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Abstract
Applying Reinforcement learning (RL) follow-
ing maximum likelihood estimation (MLE)
pre-training is a versatile method for enhanc-
ing neural machine translation (NMT) perfor-
mance. However, recent work has argued that
the gains produced by RL for NMT are mostly
due to promoting tokens that have already re-
ceived a fairly high probability in pre-training.
We hypothesize that the large action space is
a main obstacle to RL’s effectiveness in MT,
and conduct two sets of experiments that lend
support to our hypothesis. First, we find that
reducing the size of the vocabulary improves
RL’s effectiveness. Second, we find that ef-
fectively reducing the dimension of the action
space without changing the vocabulary also
yields notable improvement as evaluated by
BLEU, semantic similarity, and human evalua-
tion. Indeed, by initializing the network’s final
fully connected layer (that maps the network’s
internal dimension to the vocabulary dimen-
sion), with a layer that generalizes over similar
actions, we obtain a substantial improvement
in RL performance: 1.5 BLEU points on aver-
age.1

1 Introduction

The standard training method for sequence-to-
sequence tasks, specifically for NMT is to maxi-
mize the likelihood of a token in the target sentence,
given a gold standard prefix (henceforth, maximum
likelihood estimation or MLE). However, despite
the strong performance displayed by MLE-trained
models, this token-level objective function is lim-
ited in its ability to penalize sequence-level er-
rors and is at odds with the sequence-level eval-
uation metrics it aims to improve. One appealing
method for addressing this gap is applying pol-
icy gradient methods that allow incorporating non-
differentiable reward functions, such as the ones

1https://github.com/AsafYehudai/Reinforcement-
Learning-with-Large-Action-Spaces-for-Neural-Machine-
Translation

often used for MT evaluation (Shen et al., 2016,
see §2). For brevity, we will refer to these methods
simply as RL.

The RL training procedure consists of several
steps: (1) generating a translation with the pre-
trained MLE model, (2) computing some sequence-
level reward function, usually, one that assesses
the similarity of the generated translation and a
reference, and (3) updating the model so that its fu-
ture outputs receive higher rewards. The method’s
flexibility, as well as its ability to address the expo-
sure bias (Ranzato et al., 2016; Wang and Sennrich,
2020), makes RL an appealing avenue for improv-
ing NMT performance. However, a recent study
(C19; Choshen et al., 2019) suggests that current
RL practices are likely to improve the prediction
of target tokens only where the MLE model has al-
ready assigned that token a fairly high probability.

In this work, we observe that one main differ-
ence between NMT and other tasks in which RL
methods excel is the size of the action space. Typi-
cally, the size of the action space in NMT includes
all tokens in the vocabulary, usually tens of thou-
sands. By contrast, common RL settings have ei-
ther small discrete action spaces (e.g., Atari games
(Mnih et al., 2013)), or continuous action spaces
of low dimension (e.g., MuJoCo (Todorov et al.,
2012) and similar control problems). Intuitively,
RL takes (samples) actions and assesses their out-
come, unlike supervised learning (MLE) which
directly receives a score for all actions. Therefore,
a large action space will make RL less efficient, as
individual actions have to be sampled in order to
assess their quality. Accordingly, we experiment
with two methods for decreasing the size of the
action space and evaluate their impact on RL’s ef-
fectiveness.

We begin by decreasing the vocabulary size (or
equivalently, the number of actions), conducting
experiments in low-resource settings on translating
four languages into English, using BLEU both as
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the reward function and the evaluation metric. Our
results show that RL yields a considerably larger
performance increase (about 1 BLEU point on av-
erage) over MLE training than is achieved by RL
with the standard vocabulary size. Moreover, our
findings indicate that reducing the size of the vo-
cabulary can improve upon the MLE model even in
cases where it was not close to being correct. See
§4.

However, in some cases, it may be undesirable
or unfeasible to change the vocabulary. We there-
fore experiment with two methods that effectively,
reduce the dimensionality of the action space with-
out changing the vocabulary. We note that gener-
ally in NMT architectures, the dimensionality of
the decoder’s internal layers (henceforth, d) is sig-
nificantly smaller than the target vocabulary size
(henceforth, |VT |), which is the size of the action
space. A fully connected layer is generally used to
map the internal representation to suitable outputs.
We may therefore refer to the rows of the matrix
(parameters) of this layer, as target embeddings,
mapping the network’s internal low-dimensional
representation back to the vocabulary size, the ac-
tions. We use this term to underscore the analogy
between the network’s first embedding layer, map-
ping vectors of dimension |VT | to vectors of di-
mension d, and target embeddings that work in an
inverse fashion. Indeed, it is often the case (e.g.,
in BERT, Devlin et al., 2019) that the weights of
the source and target embeddings are shared during
training, emphasizing the relation between the two.

Using this terminology, we show in simulations
(§5.1) that when similar actions share target em-
beddings, RL is more effective. Moreover, when
target embeddings are initialized based on high-
quality embeddings (BERT’s in our case), freezing
them during RL yields further improvement still.
We obtain similar results when experimenting on
NMT. Indeed, using BERT’s embeddings for target
embeddings improves performance on the four lan-
guage pairs, and freezing them yields an additional
improvement on both MLE and RL as reported
by both automatic metrics and human evaluation.
Both initialization and freezing are novel in the con-
text of RL training for NMT. Moreover, when using
BERT’s embeddings, RL’s ability to improve per-
formance on target tokens to which the pre-trained
MLE model did not assign a high probability, is
enhanced (§5.2).

2 Background

2.1 RL in Machine Translation
RL is used in text generation (TG) for its ability
to incorporate non-differentiable signals, to tackle
the exposure bias, and to introduce sequence-level
constraints. The latter two are persistent challenges
in the development of TG systems, and have also
been addressed by non-RL methods (e.g., Zhang
et al., 2019; Ren et al., 2019). In addition, RL is
grounded within a broad theoretical and empirical
literature, which adds to its appeal.

These properties have led to much interest in
RL for TG in general (Shah et al., 2018) and NMT
in particular (Wu et al., 2018a). Numerous policy
gradient methods are commonly used, notably RE-
INFORCE (Williams, 1992), and Minimum Risk
Training (MRT; e.g., Och, 2003; Shen et al., 2016).
However, despite increasing interest and strong re-
sults, only a handful of works studied the source
of observed performance gains by RL in NLP and
its training dynamics, and some of these have sug-
gested that RL’s gains are partly due to artifacts
(Caccia et al., 2018; Choshen et al., 2019).

In a recent paper, C19 showed that existing RL
training protocols for MT (REINFORCE and MRT)
take a prohibitively long time to converge. Their
results suggest that RL practices in MT are likely
to improve performance only where the MLE pa-
rameters are already close to yielding the correct
translation. They further suggest that observed
gains may be due to effects unrelated to the train-
ing signal, but rather from changes in the shape of
the distribution curve. These results may suggest
that one of the drawbacks of RL is the uncommonly
large action space, which in TG includes all tokens
in the vocabulary, typically tens of thousands of
actions or more.

To the best of our knowledge, no previous work
considered the challenge of large action spaces in
TG, and relatively few studies considered it in dif-
ferent contexts. One line of work assumed prior
domain knowledge about the problem, and par-
titioned actions into sub-groups (Sharma et al.,
2017), or similar to our approach, embedding ac-
tions in a continuous space where some metric
over this space allows generalization over similar
actions (Dulac-Arnold et al., 2016). More recent
work proposed to learn target embeddings when
the underlying structure of the action space is apri-
ori unknown using expert demonstrations (Tennen-
holtz and Mannor, 2019; Chandak et al., 2019).
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This paper establishes that the large action
spaces are a limiting factor in the application of
RL for NMT, and propose methods to tackle this
challenge. Our techniques restrict the size of the
embedding space, either explicitly or implicitly by
using an underlying continuous representation.

2.2 Technical Background and Notation

Notation. We denote the source sentence with
X = (x1, ..., xS) and the reference sentence with
Y = (y1, ..., yT ). Given X , the network generates
a sentence in the target language Y ′ = (y′1, ..., y

′
M ).

Target tokens are taken from a vocabulary VT . Dur-
ing inference, at each step i, the probability of gen-
erating a token y′i ∈ VT is conditioned on the sen-
tence and the predicted tokens, i.e., Pθ(y′i|X, y′<i),
where θ is the model parameters. We assume there
is exactly one valid target token, the reference to-
ken, as in practice, training is done against a single
reference (Schulz et al., 2018).

NMT with RL. In RL terminology, one can
think of an NMT model as an agent, which interacts
with the environment. In this case, the environment
state consists of the previous words y′<i and the
source sentence X . At each step, the agent selects
an action according to its policy, where actions
are tokens. The policy is defined by the param-
eters of the model, i.e., the conditional probabil-
ity Pθ(y′i|y′<i, X). Reward is given only once the
agent generates a complete sequence Y ′. The stan-
dard reward for MT is the sentence level BLEU
metric (Papineni et al., 2002), matching the evalua-
tion metric. Our goal is to find the parameters that
will maximize the expected reward.

In this work, we use MRT (Och, 2003; Shen
et al., 2015), a policy gradient method adapted to
MT. The key idea of this method is to optimize at
each step a re-normalized risk, defined only over
the sampled batch. Concretely, the expected risk is
defined as:

Lrisk =
∑

u∈U(X)

R(Y, u)
P (u|X)β∑

u′∈U(X) P (u′|X)β

(1)
where u is a candidate hypothesis sentence, U(x)

is the sample of k candidate hypotheses, Y is the
reference, P is the conditional probability that
the model assigns a candidate hypothesis u given
source sentence X , β a smoothness parameter and
R is BLEU.

3 Methodology

Architecture. We use a similar setup as used by
Wieting et al. (2019), adapting their fairSeq-based
(Ott et al., 2019) codebase to our purposes.2 Simi-
lar to their Transformer architecture we use gated
convolutional encoders and decoders (Gehring
et al., 2017). We use 4 layers for the encoder and
3 for the decoder, the size of the hidden state is
768 for all layers, and the filter width of the ker-
nels is 3. Additionally, the dimension of the BPE
embeddings is set to 768.

Data Prepossessing. We use BPE (Sennrich
et al., 2016) for tokenization. The vocabulary size
is set to 40K for the combined source and target vo-
cabulary as done by Wieting et al. (2019). For the
small target vocabulary experiments, we change the
target vocabulary size to 1K and keep the source
vocabulary unchanged.

Objective Functions. Following Edunov et al.
(2018), we train models with MLE with label-
smoothing (Szegedy et al., 2016; Pereyra et al.,
2017) of size 0.1. For RL, we fine-tune the model
with a weighted average of the MRT Lrisk and the
token level loss Lmle.

Our fine-tuning objective thus becomes:

LAverage = α · Lmle + (1− α) · Lrisk (2)

We set α to be 0.3 shown to work best by
Wu et al. (2018b). We set β to 1. We generate
eight hypotheses for each MRT step (k=8) with
beam search. We train with smoothed BLEU (Lin
and Och, 2004) from the Moses implementation.3

Moreover, we use this metric to report results and
verify they match sacrebleu (Post, 2018).4

Optimization. We train the MLE objective over
200 epochs and the combined RL objective over 15.
We perform early stopping by selecting the model
with the lowest validation loss. We optimize with
Nesterov’s accelerated gradient method (Sutskever
et al., 2013) with a learning rate of 0.25, a momen-
tum of 0.99, and re-normalize gradients to a 0.1
norm (Pascanu et al., 2012).

2https://github.com/jwieting/
beyond-bleu

3https://github.com/jwieting/
beyond-bleu/blob/master/multi-bleu.perl

4https://github.com/mjpost/sacrebleu

https://github.com/jwieting/beyond-bleu
https://github.com/jwieting/beyond-bleu
https://github.com/jwieting/beyond-bleu/blob/master/multi-bleu.perl
https://github.com/jwieting/beyond-bleu/blob/master/multi-bleu.perl
https://github.com/mjpost/sacrebleu
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Data. We experiment with four languages: Ger-
man (De), Czech (Cs), Russian (Ru), and Turkish
(Tr), translating each of them to English (En). For
training data for cs-en, de-en, and ru-en, we use
the WMT News Commentary v135 (Bojar et al.,
2017). For tr-en training data, we use WMT 2018
parallel data, which consists of the SETIMES2 cor-
pus (Tiedemann, 2012). The validation set is a
concatenation of newsdev 2016 and 2017 released
for WMT18. Test sets are the official WMT18 test
sets. Those experiments focus on a low-resource
setting. We choose this setting as RL experiments
are computationally demanding and this setting is
common in the literature for RL experiments like
ours Wieting et al. (2019). (see data statistics in
Supp. §A)

4 Reducing the Vocabulary Size

We begin by directly testing our hypothesis that
the size of the action space is a cause for the long
convergence time of RL for NMT. To do so, we
train a model with target-side BPE taken from a
much smaller vocabulary than is typically used.

We begin by training two MLE models, one with
a large (17K-31K) target vocabulary (LTV) and
another with a target vocabulary of size 1K (STV).
The source vocabulary remains unchanged. We
start with the MLE pretraining and then train each
of the two models with RL.

Results (Table 1) show that the RL training with
STV achieves about 1 BLEU point more than the
RL training with LTV.6 For a comparison of the
models’ entropy see Supp. §B. In order to ver-
ify that the improvement does not stem from the
choice of α mixing RL and MLE (see Eq. 2), we
repeat the training for De-En with α ∈ {0, 1}, we
find that α = 0.3 is superior to both. Moreover,
RL improves STV more than LTV when training
with only the RL objective (α = 1). This indi-
cates that RL training contributes to the observed
improvement.

We next turn to analyze what tokens are respon-
sible for the observed performance gain. Specif-
ically, we examine whether reducing the vocab-
ulary size resulted in RL being able to promote
target tokens that received a low rank by the pre-
trained MLE model. For each model, for 700K
trials, we compute what rank the model assigns

5http://data.statmt.org/wmt18/
translation-task

6Preliminary experiments showed that altering the random
seed changes the BLEU score by ±0.01 points.

Model DE-EN CS-EN RU-EN TR-EN

LTV 25.07 15.16 16.67 12.76
LTV+RL 25.67 15.33 16.9 12.98
Diff. 0.6 0.17 0.23 0.22

STV 21.83 13.79 14.63 10.37
STV+RL 23.23 14.62 15.73 11.96
Diff. 1.4 0.83 1.1 1.59

Table 1: BLEU scores for translating four languages
to English using MLE pretraining followed by RL, and
comparing a model with a large vocabulary (LTV) to a
small one (STV). The top (bottom) block presents re-
sults for LTV (STV) with and without RL, and the dif-
ference between them (Diff.). RL with STV gains more
than 1 point more (on average) over the pre-trained
MLE model, than RL with LTV.

to the gold token yi for a context y′<i and source
sentence X . Formally, ∀r ∈ |VT |, P rmodel =
#{gold token assigns to the r rank}

#{all trials} . We then com-
pare the rank distribution of the MLE model to
that of the RL model by subtracting those two
distributions. In our notation, for each rank r,
∆P r = P rRL − P rMLE . This subtraction represents
how RL influences the model’s ability to assign
the correct token yi for each rank. The greater the
positive effect of RL is, the more probable it is that
the probability will be positive for the first rank,
and negative for lower ranks (due to the probability
shift to first place).

Figure 1 presents the probability difference per
rank for LTV and STV. We can see that for the
first rank the probability shift due to RL training
with STV is more than twice the shift caused by
RL training with LTV. Consequently, the probabil-
ity shift for the following ranks is usually more
negative for small vocabulary settings. The figure
indicates that indeed the shift of probability mass
to higher positions occurs substantially more when
we apply RL using a smaller action space. More-
over, the STV training was able to shift probability
mass from lower ranks upwards compared to LTV.
An indication for that is that, within the first one
hundred ranks, STV reduces the probability of 83
of them, whereas LTV of only 2.

5 Reducing the Effective Dimensionality
of the Action Space

Finding that reducing the number of actions im-
proves RL’s performance, we propose a method

http://data.statmt.org/wmt18/translation-task
http://data.statmt.org/wmt18/translation-task
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Figure 1: Comparison of probability shift due to RL
training of assign ybest for ten first words for both LTV
and STV. in blue, you can see the results with BPE of
size 1,000, STV. in red are the results with BPE of size
30,000, LTV. a clear improvement of assigning ybest in
first place for STV.

for reducing the effective number of actions, with-
out changing the actual output. The vocabulary
size might be static, as in pre-trained models (De-
vlin et al., 2019), and reducing it might help RL
but be sup-optimal for MLE (Gowda and May,
2020), or introduce out-of-domain words (Koehn
and Knowles, 2017). We propose to do so by using
target embeddings that generalize over tokens that
appear in similar contexts. We explore two imple-
mentations of this idea, one where we initialize the
target embeddings with high-quality embeddings,
and another where we freeze the learned target
embeddings during RL. We also explore a combi-
nation of the two approaches. Freezing the target
embeddings (decoder’s last layer) can be construed
as training the network to output the activations of
the penultimate layer, where a fixed function then
maps it to the dimension of the vocabulary.

We note that although freezing is a common pro-
cedure (Zoph et al., 2016; Thompson et al., 2018;
Lee et al., 2019; Coster et al., 2021), as far as we
know, it has never been applied in the use of RL
for sequence to sequence models.

Denote the function that the network computes
with fθ. fθ can be written as hθ2 ◦ gθ1 , where
θ = (θ1, θ2), g maps the input – source sentence
X and model translation prefix y′<i – into Rd, and
h maps g’s output into R|VT |.

Using this notation, we can formulate the method
as loading pre-trained MLE target embeddings to
hθ2 or freezing it (or both). As for many encoder-
decoder architectures (including the Transformer),

it holds that d � |VT |, this can be thought of as
constraining the agent to select a d-dimensional
continuous action, where hθ2 is a known transfor-
mation performed by the environment.

The importance of target embedding is that they
allow for better generalization over actions. The
intuition is as follows. Assume two tokens have the
same embedding, and similar semantics, i.e., they
are applicable in the same contexts (synonyms).
Since they have the same target embeddings, dur-
ing training the network will perform the same
gradient updates when encountering either of them,
except for in the last layer (since they are still con-
sidered different outputs). If the target embeddings
are not frozen, encountering either of them during
training will lead to very similar updates (since they
have the same target embeddings), but their target
embeddings may drift slightly apart, which will
cause a subsequent drift in the lower layers. If the
target embeddings are frozen, the gradient updates
they will yield will remain the same and expedite
learning. We hypothesize a similar effect during
training, where tokens that have similar (but not
identical) embeddings, and a similar (but not iden-
tical) distribution would benefit in training from
each other. This motivates us to explore a combi-
nation of informative initialization and parameter
freezing. (see formal proof in Supp. §E).

5.1 Motivating Simulation through Policy
Parameterization in Large Action Spaces

In order to examine the intuition outlined above
in a controlled setting, we consider a synthetic RL
problem in which the action space is superficially
enlarged. The task is a (contextual) multi-armed-
bandit, with K actions. At each step, an input
state is sampled from the environment (the "con-
text"; a random vector sampled from a multivari-
ate Gaussian distribution). A random, fixed, non-
linear binary classifier determines whether action
#1 or action #2 is rewarding based on the given
context (actions 3-K are never rewarding), and the
reward for each action is r + z where r = 1 for
the rewarding action and 0 for all other actions,
and z ∼ N (0, 0.1). Crucially, we duplicate each
action a times, resulting in a total of K × a actions
at the policy level – whereas for the environment
all ‘copies’ of a given action are equivalent.

The problem structure, including the classifier it-
self, is unknown to the RL agent, which directly op-
timizes a policy parameterized as a fully-connected
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feed-forward neural network. We control two as-
pects of the last layer of the policy network, re-
sulting in a total of four variants of agents. First,
the last layer can be frozen to its initial value, or
learned (by RL). Second, the last layer can be ini-
tialized at random, or induce a prior regarding the
duplicated actions (such that weight vectors pro-
jecting to different copies of a given action are
initialized identically). We call the latter the infor-
mative initialization.

We stress that the informative initialization car-
ries no information about the underlying reward
structure of the problem (i.e., the classifier, and
the identity of the rewarding actions), but only as
to which actions are duplicated. Nevertheless, as
shown in Figure 2, a prior regarding the structure
of the action space is helpful on its own, leading to
faster learning (compare Informative to Full net).

Results fit the intuition presented. With infor-
mative last layer initialization, learning in previous
layers generalizes over the duplicated actions and
boosts early stages of learning, leading to faster
convergence. We note that in this setting faster
learning is not only the result of learning fewer
parameters. Notably, freezing the last layer with
random initialization, prohibits the network from
learning the task. This is due to the regime of a
very large action space (output layer; width 4000)
compared to the dimensionality of the hidden rep-
resentations (width 300). Freezing an informative
initialization, on the other hand, sets the network
in a rather different regime, in which the effective
size of the output layer is (much) smaller than the
hidden representation (i.e #‘real’ actions; 10). In
this regime, the network is generally expressive
enough so that it can quickly learn the task even
with a fixed, random readout layer (Hoffer et al.,
2018).

To conclude, this example provides evidence
that initializing and possibly freezing the last layer
in the policy network in a way that respects the
structure of the action space is helpful for learning
in vast action spaces, as it supports generalization
over similar or related actions. Importantly, this
helps even when the (frozen) initialization does
not contain task-specific information. In a more
realistic scenario, actions are not simply a complete
duplicate of each other, but rather are organized in
some complex structure. Informative initialization,
then, accounts not for duplicating weights, but for
initializing them in such a way that a-priori reflects,

Figure 2: Simulating learning in large action spaces.
Figures show a moving average over 20 steps of the
underlying binary reward. Solid curves denote mean,
shaded area denote ±0.5 s.d. (N = 50 trials per agent,
K = 10, a = 400, network architecture: 10-300-300-
4000). Informative initialization is effective on its own,
and more so when freezing is applied.

or is congruent, with this structure. This motivates
our approach – in the realistic, complicated task of
MT – to freeze a learned output layer for the policy
network, from a model whose embeddings have
been shown to be effective across a wide range of
tasks (in our case, BERT).

5.2 NMT Experiments

The motivating analysis and simulations indicate
that it is desirable to use target embeddings that
assign similar values to similar actions. Doing so
can be viewed as an effective reduction in the di-
mensionality of the action space. We turn to exper-
iment with this approach on NMT. We explore two
approaches: (1) freezing h during RL; (2) informa-
tively initializing h, as well as their combination.
Our main results are presented in Table 2.

As a baseline, we experiment with freezing un-
informative target embeddings: target embeddings
are randomly initialized and frozen during both
MLE and RL. Unsurprisingly, doing so does not
help training, and in fact, greatly degrades it (in
about 2 BLEU points in En-De).

Next, we examine whether the target embed-
dings of the MLE pretraining are informative
enough, namely whether freezing them during RL
leads to improved effectiveness. Results show a
slight improvement in BLEU when doing so, which
is encouraging given that the frozen embeddings’
weights consist of more than half of the network’s
trainable parameters. Indeed, freezing the embed-
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ding layers has a dramatic impact on the volume of
trainable parameters, decreasing their size by more
than 60%. In Supp. §D we present the number of
trainable parameters in each setting.

We therefore hypothesize that, as in the simula-
tions (§5.1), the quality of the frozen embedding
space is critical for the success of this approach.
As using frozen MLE embeddings improves per-
formance, but only somewhat, we further consider
target embeddings that were trained on much larger
datasets, specifically BERT’s embedding layer.7

For this set of experiments, we adjust the tar-
get vocabulary to be BERT’s vocabulary of size
|VT | = 30526. We train RL models with and with-
out freezing the embedding layers and with and
without loading BERT embedding. We report re-
sults of MLE training with BERT’s embedding
when the embedding is kept frozen as it reaches
superior results (see Supp. §C).

The results (Table 2) directly parallels our find-
ings in the simulations: Initializing from BERT
(+BERT +RL) improves performance across all
language pairs, and freezing (+RL+ FREEZE)
yields an additional improvement in most settings,
albeit a more modest one. Combining both meth-
ods provides additional improvement. Indicating
that FREEZE and BERT are helpful both inde-
pendently and in conjunction. In total, our model
(+BERT+RL+FREEZE) achieves 1.5 BLEU
points improvements over regular RL. We also re-
port semantic similarity scores in Supp. §F.

Notably, our method surpasses the LTV+RL re-
sults (Table 1) across all languages except German,
overall about 1.5 BLEU points more on average.
We hypothesize that the reason for this degrada-
tion is the lower results of the MLE with BERT’s
vocabulary compared to the joint BPE vocabulary
which is known to be superior to BPE on each lan-
guage individually, especially when the source and
target languages are close (Sennrich et al., 2016).
These considerations are peripheral to our discus-
sion, which specifically targets the effectiveness of
the RL approach.

Finally, initializing from BERT increases RL’s
ability to promote tokens that were not ranked high
according to the MLE model (Fig. 3).

6 Human Evaluation

We perform human evaluation, comparing the base-
lineRL with our proposed model. We selected 100

7HuggingFace implementation

MODEL De-En Cs-En Ru-En Rr-En

MLE 22.38 15.81 17.31 12.60
+RL 23.19 15.81 17.31 12.66

+RL+FREEZE 23.14 16.04 17.78 13.18
+BERT 23.46 16.59 18.14 14.15
+BERT+RL 24.44 17.04 18.68 14.37
+BERT+RL+FREEZE 24.71 17.37 18.30 14.55

Table 2: BLEU scores on translating four languages to
English. The upper block shows the baseline scores
of training only with MLE, and with MLE followed
by RL. RL presents modest improvement (if any) over
only using MLE. +RL+FREEZE shows some improve-
ment due to freezing the target embeddings. The lower
three rows show results when using BERT’s target em-
beddings (informative initialization). Additional bene-
fit is seen from freezing (+RL+BERT+FREEZE).

Figure 3: Comparison of the change in the rank distri-
bution of the target token following RL in two settings,
one where RL training with frozen BERT embeddings
is used (blue) and the second when we used basic RL
training (red). The gain in probability in the first rank
indicates that the model is more probable to be correct
(which is reflected in its superior performance over the
pre-trained MLE model). The negative values in the
following places demonstrate how RL with frozen high-
quality target embeddings can improve not only when
the MLE model is initially close to being correct.

translations from the respective test sets of each
language. The annotation was performed by two
professional annotators (contractors of the project),
who work in the field of translation. Both are na-
tive English speakers. The annotators assigned a
score from 0 to 100, judging how well the trans-
lation conveyed the information contained in the
reference (see annotation guidelines in Supp. §G).
From Fig. 4, we see that our proposed model scores
the highest across all language pairs. To test statisti-
cal significance, we use the Wilcoxon rank sum test

https://huggingface.co/
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Figure 4: Average human ratings on 200 sentences
from the test set for each of the respective languages.
RL is the baseline RL model and RL+ + is our model
(+BERT + RL + FREEZE). The performance of
our model is consistently better than the baseline.

to standardize score distributions fit for our setting
(Graham et al., 2015). Comparing the two models’
distributions, we got a p-value of 8.5e−5 indicat-
ing the improvement is significant. We emphasize
that our main goal is showing that our method can
improve the optimized metric (e.g., BLEU), and
hence the improvement over the semantic similar-
ity score and the human evaluation is an additional
indication of our method’s robustness.

7 Comparing Target Embedding Spaces

The previous section discussed how BERT’s target
embeddings improve RL performance, compared
to target embeddings learned by MLE. We now
turn to directly analyze the generalization ability of
the two embeddings. We do so by comparing the
embeddings of semantically related words.

We use WordNet (Miller, 1998) and spaCy8 to
compile three lists of word pairs: inflections (e.g.,
’documentaries’ / ’documentary’, ’boxes’ / ’box’,
’stemming’ / ’stem’), synonyms (e.g., ’luckily’ /
’fortunately’, ’amazement’ / ’astonishment’, ’pur-
posely’ / ’intentionally’), and random pairs, and
compare the embeddings assigned to these pairs us-
ing BERT and MLE embeddings. Figure 5 presents
the distributions of the cosine similarity of the pairs
in the three lists for both embedding spaces. Re-
sults show that MLE embeddings for the different
lists have almost identical distributions, demon-
strating the limited informativeness of these target
embeddings. In contrast, BERT embeddings only
display a small overlap between the similarity dis-

8https://spacy.io/

(a) MLE embeddings

(b) BERT embeddings

Figure 5: Comparison of the distribution of the cosine
similarity between word pairs from three groups: ran-
dom word pairs (in green), synonym pairs that do not
share a stem (in orange), and pairs of synonyms that
share a stem (in blue). The top figure refers to the tar-
get embeddings learned by MLE, and the bottom one to
BERT embeddings. The ability of the embeddings to
distinguish between these three groups is informative
of their ability to map semantically related words to
similar embeddings. The better discrimination ability
of BERT embeddings is thus likely related to their su-
periority as target embeddings over MLE embeddings.

tributions of inflections and random pairs. How-
ever, synonyms’ distribution remains quite similar
to that of random pairs. In conclusion, BERT em-
beddings better discern semantics overall compared
to MLE embeddings, which may partly account for
their superior performance. Results also indicate
BERT’s embeddings could be further improved.

8 Conclusion

In this paper, we addressed the limited effective-
ness of RL for NMT, seeking to understand its
origins and offer means for tackling it. We hypoth-
esized that this limitation arises from the size of
the action spaces used in NMT and examined two
ways of reducing their effective dimension. In the

https://spacy.io/
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first method, we experiment with smaller vocabu-
laries, showing improved RL effectiveness. While
this method constrains the size of the vocabulary,
which may be limiting in some settings (Ding et al.,
2019; Gowda and May, 2020), it motivates further
research along these lines.

The second approach introduces a new method
of using informative target embeddings and poten-
tially freezing them during RL. We find that this
method may be beneficial as well, but its effec-
tiveness crucially depends on the quality of the
employed embeddings. Indeed, we find using both
simulations and NMT experiments that freezing in
itself results in some improvement in RL perfor-
mance, but that combined with target embeddings
that generalize over words with a similar distri-
bution, it may yield substantial gains as shown
by BLEU, semantic similarity, and human evalua-
tion. We compare the target embeddings produced
by MLE and those by BERT, finding the latter to
be considerably stronger. Those results in low re-
sources settings, encourage further research aiming
to address the problem of large action space for TG
in richer data settings by adapting and extending
our methods.

Future work will increase the exploration abil-
ity of RL training in NMT. A promising line of
research towards this goal is using off-policy meth-
ods. Off-policy methods, in which observations are
sampled from a different policy than the one we cur-
rently optimize, are prominent in RL (Watkins and
Dayan, 1992; Sutton et al., 1998), and were also
studied in the context of policy gradient methods
(Degris et al., 2012; Silver et al., 2014). We be-
lieve that the adoption of such methods to enhance
exploration, combined with our proposed method
for using target embeddings, can be a promising
path forward for the application of RL in NMT, and
more generally in TG.

A different line of future work will focus on
changing the network’s architecture to predict a d
dimension continuous action, instead of discrete
actions. Such an approach may directly reduce the
size of the action space without limiting the number
of words that can be predicted.
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A Methodology

Table 3 present the train, validation and test sizes
in all four languages pairs. We note that our use
of the data is aligned with the license and intended
use of the data.

Lang. Train Valid Test

de-en 284,246 6,003 2,998
cs-en 218,384 6,004 2,983
ru-em 235,159 5,999 3,000
tr-en 207,678 6,007 3,000

Table 3: Number of sentence pairs in the train-
ing/validation/test sets for all four languages.

B Entropy of STV and LTV

As C19 suggested we can compare the peakiness
of the two models by calculating their distributions
entropy. Lower entropy indicates a more peaky dis-
tribution. We used KL divergence with respect to
the uniform distribution in order to normalize the
entropy and compare the peakiness of the two mod-
els. The STV model starts RL training with mean
entropy of 0.300 and finishes with 0.269 while the
LTV begins with 0.258 and finishes with 0.264.
This indicates that before RL training the LTV
model was slightly more peaky than the STV, but
after RL training they have similar peakiness.

C Loading Bert embedding

We consider two options for initializing Bert em-
beddings for the MLE training, with and without
freezing the embedding layer. The results were
unequivocal, freezing the embedding layers has a
very constructive effect on the results (table 4). We
estimate that freezing the embedding layers causes
such a vast improvement in performance because
it enables us to avoid the catastrophic forgetting
of BERT parameters. Therefore, although using
BERT embedding is helpful as initialization, by
freezing the parameters we allow the model to bet-
ter utilize BERT’s embeddings.

D Number of parameters

In Table 5 we provide a comparison of the number
of trainable parameters with and without freezing
the embedding layer.
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Model De-
En

Cs-
En

Ru-
En

Tr-En

MLE 22.38 15.81 17.31 12.60
MLE+Bert W/o
freeze

22.99 15.32 17.57 12.65

MLE+Bert
with freeze

23.46 16.59 18.14 14.15

diff. 0.47 1.27 0.57 1.50

Table 4: Comparison of MLE models with BERT em-
bedding with and without freezing.

# parameters De-En Cs-En Ru-En Tr-En

Freeze 30.2M 29.3M 27.9M 29.4M
W/o Freeze 77.2M 76.2M 74.8M 76.4M
Ratio 0.39 0.38 0.37 0.38

Table 5: Comparison if trainable parameters.

E Formalizing the intuition behind
freezing the embedding layer

Here we want to formalize the intuition behind
freezing the embedding layer. We explicitly calcu-
late the gradients of the cross-entropy (CE) loss of
the one-hot vector, y, and the distribution vector,
ŷ of the model fθ = hθ2 ◦ gθ1 output (henceforth,
we will discard the parameters notation from f, g
and h). We will discuss two cases, one when we
freeze θ2 and the second when we are not. We note
that θ2 ∈ Rd×|VT | is the embedding layer where
each row, ρi, is the representation of the k’s word
in the vocabulary. Moreover, h : Rd → R|VT |
is the function defined by multiplying the out-
put of g, denoted by v ∈ Rd, by θ2, and then
taking the soft-max of the output vector, hence
∀k ∈ |VT |;hk(v) = exp(ρk·v)∑

l exp(ρl·v)
. Therefore assign-

ing to each word some probability, ŷk, to be the
next one in the sentence.

Now, we want to investigate the update defined
by the gradients of the CE loss in the setting when
two words, w1 and w2 have the same representa-
tion, ρ1 = ρ2. We consider the case where one of
them is the gold token, w.l.g. w1. We note this case

by
∣∣∣1.

We turn to examine the gradient in this setting
for both cases. We start by realizing that if all the
partial derivatives of the CE loss, L, exist then the
gradient is the vector of all the partial derivatives

meaning, ∇θL =

(
∇θ1L
∇θ2L

)
and we can separate

the calculation into two parts, one with respect to
θ1 and the second with respect to θ2.

By definition, in the case where we freeze θ2 we
will keep ρ1 and ρ2 the same. We will now show
that in the case when we don’t freeze θ2 the update
will be different.

Lemma E.1. If θ2 is not frozen then: Updates are
differe: ∆ρ1! = ∆ρ2.

Proof. We start by noticing that multiplying v by
θ2 is a linear transformation so for points p1 and
p2 we will get the same derivative as ρ1 = ρ2,
moreover by taking the soft-max of those identical
outputs we will get the same outputs. Hence, we
get that ∀i ∈ [d]; ∂ŷ1∂vi

= ∂ŷ2
∂vi

, similarly ∂ŷ1
∂ρ1i

= ∂ŷ2
∂ρ2i

.
We continue by calculating the derivative of the

CE. The CE loss is defined by:

L(y, ŷ) =
∑
i

yilog(ŷi) (3)

The derivative is: ∂L
∂ŷi

=
∑

i yi
1
ŷi

we notice that
y is a one hot vector i.e., y1 = 1 and ∀i ∈
[2, |VT |]; yi = 0. Therefore, the derivative will
be different from i = 1 to all other i’s. Specifically,
∀i ∈ [d]; ∂L

∂ρ1i
6= ∂L

∂ρ2i
. Putting it all together we

get:

∂L

∂ρ1i
=
∂L

∂ŷ1
· ∂ŷ1
∂ρ1i

6= ∂L

∂ŷ2
· ∂ŷ2
∂ρ2i

=
∂L

∂ρ2i
(4)

Proving that ρ1 and ρ2 updates are different.

Lemma E.2. For both cases, the update of θ1 is

symmetric to the gold being w1 or w2. ∇θ2L
∣∣∣1 =

∇θ2L
∣∣∣2.

Proof. Given a parameter λ ∈ θ1, we inspect the
derivative of L with respect to λ. We use here
Einstein summation notation.

∂L

∂λ

∣∣∣1 =
∂L

∂vi
· ∂vi
∂λ

∣∣∣1 =
∂L

∂vi
· ∂vi
∂λ

∣∣∣2 =
∂L

∂λ

∣∣∣2 (5)

We deduce ∂vi
∂λ

∣∣∣1 = ∂vi
∂λ

∣∣∣2, as the derivative of vi is
independent of the question which word is the gold.
In order to justify the second equality we used, we
will write the derivative of L with respect to vi.

∂L

∂vi

∣∣∣1 =
∂L

∂ŷk
· ∂ŷk
∂vi

(6)
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Clearly, we only need to check the elements that
change by switching the gold from being w1 to w2

or vice versa. Therefor all the second terms that
multiply by ∂L

∂ŷk
for k ∈ [3, |VT |] didn’t change.

We already proved that ∀i ∈ [d]; ∂ŷ1∂vi
= ∂ŷ2

∂vi
Finally,

because we switch the gold, ∂L
∂ŷ1

and ∂L
∂ŷ2

indeed
switch there values but both of them are multiply
by the same values as ∂ŷ1

∂vi
= ∂ŷ2

∂vi
. Overall, the

derivative is unchanged.

To conclude, in the motivational setting we dis-
cussed, when we freeze θ2 we keep semantically
close vectors unchanged while if we don’t freeze
θ2 we enable them to change. As consequence, in
further steps, this change will affect on θ1 also. In
a similar manner, as long as the representation is
similar, all layers but the penultimate would update
both words similarly.

F Semantic scores for the second method

Our method of freezing informative initialization
of the embedding layer aims to generalize across
different but semantically close actions. In order to
test the ability of our model to generalize we used
SIM. SIM is a measure of semantic similarity that
assigns partial credit to semantically correct but lex-
ically different translations (Wieting et al., 2019).
Table 6 shows our model results and exhibits simi-
lar trends to the BLEU scours. Here we see even
greater gains for cs-en and ru-en languages pairs.
Those results may indicate that the model was able
to predict tokens that are semantically close to the
gold token.

MODEL De-En Cs-En Ru-En Tr-En

MLE 70.03 63.29 66.17 59.68
+RL 71.17 63.29 66.17 59.99

+RL+FREEZE 71.03 64.29 66.66 60.52
+BERT 71.56 64.26 66.70 61.75
+BERT+RL 72.44 65.80 67.94 63.59
+BERT+RL+FREEZE 72.81 66.44 67.66 63.59

Table 6: SIM scores on translating four languages to
English.

G Human Evaluation Information

We recruited the service of two professional trans-
lators via translations providers.

G.1 Human Evaluation Instructions

You will be shown:

1. An English segment of text;

2. Corresponding translation into English.

There are three parts to each annotation:

1. Read the English segment;

2. Read the translation and compare its meaning
to the meaning of the original English seg-
ment;

3. Give a score between 0-100 describing how
close the meaning of the translation is to the
meaning of the original English segment.


