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Abstract

The human recognition system has presented
the remarkable ability to effortlessly learn
novel knowledge from only a few trigger
events based on prior knowledge, which is
called insight learning. Mimicking such
behavior on Knowledge Graph Reasoning
(KGR) is an interesting and challenging re-
search problem with many practical applica-
tions. Simultaneously, existing works, such as
knowledge embedding and few-shot learning
models, have been limited to conducting KGR
in either “seen-to-seen” or “unseen-to-unseen”
scenarios. To this end, we propose a neural
insight learning framework named Eureka to
bridge the “seen” to “unseen” gap. Eureka is
empowered to learn the seen relations with suf-
ficient training triples while providing the flex-
ibility of learning unseen relations given only
one trigger without sacrificing its performance
on seen relations. Eureka meets our expecta-
tion of the model to acquire seen and unseen re-
lations at no extra cost, and eliminate the need
to retrain when encountering emerging unseen
relations. Experimental results on two real-
world datasets demonstrate that the proposed
framework also outperforms various state-of-
the-art baselines on datasets of both seen and
unseen relations.

1 Introduction

Human knowledge provides a formal understand-
ing of the world. Knowledge graphs (KGs) that
represent structural relations between entities in
the form of (head entity, relation, tail entity) have
become an increasingly popular research direction
towards cognition and human-level intelligence.
These triples of KGs are abbreviated using (h, r, t)
in this paper. Over the last few years, the works
(Bordes et al., 2013; Sun et al., 2019) on knowl-
edge embedding have achieved impressive results
in the knowledge graph reasoning (KGR) task. To
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successfully learn a set of relations, these methods
usually require a large number of training triples
and cannot infer missing facts of unseen relations
due to the sparse interactions, which are essentially
transductive learning processes in terms of the rela-
tions. Thus, we categorize this line of knowledge
embedding research as “seen-to-seen” methods;
i.e., reasoning from seen relations to seen rela-
tions. Moreover, the representations of the rela-
tions in KGs produced by knowledge embedding
models always remain fixed after training. They
may be sub-optimal since the real-world large-scale
KGs dynamically evolve quickly with new relations
emerging every day, rather than staying static.

Suppose that we would like to expand the set
of relations that the knowledge embedding models
can recognize. We need to collect training triples
for the emerging (unseen) relations; i.e., those not
in the initial training set, and then restart the afore-
mentioned computationally costly training proce-
dure on the enhanced training set. Not to mention
the fact that the model may not perform well when
only few training examples are available for the
unseen relations (Xiong et al., 2018).

To alleviate the above challenge, some few-shot
learning methods (Xiong et al., 2018; Zhang et al.,
2020) have been proposed, which can be seen as
inductive learning approaches. Their basic ideas
are to predict new facts in a meta-learning frame-
work in a setting where only few training triples
for each unseen relation are available. We term
them as “unseen-to-unseen” methods; i.e., reason-
ing from unseen relations to unseen relations. This
is possible since the meta-learning framework can
simulate the unseen relations during meta-training,
while they are unobservable in conventional learn-
ing schemes. However, their performance will
reach a plateau as the number of training exam-
ples increases, as illustrated in Figure 1. Moreover,
they cannot perform as well as knowledge embed-
ding models on the initial seen relations with suffi-
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Figure 1: Impact of the size of training triples on NELL
dataset. K is the number of training triples per relation.
TransE and RotatE are typical knowledge embedding models;
GMatching, FSRL, and FAAN are few-shot learning methods;
Eureka is our model.

cient training triples, as the few-shot learners are
adapted to the common parts of the different meta-
tasks and forget the relation-specific information.
In other words, the dramatic performance of few-
shot learning methods on unseen relations comes
at the cost of dysfunction on seen relations with
sufficient training examples available. It is also dif-
ferent from the human learning system, where new
concepts can be learned from very few examples at
no extra cost.

Meanwhile, the human learning system exhibits
the remarkable ability to effortlessly discover novel
concepts during the “Eureka moment”, with only
one or few examples as the trigger. For example,
a child, having accumulated enough knowledge
(seen relations) like “CEO”, “President” and so on,
can easily learn and generalize the unseen concept
of “Leader”from only a single knowledge set like
(Gandhi, Leader_of, India) by analogy. Mimicking
this behavior in artificial reasoning systems is an
interesting and very challenging research problem
with many practical advantages, such as developing
real-time knowledge reasoning systems for down-
stream applications, such as language models.

Motivated by the limitations of knowledge em-
bedding methods and few-shot KGR models, we
mimic human insight learning modes in machine
learning and propose a neural insight learning
framework termed Eureka for KGR tasks. The
whole structure of Eureka is illustrated in Figure
2. Eureka aims to tackle the problem knowledge
embedding methods and few-shot KGR models en-
countered, under a more realistic setting, where
a large set of training triples are assumed to exist
for seen relations; and using these data as the sole

input, we want to develop a KGR model that, is not
only capable of recognizing these seen relations,
but also learning unseen relations from only one
training example (provided only at the testing time)
without sacrificing the performance on seen rela-
tions or requiring to be retrained). We also devise
a cross-domain attention (CDA) network to model
the semantic interactions and bridge the gap be-
tween unseen and seen relations; for example, the
unseen relation “Leaderof” has semantic similarity
with the seen relations “Presidentof” and “CEOof”
and modeling such similarity will help to make
up for the lack of training information of unseen
relations and represent the unseen relation more
accurately to some extent.

Compared to prior approaches, we believe that
Eureka resembles more closely the human learning
behavior (w.r.t. how it learns novel concepts). Eu-
reka is also more suitable in the real-world scenario
where unseen relations do not emerge one by one
but may emerge simultaneously as a set, with only
few triples available for each new unseen relation.

To summarize, the contributions are as follows:
• To the best of our knowledge, Eureka is the

first neural insight learning framework for
KGR by mimicking human learning behav-
iors, which can efficiently learn new unseen
relations based on one given trigger and the
learned seen relations at no extra cost.

• In contrast to the previous works, Eureka
bridges the “seen” to “unseen” gap with the
CDA networks and provides the flexibility of
inferring missing facts for both seen and un-
seen relations in a unified protocol.

• The extensive experimental results on two
real-world datasets show the superiority of Eu-
reka compared with the state-of-the-art base-
lines on both seen and unseen relations.

2 Related Work

The neural insight learning framework draws on
the previous research in knowledge embedding and
meta-learning.

2.1 Knowledge Embedding

Knowledge embedding aims to model multi-
relational data and automatically inferring missing
facts in knowledge graphs. Many of them encode
both entities and relations into a continuous low
dimensional vector space. TransE (Bordes et al.,
2013) is a classic work that encodes both entities
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and relations into a 1-D vector space. DistMult
(Yang et al., 2015) and ComplEx (Trouillon et al.,
2016) attempt to mine latent semantics to benefit
their KG embeddings. CoKE (Wang et al., 2019)
presents a novel paradigm that takes into account
KGs’ contextual nature and learns contextualized
knowledge graph embedding based on the trans-
former. There are also other effective models like
ConvE (Dettmers et al., 2018a), Rotate (Sun et al.,
2019) and UniKER (Cheng et al., 2021). These
embedding-based models rely heavily on extensive
collections of training instances, and they are not
able to deal with sparse triples, as presented in
(Xiong et al., 2018).

2.2 Meta-Learning

Meta-learning, commonly known as learning to
learn (Lake et al., 2015), refers to the process of
improving the learning algorithm itself over mul-
tiple learning episodes. Contrary to conventional
machine learning approaches where tasks are han-
dled from scratch using a fixed learning algorithm,
meta-learning provides an opportunity to dynami-
cally adapt to new tasks with the learned algorithm.

One line of meta-learning research, which is
closely related to our work, is few-shot learning.
Few-shot learning methods seek to learn novel con-
cepts with only a small number of labeled examples.
Recent deep learning based few-shot learning al-
gorithms can be classified into three groups. The
first group is model-based approaches, which de-
pend on a specially designed part, like memory,
to quickly optimize the model parameters given
few-shot training instances. MetaNet (Munkhdalai
and Yu, 2017), a typical model-based approach,
learns meta knowledge across tasks and gener-
alizes rapidly via its fast parameterization. The
second group is metric-based approaches, which
try to learn a generalizable metric and the cor-
responding matching functions among a set of
training instances. For example, prototypical net-
works (Snell et al., 2017) classify each instance
by calculating its similarity to the prototype rep-
resentation of each class, whose idea is similar
to some nearest neighbor algorithms. GMatching
(Xiong et al., 2018), FSRL (Zhang et al., 2020),
and FAAN (Sheng et al., 2020) can also be consid-
ered as metric-based approaches. The third group
is optimization-based approaches, which aim to
learn faster by changing the optimization methods
on few-shot reference instances. One example is

the model-agnostic meta-learning (MAML) (Finn
et al., 2017), which first proposed a framework of
parameter updating for a task-specific learner and
performing meta-optimization across tasks by us-
ing the above updated parameters. MetaR (Chen
et al., 2019), MetaP (Jiang et al., 2021) and GANA
(Niu et al., 2021) can be regarded as optimization-
based approaches for few-shot KGR.

3 Preliminaries

In this section, we formally describe neural insight
learning in the KGR scenario and leave technical
details to the next section. According to the Gestalt
theory of learning, insight learning occurs spon-
taneously when people discover new knowledge
within their prior knowledge as a result of reason-
ing or problem-solving processes that reorganize
or restructure that knowledge (Ash et al., 2012). In
other words, there are two key points about ma-
chine insight learning in the KGR scenario. One
is that the model could learn new unseen relations
with a trigger based on the prior seen relations it
learned, the other is that the model should achieve
good performance on both seen and unseen rela-
tions as human beings do.

We first present the definition of KGR, then
formalize neural insight learning in the KGR sce-
nario. The difference between Eureka and previous
relevant learning theories such as meta-learning
(Hospedales et al., 2021), transfer learning (Pan
and Yang, 2010), one-shot learning (Wang et al.,
2020), and one-pass learning (Zhou et al., 2016)
are also discussed.

Definition 1. Given an incomplete knowledge
graph G presented as {(h, r, t)} ⊆ E × R × E ,
where E and R denote the entity set and relation
set, the KG reasoning task aims at finding a set of
missing triples; i.e., predicting relations r between
two existing entities: (h, ?, t), or predicting the
tail entity t given the head entity and the relation:
(h, r, ?), or predicting the head entity h given the
relation and the tail entity: (?, r, t).

In practical experimental settings, it is reason-
able to predict the tail entity to test a KGR model.
Usually, we aim to rank the triples with the true tail
entity higher than those with the false tail entities.

Eureka consists of two stages: prior knowledge
learning and trigger learning. The former mim-
ics where the human beings acquire basic prior
knowledge. The latter aims at learning new knowl-
edge given only one trigger as the training example,
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based on the prior knowledge they gained. Taking
the KGR task as an example, the objective of prior
knowledge learning can be presented as follows:

min
θ

E

⎡
⎣ ∑
(h,r,t)∈Ga∪Ḡa

�θ
(
h, r, t | Ga, Ḡa

)
⎤
⎦ , (1)

where Ga is a KG full of triples containing seen
relations and Ḡa is a set of invalid triples gener-
ated by polluting the tail entities of valid triples
in Ga; �θ

(
h, r, t | Ga, Ḡa

)
is an arbitrary ranking

loss function, and θ is the parameter of Eureka
including the embeddings of entities and seen re-
lations. This stage is very similar to conventional
knowledge embedding models.

Trigger learning imitates the human ability of
fast learning new knowledge based on their prior
knowledge after being stimulated by a new phe-
nomenon. We sample one new training triple
episodically as a trigger for the model to acquire the
unseen relation. The objective of trigger learning
is defined as:

min
ϕ

EDr′

⎡
⎢⎣

∑
(hi,r′,ti)∈T test

r′ ∪Ḡb

�ϕ
(
hi, r

′, ti | θ∗, Ḡb, T
train
r′

)
∣∣T test

r′
∣∣

⎤
⎥⎦ ,

(2)

where r′ is a unseen relation and Dr′ =
{T train

r′ , T test
r′ } is sampled from Gb ∪ Ḡb; Gb is a

KG of unseen relations and Ḡb is a set of invalid
triples generated by polluting tail entities of triples
in Gb. The relations in Gb and Ga are disjointed;
i.e., the relations in Gb are the unseen relations
for the model trained on Ga. Each T train

r′ contains
only one training triple (h0, r′, t0) as a trigger. The
T test
r′ = {(hi, r′, ti)} is comprised of the testing

triples of r′ with ground-truth tail entity and the
invalid tail entities for each query (hi, r

′). θ∗ is
the learned optimal parameter of prior knowledge
learning stage. �ϕ

(
hi, r

′, ti | θ∗, Ḡb, T
train
r′

)
is the

loss function of trigger learning stage and ϕ is the
parameter to learn.

There are also some learning theories that neural
insight learning looks a bit similar to. We list them
as follows:

1) Meta-Learning (Hospedales et al., 2021):
Meta-learning, also termed as learning to learn,
refers to the paradigm of improving a learning al-
gorithm given the experience of multiple learning
episodes.

2) Transfer Learning (Pan and Yang, 2010):
Transfer learning focuses on storing knowledge
gained from a source domain and applying it to a
different but related target domain.
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Figure 2: The structure of Eureka. We train Eureka in prior
knowledge learning and trigger learning stages. Specifically,
Eureka acquires the embeddings of entities and seen rela-
tions in the prior knowledge learning stage through a bidirec-
tional transformer encoder and CNN-based decoder. With the
learned representations of seen relations, Eureka then learns
the unseen relations efficiently through a cross-domain atten-
tion network. Note that Eureka shares the same encoder and
decoder in the two stages.

3) One-Shot Learning/Few-Shot Learning

(Wang et al., 2020): Whereas most machine learn-
ing algorithms require training on hundreds or
thousands of samples and very large datasets, one-
shot/few-shot learning aims to learn information
about object categories from only one/few training
samples.

4) One-Pass Learning (Zhou et al., 2016; Hou
and Zhou, 2018): One-pass learning is proposed
to predict new coming samples’ label and update
the model based on the prediction, where coming
samples are used only once and never stored.

It is obvious that we adopt a meta-learning frame-
work to formalize and implement Eureka. However,
we use a more strict setting where only one train-
ing example can be seen and the trained model is
capable of performing well on the unseen relations
without sacrificing its performance on the seen rela-
tions. Our neural insight learning can be termed as
trigger to learn as the meta-learning is also known
as learning to learn. Eureka can be also seen as a
subset of transfer learning with more restrictions
since it could learn unseen relation representations
in the target domain based on the prior knowledge
acquired from the source domain. Although one-
shot learning and Eureka both use one training
instance as input, the goal of one-shot learning is to
learn the common knowledge across the tasks and
forget the relation-specific prior knowledge while
Eureka wants to remember prior knowledge. One
pass learning basically refers to learning by seeing
the data once. So if we learn by taking data as a
single instance, mini-batch, or large batches as long
as we go over them once (epoch=1), they qualify
as one pass learning. However, our neural insight
learning only takes one training example as input
and could also satisfy the evolving streaming data
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nature in the real world.

4 Neural Insight Learning

4.1 Overall Architecture

To fully mimic human insight learning behaviors,
Eureka is built on a two-stage learning framework.
Figure 2 shows an overview of Eureka. In the prior
knowledge learning stage, Eureka takes triples sam-
pled from the Ga as input, similar to the knowl-
edge embedding models (Wang et al., 2019) based
on deep neural networks. We use a bidirectional
transformer encoder and a CNN-based decoder to
learn the dynamic embeddings of entities and re-
lations of Ga and the parameters of the encoder-
decoder model. The second stage, termed trigger
learning, is designed to learn new knowledge with
only one training example as a trigger based on the
prior knowledge Eureka gained. Thus, we adopt
a meta-learning framework to implement trigger
learning. During meta-training step, the trigger
sampled from Gb only contains one training triple
(h0, r

′, t0) for each unseen relation r′. The rep-
resentations of r′ can be produced by the trained
encoder-decoder model. However, only a single
training example cannot guarantee the accurate rep-
resentations of r′ as the previous research on knowl-
edge embedding (Xiong et al., 2018) claimed. We
use a CDA network to make up for the lack of
training information of unseen relations. The CDA
mechanism incorporates the embeddings of the rel-
evant seen relations with the calibrated embeddings
of r′ to acquire accurate representations of unseen
relations. The same CNN-based decoder is then
applied to judge whether the query is true or not
with the given trigger during the meta-testing step.

4.2 Prior Knowledge Learning

We expect that Eureka to learn new relations with
only one trigger and preserves good performance
on seen relations; i.e. the embeddings of entities
and relations should ideally evolve with the newly
added triggers. Thus, we need an encoder to pro-
duce dynamic embeddings for every component
given its graph contexts. The pre-trained language
models such as BERT (Devlin et al., 2019), GPT-2
(Radford et al., 2019), have recently made great
progress in learning contextualized word embed-
dings with transformers (Vaswani et al., 2017). In-
spired by these techniques, we employ a bidirec-
tional transformer encoder to model graph con-
texts and produce the dynamic contextual embed-

dings of entities and seen relations. In contrast to
previous sequential left-to-right or right-to-left en-
coding strategies for the elements in a triple (Guo
et al., 2019), our model applies a multi-head self-
attention mechanism to model context information,
which allows each element to pay attention to all
elements in the sequence. Given a triple (h, r, t),
we obtain a sequence X = (x1, x2, x3), where x1,
x2, x3 represent the head entity, relation, and tail
entity, respectively. Since we aim to acquire the
well-learned embeddings among triples, we follow
the settings of most knowledge embedding mod-
els; i.e., modeling the semantic knowledge among
triples instead of paths and walks outstretching
from the entity and relation like CoKE (Wang et al.,
2019). For each element xi in X , the input of our
transformer encoder is constructed as:

m0
i = xele

i + x
pos
i , (3)

where xele
i and x

pos
i denote the element embedding

and the position embedding, respectively. The for-
mer is used to identify the current element, and the
latter represents its position in the sequence. We
feed the input vectors into a stack of L transformer
blocks to encode X:

ml
i = Transformer

(
ml−1

i

)
, l = 1, 2, · · · , L,

(4)
where ml

i is the hidden state of xi after l-th layer.
Then we are allowed to obtain a sequence of

three encoded vectors (mL
1 ,m

L
2 ,m

L
3 ) for the triple

(h, r, t). (Fan et al., 2020) indicates that a given
layer of transformers can only access low-level rep-
resentations and it restricts the model from fully
exploiting the sequential nature of the input. Trans-
formers also have challenges in modeling hierarchi-
cal structures (Hahn, 2020). Thus we adopt CNN
as the decoder in Eureka since CNN can explore the
high-level representations and model the hierarchi-
cal structures of the interactions between entities
and relations by nonlinear feature learning. The
score function for the triple is designed as

f(h, r, t) = pooling(σ([mL
1 ,m

L
2 ,m

L
3 ] ∗ ω))�u,

(5)
where pooling is a max-pooling operator and σ
denotes an activation function. [mL

1 ,m
L
2 ,m

L
3 ] ∈

R
d×3 is a matrix generated by stacking mL

1 , mL
2

and mL
3 , and d is the embedding size; ∗ denotes a

convolution operator; ω ∈ R
s×3 is a set of filters

with s being the number of filters; and u ∈ R
d

denotes a weight vector. Unlike ConvE (Dettmers
et al., 2018b), the decoder of Eureka stacks ele-
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ments of the triple instead of concatenating the
relation and entities in the triple. The stack oper-
ation for feature maps, which is fed to a Conv2D
network, increases the learning ability of latent
features. The pooling operator is empowered to
capture the most important semantic feature from
each feature map and reduces the number of weight
parameters.

Depending on the scoring function f(h, r, t),
we adopt a binary cross-entropy (BCE) loss as
(Nguyen et al., 2018). It applies a softplus (Glorot
et al., 2011) to the score of each (positive or nega-
tive) triple and uses the cross-entropy between the
resulting likelihood and the triple’s label as loss:

L =
∑

(h,r,t)∈G∗
a

log
(
1 + exp

(−l(h,r,t) · f(h, r, t)
))

,

(6)
in which, l(h,r,t) =

{
1 for (h, r, t) ∈ Ga

−1 for (h, r, t) ∈ Ḡa
where

Ga and Ḡa are collections of valid and invalid
triples; G∗

a =
{Ga ∪ Ḡa

}
; Ḡa is generated by cor-

rupting tail entities of valid triples in Ga.

4.3 Trigger Learning

In this stage, we explore how to learn an unseen
relation representation with only one trigger. Since
we aim to predict new facts on both seen and un-
seen relations, Eureka shares the same encoder and
decoder across the two training stages. In other
words, the representation vectors (m′

1,m
′
2,m

′
3)

for a trigger (h0, r′, t0) is output through Equation
3 and 4. Note that Eureka cannot see r′ in the prior
knowledge learning stage. Thus, r′ is randomly
initialized before being fed to the transformer en-
coder. In the dynamic scenario, the representations
of new relations cannot be sufficiently trained on
knowledge embedding models given limited train-
ing triples and thus the embeddings of r′ output by
the transformer encoder can be not accurate. To em-
power Eureka to adapt well to unseen relations and
learn from prior knowledge, we borrow the idea
of transfer learning and design a CDA to model
the semantic interactions between unseen and seen
relations and bridge the “seen-to-unseen” gap.

In the “seen-to-unseen” reasoning scenario,
we adopt a meta-learning framework to imple-
ment trigger learning. For a specific trigger
(h0, r

′, t0), the CDA network can be presented
as CDA(m′

1,m
′
2,m

′
3,Wa), where m′

1,m
′
2,m

′
3 is

the output embeddings by the transformer encoder
and Wa is a set of all seen relations’ embeddings
generated in the prior knowledge learning stage.

The semantic interactions between seen relations
and r′ is modeled as follows:

w′
i =

K∑
t=1

ATTENTION
(

m′
2

‖m′
2‖

, kt

)
· wt

a

‖wt
a‖

,

(7)
where

{
kt ∈ R

d
}K

1
is a set of learnable keys (one

per seen relation) used for indexing the memory.
wt

a is the t-th row vector of the prior knowledge
matrix Wa, which represents the embedding of
the seen relation rt. Then the final representation
vector of unseen relation r′ can be computed as:

w∗
i = λ1 �m′

2 + λ2 �w′
i, (8)

where λ1 and λ2 ∈ R
d are weight matrices to learn;

� is the Hadamard product. Through the above
process, our model is able to explicitly leverage
the acquired semantic knowledge from the seen
relations. Note that we only consider a closed set of
entities and an open set of relations in this scenario.
To be more specific, the testing triples share the
same entities with the training triples while the
relations of testing triples are disjointed from the
relations of training triples.

Since we aim to predict the missing links in a
unified protocol for both seen and unseen relations,
we adopt the same decoder and loss function as
the prior knowledge learning does. To be more
specific, we replace [mL

1 ,m
L
2 ,m

L
3 ] in Equation 5

with [m′
1,w

∗
i ,m

′
3] to constructed trigger learning’s

score function and adopt the same loss function as
Equation 6 implemented in Gb.

5 Experiments

We investigate three issues with Eureka: (1) Could
Eureka improve the performance of KGR on un-
seen relations at no extra cost? (2) Is each compo-
nent in Eureka necessary? (3) How CDA works?
To answer these questions, we conduct experiments
on two KG datasets and systematically analyze the
corresponding results.

5.1 Datasets

We use two public datasets for experiments, NELL
and Wiki, which are released by (Xiong et al.,
2018). NELL is derived from a system that can
continuously acquire diverse structured knowledge
(Mitchell et al., 2015). Wiki is constructed based
on Wikidata (Vrandečić and Krötzsch, 2014). The
dataset statistics are shown in Table 1. We ran-
domly select a number of relations with more
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Table 1: Statistics of the Datasets. # Entities, # Relations and
# Triples denote the number of unique entities, relations and
triples in the datasets, respectively.

Dataset #Entities # Relations # Triples

NELL 68,545 358 181,109
Wiki 4,838,244 822 5,859,240

. . .

0.352

0.095

. . .

0.185

0.137

0.062

. . .

0.243

0.108

0.077

. . .

0.346

0.133

0.121

0.119

Figure 3: The most contributive seen relations in different
tasks for unseen relations in NELL. Here we present top 3
seen relations and their attention weights.

than 1000 triples as seen relations, and the rela-
tions less than 500 but more than 50 triples as
unseen relations. There are 67 and 183 unseen
relations in NELL and Wiki data, respectively. Be-
sides, we use 51/5/11 unseen relations for train-
ing/validation/testing in NELL and the division is
set to 133/16/34 in Wiki during the few-shot learn-
ing stage. The datasets used in the prior knowledge
learning stage are constructed by assigning triples
of each seen relation in the ratio of 7:1:2 to the
training/validation/testing set.

5.2 Baseline Methods

We select two kinds of baseline methods including
knowledge embedding models and few-shot learn-
ing models: 1) Knowledge Embedding Models.

This line of research models multi-relational struc-
ture in KGs and encodes both entities and relations
into a continuous low dimensional vector space.
We consider four widely used baselines as follows:
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), RotatE
(Sun et al., 2019) and UniKER(Cheng et al., 2021).
For fair comparison, we consider the transformer-
based model termed CoKE (Wang et al., 2019) as
the baseline method. All training triples of the seen
relations, as well as the trigger triples of unseen
relations, are used during training. 2) Few-Shot

Learning Models. These models concentrate on
predicting new facts in KGs with only few-shot
reference triples. We select four typical models;
i.e., GMatching (Xiong et al., 2018), MetaR (Chen
et al., 2019), FSRL (Zhang et al., 2020), FAAN
(Sheng et al., 2020) and GANA (Niu et al., 2021).
Note that we adopt one-shot setting for these meth-
ods for fair comparison since Eureka only gets one
available trigger.

5.3 Implementation Details

At the prior knowledge learning stage, Eureka
is trained, evaluated, and tested solely on the
triples of seen relations. We vary the number
of transformer layers in {2, 3, 4}, the number
of transformer heads in {2, 3, 4, 5, 6}, the head
size in {128, 256, 512, 1024}, the number of fil-
ters in {128, 256, 512, 1024}. We also apply
dropout to the transformer layers with the rate in
{0.1, 0.2, 0.3, 0.4, 0.5} to avoid over-fitting. For
parameter updates, we use Adam (Kingma and Ba,
2015) with the initial learning rate of 0.005 and we
have the learning rate decay 5 times for each 50k
training step. At the trigger learning stage, Eureka
is trained, evaluated, and tested solely on the triples
of unseen relations with one training data available.
We also use Adam (Kingma and Ba, 2015) with the
initial learning rate of 0.001 to optimize our model.
Then we have the learning rate decay 5 times for
each 10k training step. We evaluate all methods for
every 10k training steps, and select the best models
leading to the highest Hits@10 on the validation set
within 500k steps as (Xiong et al., 2018); and then
we get the optimal hyper-parameters, and report
the final results on the testing set.

5.4 Evaluation Metrics

Following the widely used evaluation metrics in
KGR tasks (Bordes et al., 2013), we adopt Hits@k,
i.e., the proportion of correct entities ranked in the
top k, and MRR, i.e., the mean reciprocal rank, to
evaluate the overall performance of Eureka. Gen-
erally, the higher MRR and Hits@k indicate the
better performance. k is set to 1, 5, and 10.

5.5 Results

We first evaluate our model on unseen relations,
which predicts new facts on a query set where no
seen relations are included. As shown in Table 2,
Eureka shows a significant improvement margin
over both knowledge embedding models and few-
shot learning models. Taking the best performing
few-shot learning model on NELL (FAAN) as an
example, the improvement (%) of Eureka on testing
MRR and Hits@10 are 23.9% and 14.5%, respec-
tively. It, to some extent, confirms the effectiveness
of the idea that the unseen relation representation
can benefit from semantic interactions of seen rela-
tions and even be composed as a linear combination
of the similar seen relation embeddings.

We also perform a KGR experiment on the seen
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Table 2: The overall results of seen and unseen relations on testing datasets. We present the best baseline results by underline
and highlight the best results of all methods in bold. For coping with the space limitation, we shortened the names of some
evaluation metrics, e.g., Hits@10 is shortened as H@10. The notations are the same in all tables.

NELL Wiki
Seen relations Unseen relations Seen relations Unseen relations

Model MRR H@10 H@5 H@1 MRR H@10 H@5 H@1 MRR H@10 H@5 H@1 MRR H@10 H@5 H@1

TransE .254 .475 .284 .158 .101 .195 .141 .043 305 .464 .378 .267 .033 .052 .041 .022
DistMult .235 .426 .256 .147 .095 .177 .125 .065 .285 424 .357 .221 .050 .102 .069 .019
ComplEx .289 .453 .285 .215 .131 .223 .156 .086 .324 .468 .381 .295 .069 .122 .089 .036
RotatE .314 .482 .392 .226 .103 .235 .188 .089 .337 .481 .408 .299 .055 .083 .055 .033
UniKER .299 .463 .390 .232 .107 .230 .176 .075 .321 .480 .373 .290 .051 .101 .053 .039
CoKE .289 .466 .384 .235 .082 .155 .092 .037 .322 .477 .395 .280 .042 .051 .032 .024

GMatching .181 .295 .261 .131 .175 .293 .250 .114 .269 .388 .341 .205 .201 .335 .272 .123
MetaR .231 .384 .291 .175 .172 295 .236 .096 .324 .420 .390 .281 .193 .291 .237 .155
FSRL .181 .322 .219 .103 .152 .321 .227 .109 .161 .298 .212 .103 .197 .318 .255 .119
FAAN .268 .421 .357 .202 .176 .310 .244 .110 .321 .466 .395 .281 .239 .380 .309 .170
GANA .242 .389 .299 .193 .176 .317 .247 .112 .320 .435 .388 .270 .223 .370 .262 .155

Eureka (Ours) .332 .482 .407 .267 .188 .340 .261 .122 .339 .498 .412 .305 .257 .397 .323 .192

Table 3: Results of model variants on unseen relations of
NELL. The best results are highlighted in bold.

Model MRR H@10 H@5 H@1

AS_1.1.1 .103 .201 .147 .055
AS_1.1.2 .114 .228 .162 .061
AS_1.2.1 .108 .249 .151 .058
AS_1.2.2 .135 .261 .197 .105

AS_2 .179 .330 .250 .118

AS_3.1 .157 .295 .231 .112
AS_3.2 .160 .304 .227 .115

Eureka .188 .340 .261 .122

relation dataset. The experimental results show that
Eureka surpasses the prior state-of-the-art few-shot
learning approaches, which demonstrates that Eu-
reka is able to remember the original knowledge
learned from seen relations when having acquired
unseen relations. Moreover, Eureka is still com-
petitive compared with best-performed knowledge
embedding models on both NELL and Wiki. It is
also worth noting that the performance of the few-
shot learning model does not improve significantly
with sufficient training examples as other models
do. It indicates that the learning capacity of the few-
shot learning approaches is limited even though the
number of their training examples increases.

Thus, we have so far answered the first question;
i.e., Eureka can be well adapted into the KGR task
of unseen relations and outperform both embedding
models and few-shot learning models by incorpo-
rating the knowledge learned from the seen rela-
tion embeddings without sacrificing performance
on seen relations.

5.6 Ablation Study

In this section, we inspect effectiveness of the
model components. Experimental results of model
variants is shown in Table 3 :

1) We verify the significance of the transformer
encoder. We remove the transformer encoder and
replace it with TransE and RotatE, respectively.
We conduct two group of experiments with TransE
as an alternative of the transformer encoder; i.e.,
AS_1.1.1 and AS_1.1.2. In AS_1.1.1, the entity
and relation embeddings produced in the prior
knowledge learning stage remain static when used
in the trigger learning stage. In AS_1.1.2, these
entity and relation embeddings are fine-tuned in
the trigger learning stage. AS_1.2.1 and AS_1.2.2
share the same settings with RotatE as an alter-
native of the transformer encoder. Experimental
results demonstrate that the transformer encoder
is an essential component of our model due to its
ability to model the semantic interactions between
entities and relations and produce the dynamic em-
beddings. By comparing the results of AS_1.1.1
with AS_1.1.2, we can find that it is better to allow
dynamic embeddings rather than static embeddings
for the encoder of Eureka since Eureka absorbs new
knowledge (unseen relation triples) in the trigger
learning stage and could adjust embeddings of seen
relation triples to adapt the unseen domain. The
comparison between AS_1.2.1 and AS_1.2.2 also
leads to the same conclusion.

2) We analyze the contribution of the CNN de-
coder. We remove the CNN decoder and this makes
Eureka in the prior training stage degenerate into a
solely transformer-based model similar to CoKE.
Experimental results indicate that the model per-
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formance can slightly benefit from the CNN-based
decoder through modeling the high-level represen-
tations and the hierarchical structures of the KGs.

3) (AS_3) We evaluate the effectiveness of CDA.
We conduct two experiments denoted as AS_3.1,
AS_3.2. In AS_3.1, we simply remove CDA to in-
spect the contribution of seen relations; in AS_3.2,
we replace CDA with an average pooling operation
on seen relations to evaluate the effectiveness of the
attention mechanism. Experimental results show
that both unseen relations and attention mechanism
are important and contribute consistent improve-
ments to Eureka.

5.7 Case Study for CDA

We investigate how CDA works. Since CDA adopts
an attention mechanism to model the interactions
between seen and unseen relations and represents
unseen relations with the acquired knowledge from
seen relations. We randomly select four unseen
relations and present their most relevant seen rela-
tions according to the attention score in CDA as
shown in Figure 3. We could find that the rele-
vant seen relations have semantic similarity with
their corresponding unseen relations. For example,
for the unseen relation AnimalSuchAsInvertebrate,
the top 3 of the selected seen relations are Animal-
SuchAsMollusk, AnimalTypeHasAnimal, Animal-
PreySon. Obviously, most mollusks belong to inver-
tebrate animals, which confirms the effectiveness
of CDA and our assumption that unseen relations
can benefit from relevant semantic interactions.

5.8 Discussions

We summarize the answers to our three research
issues: (1) Eureka surpasses both embedding mod-
els and few-shot learning models on seen and un-
seen relations. Eureka achieves better performance
on unseen relations without sacrificing its perfor-
mance on seen relations. Note that as the number
of triggers increases, Eureka still outperforms other
baselines, which is shown in Figure 1. (2) The
ablation study demonstrates the effectiveness of
each model variant of Eureka, i.e., the transformer
encoder for allowing dynamic embeddings; CNN
decoder for modeling the high-level representations
and the hierarchical structures of the KGs; CDA
for modeling semantic interactions between seen
and unseen relations. (3) The case study shows
why CDA brings a dramatic rise for experimental
results, i.e., CDA assigns varying attention weights
to different seen relations and selects the most rele-

vant seen relations to represent each unseen relation
more accurately.

6 Conclusion

In this work, we present a neural insight learning
framework (Eureka), which mimics human insight
learning modes to bridge the “seen” to “unseen”
gap in the KGR tasks. We train Eureka in prior
knowledge learning and trigger learning stages.
Specifically, Eureka acquires the representations
of entities and seen relations in the prior knowl-
edge learning stage, and then learns the unseen
relations efficiently through a CDA network with
the incorporation of the embeddings of seen rela-
tions. Eureka meets our expectation of the model
to not only have good performance on both rela-
tion types but also eliminate the need to retrain
the original training datasets. The experimental
results demonstrate that our model outperforms the
state-of-the-art baselines on datasets of both seen
and unseen relations. The case studies confirm the
CDA network is empowered to select relevant seen
relations to better represent unseen relations. We
plan to investigate enhancing CDA with relations’
text descriptions as future directions of this work.
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