sis of empirical risk minimization (ERM, Vapnik
1992):

JERM(θ) =
1

M

∑
(x,y)∈D

L(hθ(x), y), (1)

where L is the negative log likelihood loss:

L(hθ(x), y) = −
∑
y∈Y

1{ŷ = y} log pθ(ŷ|x).

Our base model hθ is a neural network containing
a multilayer perceptron (MLP) on top of a pre-
trained language model (e.g., BERT). Thus, we
define pθ(ŷ|x) = softmax(hθ(x)), where hθ =
MLP(BERT(x)). The model parameters θ include
those in the MLP and BERT.

2.2 Elastic weight consolidation
Elastic weight consolidation (EWC, Kirkpatrick
et al. 2017) is based on a Bayesian framework that
seeks to approximate the posterior distribution of θ
conditional on two datasets. Let D and D0 denote
the current and prior datasets, respectively. We
express the posterior distribution as:

p(θ|D,D0) =
p(θ,D,D0)

p(D,D0)
,

=
p(D|θ,D0)p(θ,D0)

p(D,D0)
,

=
p(D|θ)p(θ|D0)p(D0)

p(D)p(D0)

∝ p(D|θ)p(θ|D0), (2)

where we assume that D and D0 are conditionally
independent in the third line and ignore the constant
in the last line. Taking the log on both sizes of
Eq. (2), we have:

log p(θ|D,D0) = log p(D|θ)+log p(θ|D0). (3)

The first term on the right-hand side corresponds
to the log likelihood of D, which can be computed
using Eq. (1). The second term is intractable but
can be approximated using a second-order Taylor

expansion of the KL-divergence around the param-
eters of the previously trained model, θ0:

log p(θ|D0) ≈ 1

2
∆θ>H∆θ, (4)

where ∆θ = θ−θ0 and H is the expected negative
Hessian of the posterior distribution (Pascanu and
Bengio, 2014). Computing H is impractical. Kirk-
patrick et al. (2017) proposed approximating H
using the diagonal of the Fisher information matrix.
Let diag(f) be the diagonal matrix with diagonal
f. We estimate f with the average of the squared
gradient across some N subsamples S0:

f =
1

N

∑
(x,y)∈S0

(
∇θ0L(hθ(x), y)

)2
. (5)

Replacing H with diag(f), we can simplify Eq. (4)
as:

log p(θ|D0) ≈ 1

2

d∑
j=1

fj(θj − θ0j )2. (6)

Applying Eqs. (1) and (6) to Eq. (3), we obtain the
EWC objective:

JEWC(θ) = JERM(θ) +
λ

2

d∑
j=1

fj(θj − θ0j )2, (7)

where λ is the trade-off parameter.

3 Proposed method

As shown in Figure 1, EWC requires extremely
large values of λ to be effective. We analyze the
components of EWC and find that this problem
arises from the Fisher approximation in Eq. (5).
The diagonal element fj corresponds to the jth

element of the squared gradient with respect to
θ0. Since its training had already converged, the
values of the gradient are typically small. When
we square such a small decimal and combine it
with the squared difference between the current and
prior parameters, the final value can be vanishingly
small.2 We find that this issue is neither affected
by datasets nor pre-trained language models. In
Appendix A, we further investigate this issue on
another pre-trained language model.

We propose scaling up the Fisher approximation
by taking the square root to resolve the issue above.
We define the square root of EWC (REWC) as:

JREWC(θ) = JERM(θ) + λ
√
A+ ε, (8)

2For example, in the MNLI⇒FEVER experiment, we
find that 85.9% of non-zero fj are less than 1e-10.
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(b) AEWC

Figure 2: Accuracy vs. trade-off parameter λ of our
REWC and AEWC. Both methods begin to affect accu-
racy with much lower λ (i.e., 102 and 10−1 for REWC
and AEWC, respectively) while maintaining average
accuracies similar to EWC.

where A =
∑d

j=1 fj(θj − θ0j )2, and ε is a small
value (e.g., 10−8) for preventing the derivative of
the square root at 0.

Another solution is to use the absolute value of
the gradient instead of the squared gradient. We
define:

g =
1

N

∑
(x,y)∈S0

∣∣∇θ0L(hθ(x), y)
∣∣. (9)

Note that diag(g) is positive semi-definite (like
diag(f)) because all of its eigenvalues are greater
than or equal to 0. Replacing the squared difference
with the absolute difference yields our absolute
EWC (AEWC):

JAEWC(θ) = JERM(θ) + λ

d∑
j=1

gj |θj − θ0j |. (10)

Figure 2 shows the results of REWC and AEWC
based on the same setting as in Figure 1.

4 Experiments

4.1 Datasets

We evaluated the objective functions described in
§2 and §3 on natural language inference and fact-
checking tasks. We used six datasets pre-processed
by Schuster et al. (2021) as follows:

MNLI (Williams et al., 2018) is a multi-genre
natural language inference dataset. The task is to
determine the inference relation between two sen-
tences. Schuster et al. (2021) converted the origi-
nal labels {“entailment”, “contradiction”,“neutral”}
into {“supported”, “refuted”, “not enough info”}.

FEVER (Thorne et al., 2018) (Fact Extraction
and VERification) verifies whether a claim is sup-
ported or refuted by an evidence sentence, or de-
cides whether there is insufficient information to
make a decision.

VITC (Schuster et al., 2021) introduces the notion
of contrastive evidence to FEVER. Given a claim,
two evidence sentences that are nearly identical but
with different labels are created. Thus, the task be-
comes more challenging than that of FEVER. The
dataset contains both real and synthetic examples.
We used only the real ones in our experiments.

ADVERSARIAL (Thorne et al., 2019) is derived
from the FEVER 2.0 shared task, containing adver-
sarially created claims that aim to induce erroneous
predictions to the FEVER-trained models.

SYMMETRIC (Schuster et al., 2019) is another
dataset that challenges the FEVER-trained models.
It contains synthetically created claim-evidence
pairs designed to break models that often make
predictions using claims only without taking evi-
dence sentences into account.

TRIGGERS (Atanasova et al., 2020) contains ad-
versarial claims generated by using GPT-2 (Rad-
ford et al., 2019) given the original claims and
triggers, which are words that cause the model to
flip its prediction.

We selected λ that yields the highest average
accuracy on the development (dev) sets. To avoid a
bias towards more populated datasets (e.g., VITC),
we created our balanced dev sets by randomly se-
lecting 9,000 examples from each of the original
dev sets. Since the dev and test sets of MNLI are
identical, we split 9,000 examples from the train-
ing set to form the dev set and used the test set
for the final evaluation. Table 1 shows our dataset
statistics.
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Dataset |Train| |Dev| |Test|

MNLI 383,702 9,000 9,832
FEVER 178,059 9,000 11,710
VITC 248,953 9,000 34,481

ADVERSARIAL – – 766
SYMMETRIC – – 712
TRIGGERS – – 186

Table 1: Dataset statistics in our experiments. Bottom
three datasets contain only test sets adversarially cre-
ated for testing robustness of fact-checking models.

4.2 Training details
We implemented our base model described in §2.1
using Hugging Face’s Transformers library (Wolf
et al., 2020). Specifically, the model consists of
a two-layer MLP and BERT-base. Let x be the
input sequence (i.e., a pair of sentences in our
datasets). BERT-base encodes x into a sequence of
hidden state vectors. Following common practice,
we used the first hidden state vector of the special
classification token (i.e., [CLS]) to represent x and
fed it to the MLP followed by a softmax function.

For all experiments, we used Adafactor opti-
mizer (Shazeer and Stern, 2018) with a gradient
clipping of 1.0. Our effective batch size is 256.3

For standard training, we randomly initialized the
model parameters with N (0, 0.02)4, except for
those of BERT-base. We trained each model for
three epochs with a learning rate of 2e-5.

For sequential training, we randomly selected
1% of examples from D0 to represent S0 in Eq. (5).
We also varied the subsample size from 0.1% to
10% but did not observe significant changes in per-
formance. We initialized the current model param-
eters using the prior ones (i.e., θ0→θ). Determin-
ing a learning rate can be challenging. We used a
method analogous to the learning rate decay tech-
nique (Ng, 2017). Let α0 be the initial learning rate
and r be the number of prior training runs. We com-
puted the learning rate α for the current training
run as:

α =
1

1 + (decay_rate× r)
α0. (11)

For example, consider the case of further training
the MNLI-trained model on the FEVER dataset,
where α0 = 2e-5 and r = 1. We set decay_rate
to 1e-2 for all sequential training experiments. Us-
ing Eq. (11), the learning rate α for the current

3We used gradient accumulation with 8 batches of 32.
4This is the default setting in Transformers.
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(b) AEWC w/o gj

Figure 3: Accuracy vs. trade-off parameter λ of EWC
and AEWC without fj and gj , respectively.

run decreases to 1.98e-5. We conducted all the
experiments on NVIDIA Tesla A100 GPUs.

4.3 Results

Table 2 shows the results of various settings on the
test sets. For sequential training, conducting exper-
iments on all combinations takes time and consid-
erable resources. Thus, we chose only a representa-
tive order for the datasets in accordance with their
publication times. Since the MNLI and FEVER
datasets were published at the same time, we de-
cided to start with MNLI due to its generality.

We considered the mix-and-retrain method (∪)
with ERM as the topline setting. Unsurprisingly,
this method yields the best performance on the
prior datasets. The sequential training method (⇒)
with ERM (i.e., vanilla fine-tuning) encounters se-
vere catastrophic forgetting on the prior datasets.
Our REWC and AEWC effectively reduce the val-
ues of λ. AEWC requires the lowest λ among the
three objective functions. The performances of all
the methods seem comparable on average, but each
yields a different trade-off in accuracy between the
prior and current datasets. Regarding the training
time, AEWC is faster than REWC/EWC (though
not significant) because its computation is simpler.
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Training set Obj. λ MNLI FEVER VITC ADVER. SYM. TRIG.

MNLI ERM – 83.9±0.1 67.7±0.7 47.8±0.7 51.0±0.8 74.8±0.3 68.3±1.4
FEVER ERM – 58.8±0.2 87.4±0.1 59.7±0.1 51.4±0.7 75.3±0.2 65.4±1.4
VITC ERM – 62.5±1.0 65.1±0.5 78.2±1.2 28.9±0.5 65.8±1.2 69.1±2.8

MNLI ∪ FEVER ERM – 83.9±0.2 87.8±0.1 61.0±0.3 53.8±0.2 82.6±0.4 73.8±0.4
MNLI⇒FEVER ERM – 74.9±0.2 88.2±0.2 62.7±0.1 55.0±0.3 82.6±0.2 71.2±0.4

EWC 107 79.3±0.2 86.3±0.1 61.0±0.4 53.7±0.4 80.3±0.6 67.7±1.4

REWC 103 78.7±0.2 86.8±0.1 61.5±0.3 53.6±0.5 81.1±0.6 69.2±0.6

AEWC 100 78.7±0.2 87.2±0.1 61.9±0.3 53.9±0.4 81.3±0.4 70.5±0.4

FEVER ∪ VITC ERM – 69.0±0.4 87.5±0.1 83.3±0.3 51.0±0.2 79.0±0.7 71.5±0.8
FEVER⇒VITC ERM – 66.2±0.4 75.8±0.4 84.4±0.1 39.6±0.8 71.3±0.8 70.9±0.9

EWC 106 65.8±0.3 78.2±0.2 83.6±0.1 40.5±1.4 71.3±0.5 70.0±0.6

REWC 102 66.2±0.3 76.7±0.2 84.2±0.1 39.7±1.5 71.4±0.3 70.5±0.6

AEWC 10−1 66.3±0.4 76.3±0.2 84.3±0.1 39.5±1.4 71.4±0.4 70.6±0.6

MNLI ∪ VITC ERM – 84.0±0.1 76.8±0.2 84.3±0.1 43.8±0.6 75.5±0.6 74.6±1.9
MNLI⇒VITC ERM – 76.0±0.2 72.4±0.2 85.5±0.2 40.2±0.8 73.0±0.3 71.7±1.0

EWC 105 76.5±0.3 72.7±0.4 85.3±0.1 41.0±1.0 73.3±0.5 72.4±1.8

REWC 102 76.7±0.3 72.9±0.3 85.1±0.1 41.1±0.9 73.5±0.3 72.8±1.9

AEWC 10−1 76.4±0.2 72.7±0.4 85.3±0.1 40.7±1.1 73.3±0.4 72.8±1.9

MNLI ∪ FEVER ∪ VITC ERM – 83.8±0.2 88.1±0.1 84.6±0.1 53.5±0.6 82.6±0.4 73.2±1.0
MNLI⇒FEVER⇒VITC ERM – 75.1±0.3 79.1±0.3 85.7±0.0 44.4±0.5 75.4±0.7 74.9±0.7

EWC 106 77.5±0.3 79.1±0.2 84.0±0.2 44.2±0.4 75.1±0.5 73.3±1.6

REWC 102 76.4±0.4 77.7±0.2 85.2±0.1 42.9±0.4 74.4±0.5 73.5±0.9

AEWC 100 78.6±0.2 82.8±0.1 80.0±1.0 46.8±0.6 76.9±0.5 74.1±1.5

Table 2: Symbol ∪ denotes mixing training sets, while arrow ⇒ denotes using training sets sequentially. Gray
color highlights the effect of catastrophic forgetting on the prior dataset. Blue color emphasizes the performance
on the current dataset. Green color indicates the topline performance of the mix-and-retrain method. We ran each
experiment five times using different random seeds and report mean and standard deviation.

Obj. λ MNLI FEVER VITC

EWC 107 79.3±0.2 86.3±0.1 61.0±0.4

w/o fj 10−2 75.9±0.1 88.0±0.1 62.4±0.2

AEWC 100 78.7±0.2 87.2±0.1 61.9±0.3

w/o gj 10−5 76.1±0.2 87.6±0.1 62.1±0.2

Table 3: Ablation studies on EWC and AEWC for
MNLI⇒ FEVER. “w/o fj (or gj)” denotes omitting
the gradient component from the regularization term.

4.4 Discussion

We can interpret the EWC family as a weighted
sum of the squared (or absolute) differences be-
tween the current and prior parameters. The gra-
dient component helps suggest which parameter is
important. To examine the benefit of gradient in-
formation, we conducted ablation studies on EWC
and AEWC in the MNLI⇒ FEVER experiment.
We omitted fj and gj from Eqs. (7) and (10), re-
spectively. The remaining regularization terms re-
semble the squared `2-norm and the `1-norm that
take the prior parameters into account.

As seen in Figure 3, without the gradient com-
ponent, both methods need lower λ to affect the
accuracy of the prior dataset (MNLI). However,

improvements on the prior dataset are marginal
(∼1%) before reaching the optimal average accu-
racy compared to the original EWC and AEWC
(∼4%). Table 3 shows the ablation results on the
test sets, indicating that omitting the gradient com-
ponent yields lower accuracies on the prior dataset.
These results confirm that the gradient component
is indeed helpful.

5 Conclusion

Without realizing the diminishing effect of EWC,
we may fine-tune a pre-trained language model
with a conventional range of hyperparameters and
find no effect in combating catastrophic forgetting.
We identified a possible cause of this issue and sug-
gested two alternative objective functions, REWC
and AEWC, that yield results comparable to the
original EWC. Exploring more efficient ways for
choosing an optimal λ is part of our future work.
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A Additional results

We verified the diminishing effect of EWC on an-
other pre-trained language model, A Lite BERT
(ALBERT, Lan et al. 2020). Figure 4 shows the
results of sequential training: MNLI⇒ FEVER.
We can still see the diminishing effect of the origi-
nal EWC, while our REWC and AEWC reduce the
value of λ by three and six orders of magnitude and
produced similar results.
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Figure 4: Accuracy vs. trade-off parameter λ on
the balanced dev sets of MNLI and FEVER using
ALBERT-base (Lan et al., 2020). EWC, REWC, and
AEWC achieve highest average accuracies with λ =
106, 103, and 100, respectively.
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