
Proceedings of the 29th International Conference on Computational Linguistics, pages 4160–4171
October 12–17, 2022.

4160

Fast and Accurate End-to-End Span-based Semantic Role Labeling as
Word-based Graph Parsing

Shilin Zhou, Qingrong Xia, Zhenghua Li∗, Yu Zhang, Yu Hong, Min Zhang
Institute of Artificial Intelligence, School of Computer Science and Technology,

Soochow University, Suzhou, China
{slzhou.cs,yzhang.cs}@outlook.com; kirosummer.nlp@gmail.com

{zhli13,hongy,minzhang}@suda.edu.cn

Abstract

This paper proposes to cast end-to-end span-
based SRL as a word-based graph parsing
task. The major challenge is how to repre-
sent spans at the word level. Borrowing ideas
from research on Chinese word segmentation
and named entity recognition, we propose and
compare four different schemata of graph repre-
sentation, i.e., BES, BE, BIES, and BII, among
which we find that the BES schema performs
the best. We further gain interesting insights
through detailed analysis. Moreover, we pro-
pose a simple constrained Viterbi procedure
to ensure the legality of the output graph ac-
cording to the constraints of the SRL struc-
ture. We conduct experiments on two widely
used benchmark datasets, i.e., CoNLL05 and
CoNLL12. Results show that our word-based
graph parsing approach achieves consistently
better performance than previous results, under
all settings of end-to-end and predicate-given,
without and with pre-trained language mod-
els (PLMs). More importantly, our model can
parse 669/252 sentences per second, without
and with PLMs respectively.

1 Introduction

As a fundamental natural language processing
(NLP) task, semantic role labeling (SRL) uses
predicate-argument structure to represent the shal-
low semantic meaning of sentences. SRL structure
is shown to be helpful for many downstream NLP
tasks, such as machine translation (Liu and Gildea,
2010; Marcheggiani et al., 2018) and question an-
swering (Wang et al., 2015).

There exist two forms of concrete SRL for-
malism in the community, i.e., word-based (also
known as dependency-based SRL) and span-based,
depending on whether an argument consists of
a single word or a word span. Compared with
word-based SRL, span-based SRL is more com-
plex due to difficulties in determining argument

∗ Corresponding author

They want to do more .

They want to do more .

A0 A1

A0 A1

Figure 1: An example of span-based SRL, where “want”
and “do” are two predicates.

boundaries. Figure 1 shows the span-based SRL
structure for two predicates. Semantic roles of ar-
guments are distinguished with edge labels, such as
“A0” (agent) and “A1” (patient). This work focuses
on the end-to-end span-based SRL task, and pro-
poses a unified model to simultaneously recognize
predicates and arguments in the input sentence.

In recent years, span-based SRL has achieved
substantial performance boost due to the tremen-
dous progress made by deep neural network mod-
els, especially by pre-trained language models
(PLMs). Currently, there are mainly two main-
stream approaches, i.e., BIO-based (Zhou and Xu,
2015) sequence labeling and span-based graph pars-
ing (He et al., 2018).

The BIO-based sequence labeling approach first
identifies the predicates and then finds arguments
for each predicate independently by labeling every
word with BIO tags, like “B-A0” or “I-A0”. Its
major weakness is that a sentence has to be encoded
and decoded for multiple times, each time for one
predicate (Zhou and Xu, 2015; Shi and Lin, 2019),
thus proportionally reducing the training and infer-
ence efficiency.1 Zhou and Xu (2015) concatenate
an indicator embedding to each input token, where
the focused predicate corresponds to 1, and others
to 0. Shi and Lin (2019) append the focused predi-
cate word to the end of the sentence before getting
into BERT (Devlin et al., 2019).

1Some BIO-based approaches, for example Strubell et al.
(2018), only encode the input sentence once without using
predicate indicators, but this leads to inferior performance.

4161

The span-based graph parsing approach directly
considers all word spans as candidate argument
nodes and links them to predicate nodes (He et al.,
2018; Li et al., 2019). However, this approach also
suffers from a severe inefficiency problem, since
there are O(n) candidate predicates and O(n2) can-
didate arguments, leading to a big search space of
O(n3). Previous works usually employ heuristic
pruning techniques to improve efficiency.

Inspired by recent works on semantic depen-
dency graph parsing (SDGP) (Oepen et al., 2014;
Dozat and Manning, 2018; Wang et al., 2019), this
work for the first time proposes a word-based graph
parsing approach for end-to-end span-based SRL.
End-to-end means that all predicates and arguments
in a sentence are inferred simultaneously and by a
single model. The key challenge is how to repre-
sent span-based arguments in word-based graphs in
which nodes correspond to single words. Once this
is solved, we can build our parser on the shoulder
of existing word-based graph parsing models. This
work employs the second-order model of Wang
et al. (2019). In summary, our work makes the
following contributions:

• We propose a new word-based graph parsing ap-
proach for end-to-end span-based SRL. Via a
straightforward simplification, our approach can
be applied to the predicate-given setting.

• Borrowing ideas from research on Chinese word
segmentation (CWS) and named entity recogni-
tion (NER), we propose and investigate several
graph schemata. We find the BES schema is
steadily superior to others and obtain interesting
insights via detailed analysis.

• Inevitably, graph parsing models may output il-
legal graph that cannot be properly transformed
into SRL structure. To deal with this, we pro-
pose a simple constrained Viterbi procedure for
post-processing illegal graphs.

• We conduct experiments on the CoNLL05 and
CoNLL12 benchmark datasets. Our proposed ap-
proach achieves consistently better performance
than previous results, under all settings of end-to-
end and predicate-given, with and without PLMs.
More importantly, our parser is much more faster
than previous parsers and can analyze 669/252
sentences per second, without and with PLMs.

We release our code, configuration files,
and models at https://github.com/
zsLin177/SRL-as-GP.

2 Related Works

Span-based SRL. As two mainstream neural
models, the BIO-based and span-based graph pars-
ing approaches handle SRL in different ways.

The BIO-based approach usually predicts predi-
cates first and then recognizes arguments for each
predicate via sequence labeling. For each predi-
cate, Zhou and Xu (2015) indicates the position
of the predicate via indicator embedding, and then
encode the sentence using multi-layer BiLSTMs,
and finally apply a CRF layer to find the best label
sequence. Shi and Lin (2019) append the focused
predicate word to the original sentence, and then
feed the sentence into BERT, and then apply BiL-
STM for further encoding.

The span-based graph parsing approach is pro-
posed by He et al. (2018). The idea is directly
predicting relations between candidate predicates
(single words) and arguments (word spans) in a
graph. Li et al. (2019) apply the approach to the
word-based SRL task.

Besides the two mainstream approaches, re-
searchers have explored other interesting directions.
Zhang et al. (2021) propose a two-step span recog-
nition approach, i.e., first identifying a head word
and then extending the word into a span. Blloshmi
et al. (2021) cast the SRL task under the predicate-
given setting as a sequence-to-sequence task like
machine translation. Given a predicate, its SRL
structure is converted into a token sequence. Their
approach achieves competitive performance by us-
ing BART (Lewis et al., 2020).

Concurrently, Zhang et al. (2022) cast span-
based SRL as a tree parsing approach. Given a
predicate, the word span corresponding to an argu-
ment is represented as latent trees. The sentence is
encoded once without using predicate indicators,
but each predicate require an independent decoding
process.

Syntax-enhanced SRL. Due to the close con-
nection between syntax parsing and SRL, there
has been a lot of works on syntax-enhanced SRL.
Strubell et al. (2018) and Zhou et al. (2020) jointly
handle syntactic parsing and SRL under the multi-
task learning framework. Xia et al. (2019) inject
auto-parsed syntactic trees into SRL as extra fea-
tures . In contrast, our work is a pure modeling
study, and does not use external syntactic knowl-
edge.

https://github.com/zsLin177/SRL-as-GP
https://github.com/zsLin177/SRL-as-GP

4162

Root They want to do more

PRD

S-A0/B-A0 B-A1

E-A1

PRD

S-A0/B-A0 S-A1/B-A1

(a) BES and BE

Root They want to do more

PRD

S-A0/B-A0 B-A1

I-A1

E-A1/I-A1

PRD

S-A0/B-A0 S-A1/B-A1

(b) BIES and BII

Figure 2: Proposed four different schemata. Labels in
black are the shared part. Red and blue labels belong to
BES, BIES and BE, BII respectively.

SDGP. In contrast to predicate-argument struc-
ture, SDGP belongs to another category of seman-
tic representation formalism, using word-based
graphs to represent semantics of sentences (Oepen
et al., 2014, 2015). The specific forms include DM
(Ivanova et al., 2012), PSD (Hajič et al., 2012),
PAS (Miyao and Tsujii, 2004), etc.

Straightforwardly, graph parsing is a mainstream
approach for SDGP. Dozat and Manning (2018)
propose an efficient first-order graph parser to find
an optimal graph from a fully connected graph.
Wang et al. (2019) extend the model of Dozat and
Manning (2018) by introducing second-order infor-
mation. They compare two approximate high-order
inference methods, i.e., mean filed variational in-
ference and loopy belief propagation.

Word-based graph parsing for word-based SRL.
As far as we know, Li et al. (2020) for the first
time propose to treat word-based SRL as a SGDP
task. Since arguments correspond to single words
in word-based SRL, the two tasks are very simi-
lar. They employ the SGDP model of Wang et al.
(2019) straightforwardly. Moreover, their study
focuses on the predicate-given setting. First, they
use a separate sequence labeling model to predict
predicates. The SDGP model is then applied to
recognize arguments.

3 Proposed Graph Schemata

This work proposes to cast end-to-end span-based
SRL as a word-based graph parsing task. The key
challenge is to design a suitable graphical schema
so that all predicates and their span-based argu-
ments can be represented simultaneously in one
graph without ambiguity. And the graph can be
transformed to its corresponding SRL structure
without performance loss.

3.1 SRL-to-Graph Transformation

We design four different schemata for transforming
span-based SRL structures into word-based graphs.
The basic idea is linking words in an argument to
the corresponding predicate, and labeling the edges
according to both semantic role labels and word
positions in the argument.

Specifically, we add a pseudo “Root” node at the
beginning of the sentence and link all the predicates
to it with “PRD” as the edge label. This allows
our model to simultaneously predict predicates and
arguments in an end-to-end manner.

Borrowing ideas from research on CWS and
NER, we propose and investigate two strategies for
attaching argument words to corresponding pred-
icates, i.e., boundary-attach and all-attach. The
boundary-attach strategy connects only the start
and end words of an argument to its predicate word,
while the all-attach strategy connects all words of
an argument to the predicate word. For each strat-
egy, we design two concrete schemata, as follows.

Boundary-attach: BES and BE. Figure 2(a)
shows the two schemata. When an argument con-
tains multiple words, we attach only the start and
end words to its corresponding predicates, using
“B-r” and “E-r” as the edge labels, where r is the
original semantic role label. As shown in Figure
2(a), the two schemata handle the argument “to do
more” in the same way.

When an argument corresponds to a single word,
for example, the argument “They”, the BE schema
simply uses “B-r” as the label, while the BES
schema uses “S-r” to make a distinction. Our
experiments show that such distinction consistently
improves performance.

All-attach: BIES and BII. Figure 2(b) shows
the two schemata. Each word in an argument is
attached to its corresponding predicate. In the BII
schema, the first word is labeled as “B-r”, and
the following words, if any, are labeled as “I-r”,

4163

where the prefix “I-” means being inside an argu-
ment.

Analogous to BES, BIES further distinguishes
the end word in an argument using “E-r”, and
single-word arguments using “S-r”.

In fact, there is another variant schema that be-
longs to the all-attach category, which is BIS. Due
to space limitation, we do not introduce it in detail
since our preliminary experiments show its per-
formance lags behind the best schema by a large
margin.

3.2 Graph-to-SRL Recovery

In the evaluation stage, given an input sentence,
our graph parsing model outputs an optimal graph
according to the underlying schema. Then, the job
is to recover SRL structure. If the output graph is
legal (i.e., without label conflicts), the recovery is
quite straightforward. Taking the BES schema for
example, all children nodes (words) of the pseudo
“Root” are treated as predicates. Then, for each
predicate, we recover all its arguments based on
the edge labels. An argument corresponds to either
a paired labels, such as “B-A0” and “E-A0”, or a
single label such as “S-A0”.

Unfortunately, it is quite complex to guarantee
legality of output graphs. To handle this issue,
we propose a simple yet effective post-processing
recipe based on constrained Viterbi decoding in
Section 5.

4 Model

Based on our designed graphical schema, we can
address span-based SRL as a word-based graph
parsing task. Following Dozat and Manning (2018)
and Wang et al. (2019), the framework of our model
consists of two stages: 1) predicting all edges and
2) assigning labels for edges.

4.1 Encoder

BiLSTM. Under the setting without PLMs, we
use BiLSTM as our encoder. The input of the i-th
word wi is the concatenation of word embedding
eword
i , lemma embedding elemma

i , and charLSTM
representation vector:

xi = eword
i ⊕ elemma

i ⊕ echari (1)

where echari is the output vector of a one-layer BiL-
STM that encodes the character sequence (Lample
et al., 2016). Then, a three-layer BiLSTM encoder

. . . wi . . . wk . . . wj . . .

BiLSTM × 3 or PLM

MLPh MLPm

Biaffine

MLPh′′
MLPg MLPm′′

Triaffines

hi hk hj

rhi rmj rh
′′

i rgk rm
′′

j

s(i, j) s∗(i, k, j)

MFVI layers

QT
i,j

Figure 3: Illustration of our model. s∗(i, k, j) cor-
responds to the second-order scores, where ∗ ∈
{sib, cop, grd}.

produces a context-aware vector representation for
each word.

hi = fi ⊕ bi (2)

where fi and bi respectively denote the output vec-
tors of top-layer forward and backward LSTMs for
wi.

PLM. Under the setting with PLMs, we adopt
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) to get contextual word representation
to boost the performance of our model.

hi = PLM(wi) (3)

Concretely, we use the outputs of all three layers
in ELMO, and of the top four layers in BERT, and
then apply weighted sum to obtain the final output
vector for each token.

4.2 Edge prediction
In SDGP, the prediction of edge is treated as a
binary 0/1 classification task, where 1 means that
there exists an edge between the given word pair
and 0 otherwise. Here, for each edge i → j 2 , we
need to compute the logit score logitij . Then we
can get the probability of existence of each edge
Qij by applying the Sigmoid function. During
inference, the edges that have Qij > 0.5 will be
retained.

To facilitate computation and modeling, the first-
order model of Dozat and Manning (2018) makes
a strong assumption that edges are mutually inde-
pendent and thus it only considers the information

2For convenience, we abbreviate the edge i → j as (i, j)
in the remaining part of the paper.

4164

i j k

(a) sibling

i j k

(b) co-parent

i j k

(c) grandchild

Figure 4: Three types of second-order sub-trees.

between the current two words when computing
logits. However, in our case, the edges in the re-
sulting graph usually have a strong correlation. For
example, in our BE schema, a “B-∗” edge usually
calls for a “E-∗” edge, and vice-versa, to form a
complete argument. So, in this work, we extend
first-order to second-order by adding three types
of sub-trees, as shown in Figure 4. And we com-
pute the logit by mean field variational inference
(MFVI) following Wang et al. (2019).

The logit comes from two parts. The first part is
the first-order score s(i, j). We use two MLPs to
get representation vectors of a word as a head or
a modifier respectively, and then use a BiAffine to
compute edges’ first-order scores as follows:

rhi ; r
m
i = MLPh (hi) ;MLPm (hi)

s(i, j) =

[
rmj
1

]⊤
Wrhi

(4)

where W ∈ R(d+1)×d.
The other part comes from second-order sub-

trees. First, we use three new MLPs to get repre-
sentations of each word for playing different roles
in second-order sub-trees as follows:

rh
′′

i ; rm
′′

i ; rgi = MLPh′′/m′′/g (hi) (5)

where rh
′′

i , rm
′′

i , and rgi denote the representation
vectors of wi as head, modifier, and grandchild
respectively. Then, a TriAffine scorer (Zhang et al.,
2020) taking the three vectors as input is applied
to compute the score of the corresponding second-
order structure:

TriAFF(v1,v2,v3) =

[
v3

1

]⊤
v1

⊤W′
[
v2

1

]
(6)

where W′ ∈ R(d′+1)×d′×(d′+1) and v1,2,3 ∈ Rd′ .
Finally, scores of the three types of sub-trees can
be computed as follows respectively:

ssib(i, j, k) = TriAFFsib(r
h′′
i , rm

′′
j , rm

′′
k) (7)

scop(i, j, k) = TriAFFcop(r
h′′
i , rm

′′
j , rh

′′
k) (8)

sgrd(i, j, k) = TriAFFgrd(r
h′′
i , rm

′′
j , rgk) (9)

It should be noted that for symmetrical sibling sub-
trees and co-parent sub-trees, we compute their
corresponding scores only once, i.e., ssib(i, j, k) =
ssib(i, k, j) and scop(i, j, k) = scop(k, j, i).

For a given edge (i, j), MFVI aggregates the
final logitTij and QT

ij from the corresponding first-
order score and second-order scores iteratively as
follows:

Mt−1
ij =

∑
k ̸=i,j

Qt−1
ik ssib(i, j, k)

+Qt−1
kj scop(i, j, k)

+Qt−1
jk sgrd(i, j, k)

logittij = s(i, j) +Mt−1
ij

Qt
ij = σ(logittij)

(10)

where t ∈ [1, T] is the iteration number. Mij is
an intermediate variable that stores message from
second-order sub-tree scores. Q0

ij is initialized by
applying Sigmoid on s(i, j). Through T times of
update, we get the final logitTij and probability QT

ij .

4.3 Label prediction

Similar to edge scoring, we use two extra MLPs
and a set of Biaffines to compute the label scores:

rh’i ; rm’i = MLPh′ (hi) ;MLPm′
(hi)

s(i, j, ℓ) =

[
rm

′
j

1

]⊤
Wlabel

ℓ

[
rh

′
i

1

]
p(ℓ|i, j) =

exp (s(i, j, ℓ))∑
ℓ′∈L exp (s(i, j, ℓ′))

(11)

where s(i, j, ℓ) is the score of the label ℓ for the
edge (i, j). p(ℓ|i, j) is the probability after softmax
over all labels. Each label has its own Biaffine
parameters Wlabel

ℓ ∈ R(d+1)×(d+1).

4.4 Training

The loss of our system comes from both edge and
label prediction modules. Given one sentence X
and its gold graph G, the fully connected graph of
X is denoted as C.

Le(θ) = −
∑

(i,j)∈G

logQT
ij −

∑
(i,j)∈C\G

log (1−QT
ij)

Ll(θ) = −
∑

(i,j)∈G

log p(ℓ̂|i, j)
(12)

where θ denotes model parameters; C\G is the set
of incorrect edges; ℓ̂ is the gold label of edge. The

4165

loss of the final model is the weighted sum of the
two parts:

L(θ) = λLl(θ) + (1− λ)Le(θ) (13)

where λ = 0.06 in our model.

5 Conflict resolution

During inference, we first use the edge prediction
module to build the graph skeleton, and then use
the label prediction module to assign labels to pre-
dicted edges. After that, we use a simple procedure
to check whether the generated graph is legal. Con-
cretely, for each predicate, we scan the edges of
the predicate from left to right. For example, in
the BES schema, a “B-∗” edge must be followed
by a “E-∗” edge; “S-∗” edge and “E-∗” can be
followed by a “B-∗” edge or “S-∗” edge. If the
generated graph is legal, we can directly recover
the corresponding SRL structure through Graph-to-
SRL procedure described in 3.2.

However, since the label prediction module han-
dles each edge independently, the resulting graph
may contain conflicts, as shown in the upper part
of Figure 5(a) 3. First, if two consecutive edges
are both labeled as “E-∗”, such as the two “E-A0”
edge, then it is impossible to recover the corre-
sponding arguments. Another conflicting scene is
when there exists a single outlier edge labeled as
“B-∗” or “E-∗”, such as “E-A1” edge in the figure.

Constrained Viterbi. We propose to employ con-
strained decoding to handle conflicts. Concretely,
when conflicts occur during recovering arguments
for a predicate in the output graph, we re-label all
words in the sentence for the predicate. However,
it is non-trivial to apply constrained Viterbi to our
SDGP framework as a post-processing step.

Here we use the BES schema as an example,
and the process for other schemata is similar. In
the first stage, QT

ij means the probability that the
edge appears in the final graph; while in the second
stage, p(ℓ|i, j) means the probability that the edge
should be labeled as ℓ ∈ L = {B-*,E-*,S-*}.
We can see that L does not include “I” and “O”,
meaning that the word is inside an argument or out-
side any arguments respectively. The two labels are
indispensable for the sequence labeling procedure.

To solve this issue, we add two pseudo labels
“O/I” into the label set, and redistribute the label

3Here we only take the BES schema as a representative for
discussion, and others can be viewed in § A.

Root Some students want to do more .

Viterbi: B-A0 E-A0 O B-A1 I E-A1 O

PRD
E-A0

E-A0
E-A1

(a) A conflicting example in BES. Edges in red cause
conflicts, and the sequence below is the corrected sequence
via our constrained Viterbi.

B-∗

E-∗

S-∗

I

O

B-∗ E-∗ S-∗ I O

(b) The transition matrix of BES.

Figure 5: A conflicting example and the transition ma-
trix in BES schema. The rows indicate the beginning of
the transition and the columns indicate the ending. Cells
with fence denote the prohibited transitions. I and O
are two pseudo labels.

probability distribution as follows.

p′(ℓ|i, j) = QT
ij · p(ℓ|i, j)

p′(O|i, j) = p′(I|i, j) = 1−QT
ij

(14)

where p′(ℓ|i, j) is the probability for the normal la-
bel such as “B-A0”. p′(O|i, j) and p′(I|i, j) share
the same probability because they both mean that
there is no edge pointing to the word, but “I” has
an extra indication that there is an unpaired “B-∗”
in the left side. Thus, we can solve the conflicts by
controlling the transition matrix.

For example, as shown in Figure 5(b), we dis-
allow transitions from “E-∗” to “E-∗”. So, the
“Some” and “students” are re-labeled as “B-A0”
and “E-A0”. And finally we get the correct ar-
gument span “Some students” with semantic role
“A0”.

6 Experiments

Data and evaluation. Experiments are con-
ducted on CoNLL05 (Palmer et al., 2005) and
larger-scale CoNLL12 (Pradhan et al., 2012),
which are two widely used span-based SRL
datasets. Following previous works on span-based
SRL, we omit predicate sense prediction (Zhou
and Xu, 2015; He et al., 2017). We use the official

4166

Schema WSJ Brown

P R F1 P R F1

BES 85.28 83.66 84.46 74.10 70.76 72.39
BE 83.97 83.56 83.76 71.82 70.19 70.99
BIES 82.63 83.92 83.27 70.22 72.03 71.11
BII 81.65 83.44 82.54 67.72 70.74 69.20
+BERT
BES 87.15 88.44 87.79 79.44 80.85 80.14
BE 86.37 87.93 87.14 78.18 79.91 79.04
BIES 85.91 88.17 87.03 77.59 81.76 79.62
BII 85.31 87.57 86.43 76.90 81.03 78.91

Table 1: Results on CoNLL05 datasets with respect to
proposed four schemata. The variation between the 3
runs on WSJ and Brown is about 0.1 and 0.2, respec-
tively. And it varies little between different schemata.

evaluation scripts4. We choose seeds randomly to
run our model for 3 times and report the average
results.

Hyper-parameter settings. We employ 300-
dimension English word embeddings from GloVe
(Pennington et al., 2014) for our experiments. We
adopt most hyper-parameters of the SDGP work
of Wang et al. (2019), except that we reduce the
dimension of Char-LSTM from 400 to 100 to save
the memory, which only slightly influence perfor-
mance. For experiments with PLMs, we adopt
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) as our encoder. Following most of previous
works (He et al., 2018; Xia et al., 2019), for ELMo,
we froze its parameters during training. For BERT,
we fine-tune its parameters for 10 epochs. The
initial learning rate for models with and without
BERT are 5e-5 and 1e-3 respectively. The hyper-
parameter λ in the loss function (Eq. 13) is set
to 0.06 in all experiments, based on preliminary
experiment results.

6.1 Schema Comparison

Overall results. First, to compare the proposed
four schemata and find which one is better, we con-
duct experiments on CoNLL05 datasets under the
end-to-end setting. Table 1 shows results of differ-
ent schemata. First, by comparing the two different
attaching strategy, i.e., all-attach (BII, BIES) and
boundary-attach (BE, BES), we can find that the
schemata resulted from boundary-attach have bet-
ter P and F1 results. We think this may be because
BII and BIES connect all words in arguments to
predicates. So the final graph contains much more

4http://www.cs.upc.edu/~srlconll/st05/
st05.html

Figure 6: Analysis of the arguments with different width.
The horizontal axis denotes the width of arguments and
the proportion of arguments of the same width in the
data set. The vertical axis denotes the F1 value.

edges than that generated by BE and BES. There-
fore, given two words, the corresponding model
tends to build an edge between them, compared
with not building an edge, resulting in a higher R
but a lower P. Second, by comparing schemata that
with and without “S-r”, i.e., BII vs. BIES and
BE vs. BES, we find that it is always better to use
a separate “S-r” to label the edge corresponding
to the single-word argument. Therefore, from the
overall point of view, we can get the conclusion
that BES > BE > BIES > BII.

Performance regarding argument width. Here
we define an argument’s width as the number of
words included. As we know, different schemata
have different attaching and labeling methods to
represent arguments of the same width. Therefore,
analyzing the performance of different schemata
on the same width argument will help us to
deeply explore the advantages and disadvantages
of schemata.

As shown in Figure 6, we divide arguments into
four categories according to their width, and re-
port F1 values for each category. The proportion
of each category in the gold-standard data is also
reported. First, we can see that BES and BIES per-
form much better on 1-width arguments. This fur-
ther shows that it is necessary to use “S-r” alone
to represent arguments of width 1. Then, we can
clearly find that BE and BES perform better than
BII and BIES on arguments containing multiple
words. And we know that BE and BES are resulted
from the boundary-attach strategy which pays more
attention to boundary information. So, we may con-

http://www.cs.upc.edu/~srlconll/st05/st05.html
http://www.cs.upc.edu/~srlconll/st05/st05.html

4167

Model Type Sents/sec
He et al. (2018) SGP 44
Strubell et al. (2018) BIO-based 45
Zhang et al. (2022) TP 214
Zhang et al. (2022)BERT 113
Ours WGP 669
OursBERT 252

Table 2: Speed comparison on CoNLL05. “SGP” and
“WGP”denote the span-based graph parsing and word-
based graph parsing approach respectively; “TP” means
the tree parsing approach.

clude that boundary information is more helpful to
the recognition of multi-word arguments.

Through analyzing the performance of different
schemata, we find that BES is more suitable for
converting span-based SRL into word-based graphs
than other schemata. So, the rest of the experiments
are conducted in BES schema.

6.2 Efficiency

Table 2 compares different models in terms of de-
coding speed. For fair comparison, we re-run all
previous models on the same GPU environment
(Nvidia GeForce 1080 Ti 11G). The results are av-
eraged over 3 runs. In terms of batch size during
evaluation, our model and Strubell et al. (2018) use
5000 tokens (about 134 sentences), while He et al.
(2018) and Li et al. (2019) use 40 sentences by
default.

We can see that our model improves the effi-
ciency of previous span-based SRL models by large
margin. Compared with the span-based graph pars-
ing approach (He et al., 2018; Li et al., 2019),
our graph-based parser only has a O(n2) search
space. As for the BIO-based model of Strubell
et al. (2018), the encoder contains 12 self-attention
layers, and they adopts a pipeline framework by
first predicting all predicates via sequence labeling
and then recognizing arguments, leading to its low
parsing speed. And when augmented with BERT,
our methods can still parse about 250 sentences per
second.

As discussed in Section 2, Zhang et al. (2022)
reduce the SRL to a tree parsing task and get good
results. However, they have to build a dependency
tree for each predicate, which greatly reduces the
efficiency of their approach. Specifically, the speed
of our model is respectively three and twice times
as fast as theirs under the setting without and with
BERT.

6.3 Comparison with previous results
End-to-end. Our work mainly focuses on the
end-to-end setting, i.e, requiring predicting pred-
icates and arguments simultaneously. So we first
go into this scenario. The first part of the Table 3
shows the comparison with previous works under
the end-to-end setting.

First, when compared with models without
PLMs, our model surpasses previous approaches
with the large gap, getting comparable results with
recently released work (Zhang et al., 2022). Then,
most previous works usually use ELMo to improve
the performance. In order to make a fair compari-
son, we also report the results with ELMo. We can
find that our model also reaches better results, with
+0.25 F1 on WSJ, +0.77 F1 on Brown, and +0.44 F1

on CoNLL12-test when using ELMo. And when
augmented with the more powerful PLM BERT,
the performance of our model can be further im-
proved. It shows that our method not only has high
efficiency, but also performs better than previous
works.

As discussed in Section 2, please kindly notice
that Strubell et al. (2018) and Zhou et al. (2020)
use extra syntactic knowledge to boost SRL perfor-
mance. We only list their syntax-agnostic results
here for fair comparison. It is worth noting that
Strubell et al. (2018) incidentally wrongly used the
official script in the end-to-end setting, leading to
much higher precision scores. We reported this
issue to their github repository and they confirmed
this mistake. In this work, we report their results by
evaluating their released models with the correct
evaluation process.

Predicate-given. Recent works (Jindal et al.,
2020; Zhang et al., 2021; Blloshmi et al., 2021)
usually assume that predicates have been given,
thus they only need to recognize the arguments and
semantic roles. To compare with these works, we
also report the results under the predicate-given
setting. In our work, following Cai et al. (2018),
during training procedure, the model is informed
which word is the predicate using a predicate em-
bedding. The embedding is added to the input
vector.

Finally, from the second part of the Table 3, we
can see that our model reaches the best results on
most test datasets when compared with models
without PLMs. When it comes to models with
PLMs, we can see that the BIO-based Shi and Lin
(2019) is a strong baseline. Our model lags behind

4168

Model CoNLL05-WSJ CoNLL05-Brown CoNLL12

Dev.F1 P R F1 P R F1 Dev.F1 P R F1

The end-to-end setting
He et al. (2017)† 80.30 80.20 82.30 81.20 67.60 69.60 68.50 75.50 78.60 75.10 76.80
Strubell et al. (2018)† ∗ 81.72 81.77 83.28 82.51 68.58 70.10 69.33 - - - -
He et al. (2018)‡ 81.60 81.20 83.90 82.50 69.70 71.90 70.80 79.40 79.40 80.10 79.80
Li et al. (2019)‡ - - - 83.00 - - - - - - -
Zhou et al. (2020) 82.27 - - - - - - - - - -
Zhang et al. (2022) 83.91 83.26 86.20 84.71 70.70 74.16 72.39 81.16 79.27 83.24 81.21
Ours 83.17 85.28 83.66 84.46 74.10 70.76 72.39 80.79 82.10 79.76 80.91
Strubell et al. (2018)† ∗ + ELMo 84.73 83.86 85.98 84.91 73.01 75.61 74.31 - - - -
He et al. (2018)‡ + ELMo 85.30 84.80 87.20 86.00 73.90 78.40 76.10 83.00 81.90 84.00 82.90
Li et al. (2019)‡ + ELMo - 85.20 87.50 86.30 74.70 78.10 76.40 - 84.90 81.40 83.10
Ours + ELMo 85.72 86.19 86.91 86.55 76.57 77.77 77.17 83.72 83.53 83.56 83.54
Zhang et al. (2022) + BERT 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
Ours + BERT 86.79 87.15 88.44 87.79 79.44 80.85 80.14 84.74 83.91 85.61 84.75

The predicate-given setting
He et al. (2017)† 81.60 83.10 83.00 83.10 72.90 71.40 72.10 81.50 81.70 81.60 81.70
Strubell et al. (2018)† - 84.70 84.24 84.47 73.89 72.39 73.13 - - - -
He et al. (2018)‡ - - - 83.90 - - 73.70 - - - 82.10
Tan et al. (2018)† 83.10 84.50 85.20 84.80 73.50 74.60 74.10 82.90 81.90 83.60 82.70
Zhou et al. (2020) 83.16 - - - - - - - - - -
Zhang et al. (2021) 84.45 85.30 85.17 85.23 74.98 73.85 74.41 82.83 83.09 83.71 83.40
Zhang et al. (2022) 84.65 85.47 86.40 85.93 74.92 75.00 74.96 83.39 83.02 84.31 83.66
Ours 84.39 87.01 84.36 85.66 77.86 72.53 75.10 83.83 85.74 82.95 84.32
Li et al. (2019)‡ + ELMo - 87.90 87.50 87.70 80.60 80.40 80.50 - 85.70 86.30 86.00
Shi and Lin (2019)† + BERT - 88.60 89.00 88.80 81.90 82.10 82.00 - 85.90 87.00 86.50
Jindal et al. (2020)† + BERT 87.10 87.70 88.00 87.90 80.30 80.10 80.20 86.60 86.30 86.80 86.60
Zhang et al. (2021) + BERT 87.38 87.70 88.15 87.93 81.52 81.36 81.44 86.27 86.00 86.84 86.42
Blloshmi et al. (2021) + BART - - - - - - - - 87.80 86.80 87.30
Zhang et al. (2022) + BERT 88.05 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.52 87.79 87.66
Ours + BERT 87.54 89.03 88.53 88.78 83.22 81.81 82.51 86.97 87.26 87.05 87.15

Table 3: Results on CoNLL05 and CoNLL12 datasets. We mark BIO-based models by † and span-based graph
ones by ‡. For Strubell et al. (2018) and Zhou et al. (2020), we list their syntax-agnostic results to compare fairly.
Moreover, we mark the results of Strubell et al. (2018) by ∗ to indicate that we report corrected evaluation results
after re-testing their released models.

them slightly on WSJ, but is much higher than them
on other datasets. And even compared with recent
seq-to-seq model (Blloshmi et al., 2021), which
uses more powerful BART (Lewis et al., 2020), our
model still has strong competitiveness.

Comparison with Zhang et al. (2022). As dis-
cussed in Section 2, Zhang et al. (2022) propose a
tree parsing approach to span-based SRL, which
also appears in COLING-2022. We can see that per-
formance of our model is slightly inferior to theirs,
possibly due to more careful hyper-parameter tun-
ing according to personal discussion between the
two first authors. For example, Zhang confirms that
fine-tuning BERT for 20 iterations leads to higher
performance, while we only did 10 iterations.

7 Conclusions

This paper proposes four new graph representation
schemata for transforming raw span-based SRL
structures to word-based graphs. Based on the

schema, we cast the span-based SRL as a word-
based graph parsing task and present a fast and ac-
curate parser. Moreover, we propose a simple post-
processing method based on constrained Viterbi
to handle conflicts in the output graphs. Experi-
ments show that our parser 1) is much more effi-
cient than previous parsers, and can parse over 600
sentences per second; 2) reaches consistently better
performance than previous results on CoNLL05,
CoNLL12 datasets. The in-depth comparison be-
tween four schemata shows that the boundary infor-
mation counts a lot when recognizing arguments.
In addition, distinguishing single-word arguments
from multi-words arguments can also improve the
final performance. These clear findings may help
researchers think about SRL from a new perspec-
tive in the future.

4169

8 Acknowledgments

We thank our anonymous reviewers for their valu-
able suggestions. This work was supported by Na-
tional Natural Science Foundation of China (No.
62176173 and 62076174) and a project funded by
the Priority Academic Program Development of
Jiangsu Higher Education Institutions.

References
Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and

Roberto Navigli. 2021. Generating senses and roles:
An end-to-end model for dependency- and span-
based semantic role labeling. In Proceedings of IJ-
CAI, pages 3786–3793.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
ACL, pages 2753–2765.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171–
4186.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of ACL, pages 484–490.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announcing
Prague Czech-English Dependency Treebank 2.0. In
Proceedings of LREC, pages 3153–3160.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of ACL, pages 364–369.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of ACL, pages
473–483.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom? A
contrastive study of syntacto-semantic dependencies.
In Proceedings of LAW, pages 2–11.

Ishan Jindal, Ranit Aharonov, Siddhartha Brahma,
Huaiyu Zhu, and Yunyao Li. 2020. Improved
semantic role labeling using parameterized neigh-
borhood memory adaptation. arXiv preprint
arXiv:2011.14459.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.

Neural architectures for named entity recognition. In
Proceedings of NAACL-HLT, pages 260–270.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of ACL, pages 7871–
7880.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De-
pendency or span, end-to-end uniform semantic role
labeling. In Proceedings of AAAI, pages 6730–6737.

Zuchao Li, Hai Zhao, Rui Wang, and Kevin Parnow.
2020. High-order semantic role labeling. In Findings
of EMNLP, pages 1134–1151.

Ding Liu and Daniel Gildea. 2010. Semantic role fea-
tures for machine translation. In Proceedings of COL-
ING, pages 716–724.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of NAACL-HLT, pages 486–492.

Yusuke Miyao and Jun’ichi Tsujii. 2004. Deep linguis-
tic analysis for the accurate identification of predicate-
argument relations. In Proceedings of COLING.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015 task
18: Broad-coverage semantic dependency parsing. In
Proceedings of SemEval, pages 915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of SemEval, pages 63–72.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–
106.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings of
EMNLP-CoNLL, pages 1–40.

4170

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In
Proceedings of EMNLP, pages 5027–5038.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role labeling
with self-attention. In Proceedings of AAAI.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In Proceedings of
ACL-IJCNLP, pages 700–706.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of ACL,
pages 4609–4618.

Qingrong Xia, Zhenghua Li, Min Zhang, Meishan
Zhang, Guohong Fu, Rui Wang, and Luo Si. 2019.
Syntax-aware neural semantic role labeling. In Pro-
ceedings of AAAI, pages 7305–7313.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of ACL, pages 3295–3305.

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guo-
hong Fu, and Min Zhang. 2022. Semantic role la-
beling as dependency parsing: Exploring latent tree
structures inside arguments. In Proceedings of COL-
ING.

Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2021.
Comparing span extraction methods for semantic role
labeling. In Proceedings of SPNLP, pages 67–77.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of ACL-IJCNLP, pages 1127–1137.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Parsing
all: Syntax and semantics, dependencies and spans.
In Findings of EMNLP, pages 4438–4449.

Appendices

A More examples of other schemata

In order to save space, we only show the transi-
tion matrix of BES in the main body. Here, we
present the transition matrix of others in Figure
7. In addition, we provide more examples to im-
prove the comprehensibility of our schemata and
the constrained viterbi. Figure 8, 9, and 10 show

the outputs of models using different schemata re-
spectively. For example, in Figure 8, there is miss-
ing an edge from “pilling” to “falling” in the raw
output. After the viterbi procedure, an I-AM-ADV
edge will be added since we disallow the transition
from O to I-∗. Thus we can get the legal SRL
structure.

Figure 7: Transition matrices of BII, BE, and BIES.

Root pilling ... while falling sharply

PRD B-AM-ADV

I-AM-ADV
I-AM-ADV

(a) w/o Constrained Viterbi

Root pilling ... while falling sharply

PRD B-AM-ADV

I-AM-ADV
I-AM-ADV

(b) w/ Constrained Viterbi

Figure 8: BII schema.

4171

Root “ take another ... two ”

PRD B-A1

E-A1
E-A1

(a) w/o Constrained Viterbi

Root “ take another ... two ”

PRD B-A1

E-A1

(b) w/ Constrained Viterbi

Figure 9: BE schema.

Root fix ... later ... when ... home

PRD B-AM-TMP

I-AM-TMP

B-AM-TMP

I-AM-TMP

E-AM-TMP

(a) w/o Constrained Viterbi

Root fix ... later ... when ... home

PRD B-AM-TMP

I-AM-TMP

I-AM-TMP

I-AM-TMP

E-AM-TMP

(b) w/ Constrained Viterbi

Figure 10: BIES schema.

