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Abstract

Training Neural Machine Translation (NMT)
models suffers from sparse parallel data, in the
infrequent translation scenarios towards low-
resource source languages. The existing solu-
tions primarily concentrate on the utilization of
Parent-Child (PC) transfer learning. It transfers
well-trained NMT models on high-resource lan-
guages (namely Parent NMT) to low-resource
languages, so as to produce Child NMT models
by fine-tuning. It has been carefully demon-
strated that a variety of PC variants yield sig-
nificant improvements for low-resource NMT.
In this paper, we intend to enhance PC-based
NMT by a bidirectionally-adaptive learning
strategy. Specifically, we divide inner con-
stituents (6 transformers) of Parent encoder
into two “teams”, i.e., T1 and T2. During
representation learning, T1 learns to encode
low-resource languages conditioned on bilin-
gual shareable latent space. Generative adver-
sarial network and masked language modeling
are used for space-shareable encoding. On the
other hand, T2 is straightforwardly transferred
to low-resource languages, and fine-tuned to-
gether with T1 for low-resource translation.
Briefly, T1 and T2 take actions separately for
different goals. The former aims to adapt to
characteristics of low-resource languages dur-
ing encoding, while the latter adapts to trans-
lation experiences learned from high-resource
languages. We experiment on benchmark cor-
pora SETIMES, conducting low-resource NMT
for Albanian (Sq), Macedonian (Mk), Croat-
ian (Hr) and Romanian (Ro). Experimental
results show that our method yields substan-
tial improvements, which allows the NMT per-
formance to reach BLEU4-scores of 62.24%,
56.93%, 50.53% and 54.65% for Sq, Mk, Hr
and Ro, respectively.

1 Introduction

NMT has achieved significant improvements (Bah-
danau et al., 2015; Vaswani et al., 2017) in recent
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years. Nevertheless, It heavily relies on large-scale
observable parallel corpora. As a result, NMT gen-
erally fails to perform perfectly in an infrequent
translation scenario, where the available parallel
data for training is sparse. For example, the size of
training data for NMT between English (En) and
Macedonian (Mk) is about 200K, which is signifi-
cantly smaller than that (582M) between English
(En) and German (De). The issue has been widely
known as low-resource NMT.

The existing studies attempt to overcome the
issue primarily by 1) producing cross-language em-
beddings, 2) constructing bilingual shareable latent
space for encoding, and 3) transferring well-trained
models to low-resource languages. We overview
the studies in Section 2. Within the aforementioned
arts, nowadays, Parent-Child (PC) transfer learn-
ing (Zoph et al., 2016) represents a considerable
advance in our knowledge. It allows a Parent NMT
model to be fully trained and developed over high-
resource languages (e.g., that for De→En), and
transfers it to low-resource languages (e.g., that for
Mk→En) for fine-tuning. This contributes to the
construction of a Child NMT model that inherits
the translation experiences of Parent model.

The recent experimental results suggest that PC
transfer learning suffers from the weak perception
of semantics in low-resource languages, at the very
beginning of encoding. In other words, fine-tuning
Parent NMT model over low-resource languages is
unavoidably started from scratch. This results in
less effective and inefficient representation learn-
ing. Though, it is proven that duplicating embed-
dings (Aji et al., 2020; Xu and Hong, 2022) of
cross-language shareable tokens, synonyms and
mutually-aligned tokens helps to alleviate the cold-
start fine-tuning problem. This also implies that
conventional methods of constructing shareable la-
tent space (Artetxe et al., 2018; Lample et al., 2018)
may produce similar but general effects.

In this paper, we intend to strengthen PC trans-
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fer learning by coupling it with space-shareable
encoding. Different from the previous work, we
neither use an unabridged Parent encoder for space-
shareable encoding, nor directly transfer it towards
low-resource translation. Instead, we divide the
unabridged Parent encoder into two parts. One
part engages in space-shareable encoding for alle-
viating cold-start fine-tuning problems. The other
is straight transferred without being “brainwashed”
for the pre-existing translation experiences (i.e., the
ones learned during high-resource NMT). The goal
is to fulfill bidirectional adaptation, i.e., 1) estab-
lishing the encoding mode that adapts to linguistic
characteristics of low-resource languages, condi-
tioned on the shareable latent space; and 2) pre-
serving the encoding mode that adapts to original
translation experiences of the Parent NMT model.

In our experiments, we follow Vaswani et al.
(2017) to build a transformer-based NMT model
within the encoder-decoder architecture, where
both encoder and decoder comprise 6 transformer
layers. We intensively train it on large-scale high-
resource language pairs to produce a knowledge-
able Parent NMT model. On the basis, we take Par-
ent’s encoder, and divide it into two teams: T1 (1st

transformer layer) and T2 (2nd-6th transformer lay-
ers). We train T1 to perform space-shareable encod-
ing for low-resource languages. And we carry out
monolingual unsupervised learning when training
T1, where the generative adversarial network and
masked language model are used. When mould-
ing the Child NMT model, we transfer Parent to
low-resource languages as usual. The difference
lies in that T2 in Parent performs hot-start encod-
ing by absorbing “home-made” hidden states from
T1, i.e., the ones fabricated by T1 in terms of both
monolingual features of low-resource languages
and distributions in shareable latent space.

We conduct experiments on corpora SETIMES,
where the low-resource MT scenarios of Sq-En,
Mk-En, Hr-En and Ro-En are considered. Exper-
imental results show that our method yields sub-
stantial improvements, and achieves competitive
performance compared to the state of the art.

2 Related Work

There are a variety of advanced methodologies pro-
posed for tackling low-resource NMT. Due to page
limitation, we merely overview the closely-related
arts reported in recent five years.
• Shareable Latent Space

Recently, the impressive hypothesis is that em-
beddings of both high-resource and low-resource
source languages can be produced conditioned on
the distributions in the same latent space. This un-
doubtedly contributes to the construction of versa-
tile NMT models towards different language pairs,
frankly, including those in the low-resource NMT
scenarios. The key issue, in this case, is to establish
a shareable latent space.

Artetxe et al. (2018) and Lample et al. (2018) de-
sign unsupervised learning approaches to construct
shareable latent space. The approaches actually
enable an encoder to properly project low-resource
languages into the latent space of high-resource lan-
guages. Iterative back translation (Sennrich et al.,
2016) and denoising auto-encoder (Vincent et al.,
2008) are used to fulfill space-shareable encoding.
The studies demonstrate the versatility of space-
shareable encoding for multilingual translation in
simulated experiments, where high-resource lan-
guage pairs (e.g., En-De) are used though the size
of training data is reduced. Soon after, Guzmán
et al. (2019) prove that space-shareable encoding
fails to obtain promising performance for authentic
low-resource scenarios (e.g., En-Nepali and En-
Sinhala). Marchisio et al. (2020) suggest that weak
isomorphism between non-family languages results
in the performance degradation. To strengthen
space-shareable encoding, recently, multilingual
BART (Liu et al., 2020a) is used in the unsuper-
vised NMT framework, together with denoising au-
toencoder (Üstün et al., 2021) and multitask learn-
ing (Ko et al., 2021).

• Constructing Shareable Vocabulary
The first study for alleviating weak isomorphism

most probably derives from Lakew et al. (2019)’s
effort, where perplexity-based similarity computa-
tion is utilized to automatically select most relevant
high-resource languages for space-shareable encod-
ing. The obtained improvements in this study im-
ply that common linguistic units (isomorphic con-
stituents) between high-resource and low-resource
languages serve as informative seeds for harvest-
ing embeddings of heterogeneous constituents. It
raises the interest in building shareable vocabulary.

Kim et al. (2018) construct a synthetic dictio-
nary by iteratively updating linear mapping rela-
tionships between bilingual embeddings. Aji et al.
(2020) build a joint vocabulary where the matched
tokens are assigned with the same embeddings,
while the mismatched the randomly-initialized em-
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Figure 1: Architecture of bidirectionally-adaptive transfer learning for PC-based NMT, which conducts bilingual
translation from high-resource language pairs (A→B) to low-resource language pairs (C→B).

beddings. Chronopoulou et al. (2021) retrain Byte-
Pair-Encoding (BPE) over bilingual hybrid corpus,
and use the segmented tokens by BPE to build the
shareable vocabulary. Xu and Hong (2022) carry
out word alignment between low-resource and high-
resource languages, and share embeddings among
aligned sub-tokens. This effectively expands the
existing shareable vocabularies.
• Transfer Learning for NMT
Transfer learning approaches for NMT are pri-

marily developed within Parent-Child (PC) frame-
work (Zoph et al., 2016; Zhang et al., 2021). PC
allows an NMT model to be trained on large-scale
high-resource parallel data, and fine-tunes it on a
small quantity of low-resource parallel data. It is
proven that PC produces significant and increasing
improvement with less warming-up time. Nowa-
days, PC has been successfully coupled with the
aforementioned shareable vocabulary construction
(Aji et al., 2020; Chronopoulou et al., 2021; Xu
and Hong, 2022).
• Pretrained Langauge Models for NMT
Pretrained langauge models, such as ELMo (Pe-

ters et al., 2018) and BERT (Devlin et al., 2019),
have been demonstrated to be effective for natural
language processing. They enable the deep per-
ception and encoding of semantics by learning that
from large-scale monolingual data. Recently, Liu
et al. (2020b) develop a multilingual BART, whose
encoder significantly contributes to the enhance-

ment of low-resource NMT.

3 Approach

We show the architecture of our low-resource NMT
model in Figure 1. The 12-layer transformer-based
encoder-decoder network (at the left side in Figure
1) serves as Parent NMT model, which contains
six layers of transformer encoder and six layers of
transformer decoder. From here on, we refer them
as encoder and decoer layers respectively. The
Parent NMT model has been intensively trained
to perform translation for high-resource language
pairs A and B (i.e., NMT for A→B).

We divide Parent encoder layers into two teams
T1 and T2, where T1 is constituted merely with
the 1st encoder layer, while T2 the rest five en-
coder layers. On the basis, T1 is pushed into the
bidirectionally-adaptive learning channel (which is
marked by the dotted rectangular box with a purple
background in Figure 1). During the adaptation pro-
cess, T1 engages in the bilingual encoding program
launched by the generative adversarial network,
so as to learn space-shareable encoding mode for
both high-resource language A and low-resource
language C. Besides, T1 engages in the masked
language modeling program for low-resource lan-
guage C, with the aim to learn language-specific
encoding mode in terms of distinct characteristics
of C. T1 will be trained iteratively and alternately
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in the two programs. This results in a refined T1.
We construct Child NMT model by transferring

Parent decoder and T2 to low-resource language
pairs C and B (NMT for C→B), and connect T2
with the refined T1. On the basis, we fine-tune
Child NMT model using small-scale low-resource
parallel data. The Child model is deployed at the
right side in Figure 1. Instead, the T1 and T2 we
used come from the decoder of the Parent model
(A→B) if the child translation direction is A→C. In
the rest of this section, we detail all the components
of our model.

3.1 Baseline Low-resource NMT
We follow Xu and Hong (2022)’s work to con-
struct the baseline transferable NMT model for
low-resource language pairs, where Parent-Child
(PC) transfer mechanism (Zoph et al., 2016) is used,
and Xu and Hong (2022)’s expanded version of Aji
et al. (2020)’s joint vocabulary is adopted.
• NMT Framework We performance sentence-

level NMT. Given a source language sentence s,
we convert each token in it into the real-valued em-
bedding vis ∈ R512. This results in the distributed
representations Vs of s (Vs={v1s ...vls}), where “l”
denotes the maximum length of input sequence.
A trainable embedding layer is used for obtain-
ing token-level embeddings, which possesses a dy-
namic source-language vocabulary mapping from
tokens to embeddings.

We feed Vs into the 1st encoder layer, the one de-
ployed ahead of other five sequentially-connected
encoder layers. We use the encoder layers to obtain
deep representations Hs of Vs as follows:{

H
(i)
s = f

(i)
e

(
H

(i−1)
s

)
, 1 < i ≤ 6

H
(i)
s = f

(i)
e (Vs) , i = 1

(1)

where, f (i)
e is the i-th encoder layer of vanilla trans-

former (Vaswani et al., 2017; Al-Rfou et al., 2019).
Conditioned on the representations H(6)

s output
by the encoder stack, we conduct decoding using
six successively-connected decoder layers: h

(i)
t = f

(i)
d

(
H

(6)
s , h

(i−1)
t

)
, 1 < i ≤ 6

h
(i)
t = f

(i)
d

(
H

(6)
s , vt−1

)
, i = 1

(2)

where, f (i)
d denotes the i-th decoder layer of vanilla

transformer, h(i)t is the hidden state output by f
(i)
d

at a certain decoding time step t, and vt−1 is the
embedding of the (t-1)-th token predicted at the

earlier time step. Note that we obtain vt−1 using the
trainable target-language embedding layer. Each
target-language token is predicted by a linear layer
with Softmax normalization, conditioned on h

(6)
t .

• PC Transfer Learning We train the afore-
mentioned encoder-decoder network for NMT on
high-resource language pairs A and B, i.e., learn-
ing to encode H

(6)
A and decode H

(6)
B . This allows

Parent NMT model to be formed. We transfer this
well-trained Parent NMT model to low-resource
language pairs C and B, and fine-tune it over the
parallel data between C and B. By parametric in-
heritance and adaptive training (i.e., fine-tuning),
transfer learning enables the generation of Child
NMT model. Ideally, it learns to encode H

(6)
C and

decode H
(6)
B to some extent.

• Joint Vocabulary During the transfer learn-
ing towards C→B NMT, the embedding layer of
source language C is enhanced using the expanded
joint vocabulary. In terms of the vocabulary, both
morphologically-identical sub-tokens (Aji et al.,
2020) and aligned sub-tokens (Xu and Hong, 2022)
(between source language C and target language B)
share the same embeddings, i.e., the ones learned
from the process of training Parent NMT. When
conducting bilingual embedding sharing between
aligned sub-tokens, Xu and Hong (2022)’s element-
wise mean aggregation (namely Mean-PC) is used
for N -to-1 alignment cases.

3.2 Bidirectionally-adaptive Transfer
Learning

We strengthen the baseline NMT model using a
Bidirectionally-Adaptive Transfer Learning strat-
egy (BATL for short). BATL adopts T1 (i.e., 1st en-
coder layer) of Parent NMT model, and exclusively
trains it for activating its bidirectional adaptability,
including the adaptation to Parent’s encoding mode
towards high-resource NMT (A→B), as well as
that to monolingual linguistic characteristics of the
low-resource language C. Generative Adversarial
Network (GAN) and Masked Language Modeling
(MLM) are utilized for BATL.
• GAN-based Backward Adaptation We con-

struct a discriminator, and couple it with T1 for
adversarial training. T1 encodes a source-language
sentence, which may derive from high-resource
language pairs or low-resource. Conditioned on
the representation (of a sentence) output by T1, the
discriminator determines whether the sentence is
of high-resource language or low-resource, within
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a binary classification task.

More importantly, T1 plays the role of a “coun-
terfeiter”. It produces the representation according
as closely as possible to distributions in the seman-
tic space of high-resource language, i.e., the one
learned during the training for Parent NMT. Briefly,
T1 counterfeits the high-resource sentence repre-
sentation even if the sentence is actually of low-
resource language. By contrast, the discriminator
is trained to perform for anti-counterfeiting, deter-
mining the provenance of a sentence as precisely
as possible. Repeatedly training T1 and the dis-
criminator within the adversarial framework (coun-
terfeiting versus anti-counterfeiting) will enhance
both themselves. In particular, T1 learns to encode
the low-resource language in the way of encod-
ing the high-resource language, conditioned on a
shareable semantic space. Coupling such a T1 into
Child NMT model, frankly, contributes to the en-
hancement of its adaptation to Parent’s translation
experience, during the process of tackling the low-
resource language.

• MLM-based Forward Adaptation T1 ap-
pears as a junior encoder when dealing with sen-
tences of low-resource language at the very be-
ginning, due to a lack of pragmatic and semantic
knowledge in it. Consequently, the aforementioned
adversarial training that directly utilizes such a ju-
nior T1, most probably, fails to form a reliable
bilingual semantic space. In other words, although
T1 learns to encode low-resource language in the
mode of high-resource language (by GAN), it is
grounded on a shallow or even inexact understand-
ing of the former’s pragmatics and semantics.

To address the issue, we construct a Masked Lan-
guage Modeling channel (MLM) to enhance the
capacity of T1 in encoding low-resource languages.
It enables the forward adaptation of T1 to inherent
linguistic characteristics of low-resource language.

MLM is conducted with the task of predicting
masked tokens. Given a sentence of low-resource
language, we mask about 10% tokens in it. The
Masking strategy is implemented by substituting
the randomly selected tokens with the special token
“UNK”, and initializing them with the unified em-
beddings. We feed the partially-masked sentence
into T1 to encode each token in it, where the pa-
rameters of T1 are learnable during training. T2
is used for further encoding over the output of T1,
where the parameters of T2 are frozen. Freezing
T2 prompts T1 to learn low-resource languages as

actively as possible.
• Collaborative Training We train T1 by GAN

and MLM, alternatively and iteratively. First, T1
is trained by GAN, where 781 batches of hy-
brid monolingual data are used (i.e., 781 batches
of monolingual sentences selected from the low-
resource dataset, as well as 781 batches of high-
resource cases). Secondly, T1 is further trained by
MLM, where 1,562 batches of monolingual low-
resource instances are used. This alternative train-
ing is carried out iteratively for 100 times within
25 epochs.

3.3 Shaping Low-resource NMT by BATL

We utilize the aforementioned BATL as a midway
stage of transfer learning. In order to shape a con-
crete Child NMT, we still need to transfer T1 and
the accompanying networks to low-resource lan-
guage pairs, and fine-tune them on the parallel data.
• Components of Child comprises T1, T2 and

the decoder of Parent NMT model. During assem-
bling the components, T2 is connected behind T1,
and both act as an encoder. The decoder of Parent
with an embedding layer is coupled with the en-
coder. Briefly, Child inherits Parent’s architecture.
• Transfer Learning includes the stages of

BATL and transfer to low-resource language pairs.
Within Child’s components, only T1 is considered
during BATL. All the components are fine-tuned on
the parallel data of low-resource language pairs. It
is noteworthy that although T2 is used for MLM in
BATL, its parameters are frozen at the stage. Dur-
ing fine-tuning towards low-resource languages, all
the components are trainable.
• Loss of NMT is calculated as follows, where

the cross-entropy estimation is used:

LMT = Exi∈S [−log p(yi|xi)] (3)

where, p(yi|xi) denotes the conditional probability
that the ground-truth target-language sentence yi is
predicted given the source-language sentence xi.

4 Experimentation

4.1 Datasets and Evaluation Metric

We experiment on SETIMES (Tiedemann, 2012)1.
To facilitate the comparison with the previous work,
we concentrate on the low resource translation tasks
of Sq↔En, Mk↔En, Hr↔En and Ro↔En, where

1http://opus.nlpl.eu/SETIMES.php
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#HighR Fr-En Es-En De-En Ru-En
Train. 747M 952M 582M 217M

Table 1: Statistics in high-resource (#HighR) parallel
datasets. Note that we won’t report the development
and test results of Parent NMT models, and therefore
the statistics for high-resource validation and test sets
are omitted in this study. The high-resource NMT per-
formance has been discussed in Tiedemann’s work3.

#Languages Datasets Train.
De, Sq, Mk, Hr, Ro SETIMES 200k
Fr, Es, Ru Europarl 200k

Table 2: Statistics in monolingual datasets.

Sq, Mk, Hr, Ro and En refer to Albanian, Mace-
donian, Croatian, Romanian and English, respec-
tively. We utilize 200K sentences for training, 1K
sentences for validation, and 3K sentences for test-
ing for each language. We take into consideration
various Parent NMT models for shaping Child in a
series of separate experiments, where four classes
of high-resource language pairs are used, includ-
ing Es→En, Fr→En, De→En and Ru→En (Span-
ish: Es, French: Fr, German: De, Russian: Ru).
All the high-resource parallel data is derived from
Tatoeba2. Table 1 shows the scales of high-resource
parallel training data.

In addition, we introduce different monolingual
datasets into our experiments, which are used for
GAN and MLM during the stage of BATL. The
monolingual data of De, Sq, Mk, Hr and Ro is
taken from the parallel data in SETIMES, while
that of Fr, Es and Ru is selected from Europarl
(Koehn, 2005)4. Table 2 shows the statistics in
monolingual datasets.

We follow the previous work to evaluate all NMT
models with SacreBLEU (Post, 2018).

4.2 Hyperparameter Settings

We directly use the off-the-shelf transformer-base
NMT models (Tiedemann, 2020) as Parents, and
the newly-developed Child NMT models inherit all
the configurations and hyperparameters of Parent.

First of all, all the sentences are tokenized using
SentencePiece (Kudo and Richardson, 2018) with
a 100k vocabulary size.

Secondly, we use monolingual datasets to train

2https://opus.nlpl.eu/Tatoeba.php
3https://huggingface.co/Helsinki-NLP
4https://statmt.org/europarl/

T1. We train T1 by GAN and MLM in 25 epochs,
using NVIDIA RTX 2080Ti 11GB GPU. The opti-
mizer is set to Adam (Kingma and Ba, 2015), and
the learning rate is set to 10−4.

Finally, we shape a Child NMT model using the
well-trained T1 as well as Parent’s T2 and decoder.
Fine-tuning Child NMT is conducted on the low-
resource parallel data. During fine-tuning, Hug-
gingFace Transformers library (Wolf et al., 2020)
and AdamW (Loshchilov and Hutter, 2019) opti-
mizer are used. The latter runs with a weight decay
rate of 0.1. We carry out grid search in the learn-
ing rates of {10−4, 5× 10−5} for each translation
task, and adopt the best model occurred during the
development process. All fine-tuning is conducted
on NVIDIA RTX 3090 24GB GPU.

4.3 Models for Comparison
We compare with two baseline models, which are
denoted as Baseline1 and Baseline2. Baseline1 acts
as a 12-layer transformer-based encoder-decoder
NMT. It is randomly initialized and trained on low-
resource parallel data. Baseline2 is a variant of
Baseline1 since it is enhanced by transfer learning
within the Parent-Child (PC) framework.

Besides, we compare our model to different state-
of-the-art NMT models, including:
• XLM (Conneau and Lample, 2019) is a trans-

ferable language model. It is obtained by cross-
language pretraining, where parallel sentences are
concatenated for joint encoding, within a masked
language modeling process.
• RE-LM (Chronopoulou et al., 2020) learns to

reuse language models across different monolin-
gual datasets. An extended bilingual vocabulary is
constructed to enhance cross-language pretraining.
The obtained language models are transferred to
low-resource NMT.

In addition, we involve Xu and Hong (2022)’s
Mean-PC into the discussion, which recently im-
proves low-resource NMT using shareable embed-
dings of aligned sub-tokens. Nevertheless, we fail
to directly compare with it because its performance,
as reported, is obtained on different corpora and
source languages. We discuss Mean-PC in a sep-
arate ablation experiment, where it is reproduced
and equipped with our BATL.

4.4 Main Result
We show the primary test results in Table 3. It can
be observed that BATL produces substantial im-
provements compared to both baselines. It is note-
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Sq-En Mk-En Hr-En Ro-En
Model → ← → ← → ← → ←
Baseline1 32.50 52.03 30.13 50.62 25.90 38.90 28.92 46.39
Baseline2 (Zoph et al., 2016) 38.15 54.50 33.32 54.57 29.93 41.34 32.92 48.71
XLM (Conneau and Lample, 2019) 60.90 55.10 55.00 55.50 - - - -
RE-LM (Chronopoulou et al., 2020) 61.10 54.80 55.20 55.30 - - - -
BATL (Ours) 62.24 56.82 56.93 56.15 50.53 45.21 54.65 52.19

Table 3: Low-resource NMT performance. BLEU scores (%) are reported in both translation directions (← and→)
for each low-resource language pairs. The performance of previous work is quoted from the published literature
(instead of reproduction) due to the use of the same test sets.

Model Sq→En Mk→En
Unabridged. 62.24 56.93
−GAN 61.95 56.45
−MLM 60.61 52.81
−Mean-PC 62.06 56.34
−BATL 61.45 56.42
−All 38.15 33.09

Table 4: Verifying the effectiveness of different compo-
nents of our NMT model in ablation experiments.

worthy that we conduct transfer learning within
the same framework with Baseline2, i.e., PC trans-
fer. The additional components we use include
Mean-PC (for embedding sharing among matched
or aligned sub-tokens), as well as GAN and MLM
(for bidirectional adaptation to low-resource and
high-resource languages). This demonstrates that
the considerable performance gains benefit from
the collaboration between bilingual commonality
perception and bidirectionally-adaptive encoding.

Compared to the state-of-the-art low-resource
NMT models, our BATL-based models achieve
better performance. The possible reasons behind
the advantages may include the following aspects:
• The commonly-used cross-language pretrain-

ing in the previous work (XLM, RE-LM and the
variant) is proceeded with a task-irrelevant sce-
nario, where a knowledgeable multilingual pre-
trained model may be used for initialization, though
it fails to learn the experience in MT. By contrast,
we take out part of encoder of the well-trained Par-
ent NMT, and train it to adapt different source lan-
guages during encoding. This allows the resultant
representations of new languages to be compatible
with the pre-existing translation mode, i.e., ensur-
ing the task-specific cross-language training.
•MLM is used alone for cross-language pretrain-

ing in the previous work, where bilingual source

sentences are concatenated, masked and encoded
thereafter. This contributes to the encoding within
a shareable latent space, though the exclusive lin-
guistic characteristics of a specific source language
are neglected to some extent. By contrast, we si-
multaneously pursue commonality and exclusive
characteristics using MLM and GAN, where MLM
intently encodes low-resource source languages in
terms of their natures, while GAN is utilized to
explore shareable encoding mode.

4.5 Ablation study
In a series of ablation experiments, we verify the
effectiveness of different individual components
of BATL, including GAN and MLM. Consider-
ing that we expand PC-based NMT using both
Mean-PC (Xu and Hong, 2022) and BATL, we
also ablate them alternatively to examine their in-
fluences. Table 4 shows the experimental results.
Note that, hereafter, we merely report the forward
NMT performance (i.e., that of “→” NMT), where
low-resource languages (Sq and Mk) are consid-
ered as source languages.

It can be found that ablating MLM results in
more significant performance degradation, com-
pared to GAN. This implies that MLM plays a
dominant role in BATL, or in other words, the
adaptation to low-resource languages during the
“preheated” transfer process is crucial. Note that we
merely push part of encoder (i.e., T1) into MLM-
based cross-language transfer learning. It is differ-
ent from the previous work which uses the whole
encoder. In fact, by comparing the performance of
XLM and RE-LM to our model that ablates GAN
(i.e., mere use of MLM) across Table 3 and 4, we
can find that our local transfer strategy produces
the positive effects (better performance is obtained
even if GAN is disabled).

Compare to Mean-PC, ablating BATL (i.e., ablat-
ing both GAN and MLM) causes more substantial



4488

Parent Model Sq→En Mk→En
De→En 61.34 55.28
Fr→En 62.18 56.24
Es→En 62.24 56.93
Ru→En 61.03 55.86

Table 5: BLEU scores (%) of Child NMT models trans-
ferred from different Parent models.

performance reduction for the translation scenario
of Sq→En, while relatively comparable reduction
for Mk→En. This illustrates that learning-centered
strategy of BATL has an advantage over the knowl-
edge sharing mechanism of Mean-PC. Frankly,
both are non-negligible. It is proven by the severe
performance degradation caused by disabling both
BATL and Mean-PC (see the performance obtained
when “ALL” is ablated in Table 4).

4.6 Discussion and Analysis

• Effects of Different Parent Models
We construct four Parent NMT models using

different source languages, including De, Fr, Es
and Ru. On the basis, we verify the effects of such
Parents on Child NMT models. The low-resource
NMT performance resulted from different Parents
is shown in Table 5. It can be observed that the
Parents of Fr→En and Es→En are more beneficial
to transfer, helping to produce higher BLEU scores.

Ideally, the PC-based transfer learning ought to
benefit from high-resource languages that derive
from the consistent or similar language family, such
as the relatively closer relationship between Ru and
Mk. However, the experimental results fail to sup-
port this hypothesis. Our findings show that the
size of high-resource training data plays a more
crucial role in improving the performance of PC
transfer. As shown in Table 1, the most knowledge-
able Parent, i.e., that of Es→En, is obtained on
952M training data. The scale of training data is
much larger than that used for Parent of Ru→En.
The latter fails to obtain an equivalently strong
Child model. These findings are consistent with
the conclusion of Kocmi and Bojar (2018).
• Is it Necessary to Construct Multi-layer T1

Our BATL is performed merely using T1, i.e., a
single encoder layer, while the considered encoder
is actually constituted with 6 transformer layers. It
may be questioned whether BATL induces varying
effects when T1 is expanded with more layers. The
following experiment demonstrates that a larger T1
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Figure 2: BLEU scores of our approach with respect to
the number of self-attention layers in T1.

negatively influences NMT performance.
In a separate experiment, we split different num-

bers of transformer layers from Parent’s encoder,
and use them to form different depths of T1s. There
are six T1s constructed in total using 1 to 6 encoder
layers respectively. We conduct BATL for each of
them separately, and reform Child NMT models
accordingly. Figure 3 shows performance curves
of such models in the MT scenarios of Sq↔En and
Mk↔En, where the horizontal axis indicates the
number of encoder layers in T1. It can be observed
that performance degrades gradually when T1 is
enlarged using more encoder layers.

The experimental results imply that overly shuf-
fling and remodeling Parent’s encoder for adapta-
tion enhancement is risky. Most of well-trained
parameters (translation experience) of Parent need
to be directly inherited by Child.
• Compatibility with DAE and BT
Both denoising autoencoder (DAE) and back-

translation (BT) have been proven effective in low-
resource NMT. They were known as data augmen-
tation methods that build synthetic corpora using
monolingual data (Artetxe et al., 2018; Lample
et al., 2018). We attempt to combine DAE and BT
with our BATL, and rerun all the experiments to
verify whether compatibility can be achieved.

For verifying the compatibility with DAE, we
combine it with BATL from behind. During train-
ing, BATL is first used to optimize T1 and then
DAE runs. Within the process, there are 3M5 mono-
lingual sentences (of low-resource language) used
for DAE, where the model is additionally trained
to assist revivification of all the falsified sentences,
with the role of autoencoder. The effect of combin-
ing BATL and DAE is negative, as shown in Table
6, where the low-resource NMT performance is
reduced severely. Our analysis suggests that, worse
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Model Sq→En Mk→En
Ours. 62.24 56.93
+DAE 60.97 55.76
+BT 62.75 57.32

Table 6: BLEU scores obtained in the study of compati-
bility, where our BATL is respectively combined with
DAE and BT.

than incompatibility and redundancy, the additional
utilization of DAE leads to catastrophic forgetting
of translation experience. In fact, DAE nearly plays
the same role as the MLM module of our BATL,
and thus, the posteriori-prompted DAE breaks the
compromise effects reached by MLM and GAN.

For verifying the compatibility with BT, we ex-
pand the training data of low-resource language
pairs using parallel instances. As usual, such
pseudo instances are obtained by translating En
to a certain low-resource language (e.g., Sq or Mk)
forwardly and backwardly, where an off-the-shelf
NMT model6 is used. In our experiments, there
are 2M pseudo instances created by BT for ex-
pansion. We use the expanded low-source data to
fine-tune the Child NMT model. The rest configura-
tion remains unchanged. Combining BATL and BT
yields additional performance gains, as shown in
Table 6, where BLEU scores are up to 62.75% and
57.32% for Sq→En and Mk→En. It demonstrates
that BATL can be jointly used with BT safely.

5 Conclusion

We propose a Bidirectionally-Adaptive Trans-
fer Learning (BATL) approach to enhance low-
resource NMT models. Experimental results show
that our approach yields substantial improvements,
compared to the state of the art. In addition, it is
demonstrated that BATL is compatible with BT-
based data augmentation. Combining BATL and
BT obtains additional performance gains. In a se-
ries of auxiliary experiments, we analyze the ef-
fects of various Parent NMT models and multi-
layer BATL on low-resource NMT, some of which
are negative and therefore noteworthy for risks in
real applications.

The Commonality of linguistics stands for the
fundamental principle in prompting Parent-Child
transfer for low-resource NMT. Different family

5We follow the previous work to adopt a similar number
of instance for running DAE (Chronopoulou et al., 2020).

6https://huggingface.co/Helsinki-NLP

languages hold inconsistent commonalities with a
specific low-resource language. Considering this
phenomenon, in the future, we will study on a mul-
tilingual Parent-Child transfer learning. A selec-
tive transfer will be developed, in terms of case-
specific adhesion to different high-resource fam-
ily languages. The adhesion will be perceived by
modeling the relevance of topics, provenances and
domains, as well as document-level structure infor-
mation (e.g., monolingual discourse relationships
and rhetorics).
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