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Abstract

Contextual embeddings build multidimensional
representations of word tokens based on their
context of occurrence. Such models have been
shown to achieve a state-of-the-art performance
on a wide variety of tasks. Yet, the commu-
nity struggles in understanding what kind of
semantic knowledge these representations en-
code. We report a series of experiments aimed
at investigating to what extent one of such mod-
els, BERT, is able to infer the semantic relations
that, according to Dowty’s Proto-Roles theory,
a verbal argument receives by virtue of its role
in the event described by the verb.

This hypothesis were put to test by learning
a linear mapping from the BERT’s verb em-
beddings to an interpretable space of seman-
tic properties built from the linguistic dataset
by White et al. (2016). In a first experiment
we tested whether the semantic properties in-
ferred from a typed version of the BERT em-
beddings would be more linguistically plausi-
ble than those produced by relying on static
embeddings. We then move to evaluate the se-
mantic properties inferred from the contextual
embeddings both against those available in the
original dataset, as well as by assessing their
ability to model the semantic properties pos-
sessed by the agent of the verbs participating
in the so-called causative alternation.

1 Introduction

In the last two decades, word embeddings have
become one of the most widely used tools for the
encoding of lexical meaning in computational mod-
els of language. Different flavours of such models
have been proposed, all of which have in common
the idea of representing lexical elements as multi-
dimensional vectors inferred from their context of
occurrence (for a review, see Lenci, 2018).

The last wave of word embeddings followed the
transformer-based models breakthrough (Vaswani
et al., 2017), that resulted in the development of the
so-called contextual embeddings. These represen-
tations are generated by models like BERT (Devlin
et al., 2019) or GPTs (Radford and Narasimhan,
2018; Radford et al., 2019) and derive their name
by their ability to keep track of the different con-
texts in which a word occurs, giving different vec-
tor representations for the same word appearing
with different surrounding neighbours (for review,
see Liu et al., 2020; Ethayarajh, 2019). This has
been a major improvement over static embeddings
obtained from models such as LSA (Landauer and
Dumais, 1997), GloVe (Pennington et al., 2014)
and Word2Vec (Mikolov et al., 2013), allowing
this kind of representation to reach state-of-the-art
performance in a great variety of Natural Language
Processing (NLP) tasks.

Notwithstanding their wide usage, mainly due
to their great empirical successes, the community
still struggles to understand what kind of informa-
tion word embeddings are actually able to encode
about language structure, and how they do it. The
problem has been even sharpened with contextual
embeddings, which are considered to be more en-
tangled representations, usually bigger in dimen-
sions than previous versions, and are obtained from
deeper neural models, whose inner working is more
complex. Due to this fact, to better understand and
explain what kind of structure these models are
able to represent is becoming more and more desir-
able and several research lines started to spring out
with this purpose. To the present days the encoding
of syntactic knowledge in these model has been
more studied than their ability to deal with seman-
tic facets of language (Rogers et al., 2020), but the
number of studies in that direction, usually carried
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out by means of probing tasks developed on top of
pre-trained architectures (Vulić et al., 2020), is also
growing (Chersoni et al., 2021; Ettinger, 2020).

In the present paper we focus on the modelling
of the semantic content of what Dowty (Dowty,
1989, 1991) labelled as Thematic Proto-Roles,
that are clusters of entailment properties that an
arguments derives solely by virtue of its role in the
event described by a predicate. Following previous
work by Lebani and Lenci (2021) we use a linear
transformation mapping between embeddings of
verbs represented in BERT’s space and a set of in-
terpretable vectors derived from the Universal De-
compositional Semantics Dataset on Proto-Roles
properties (White et al., 2016), in which human
ratings about argument properties have been an-
notated and collected. However, the present work
differs from Lebani and Lenci (2021) under several
respects: i.) we deal with contextual embeddings,
focusing on those yielded by BERT, ii.) we exper-
iment with representations at the token-level, iii.)
we successfully apply sPCA as a de-noising tech-
nique, iv.) and we qualitatively address the phe-
nomenon of the causative-inchoative alternation,
for which the notion of Semantic (Proto-) Role is
crucially relevant.

The goal of this paper is twofold: i.) to test
whether the BERT contextual embeddings of a verb
encode semantic information concerning the Proto-
Role properties held by its arguments, and ii.) to
test whether this knowledge can be distilled by
means of a linear mapping, thus leading the way
to the development of full-scale systems able to
extract this knowledge for a wide range of verbs.

The following pages are organized as follows: in
Section 2, we quickly review the literature inves-
tigating the semantic content of vector representa-
tions, before discussing the notion of thematic role
and its empirical foundations. We describe and test
our method in Sections 4 and 5, respectively, while
Section 6 is devoted to a general discussion of the
merits and limitations of the use of the BERT’s
embeddings to model Proto-Role information.

2 The Semantics of Word Embeddings

Notwithstanding the wide usage of word embed-
dings in NLP and related fields, the literature trying
to characterize the semantic properties of these rep-
resentation is quite scarce. Concerning the efforts
in trying to understand whether and to what extent
thematic roles information is encoded in contex-

tual embeddings, Tenney et al. (2019b), (building
on works by Teichert et al., 2017 and Rudinger
et al., 2018) proposed a suite of classification tasks
aimed at investigating how these representation en-
code sentence structure across a range of syntactic,
semantic, local, and long-range phenomena. Cru-
cially, these authors report a very small improve-
ment over non-contextual baselines. Thematic role
information seems to be recoverable with this strat-
egy, but to an extent which is not that notable.

Ettinger (2020) tested BERT on a suite of diag-
nostics drawn from human language experiments,
among which the most relevant to our scopes is
the semantic role sensitivity and event knowledge
task, that tests the model ability to discern between
good and bad sentence fillers on the basis on the
required semantic role. Results showed that the
model is not that accurate at matching human pre-
dictions, even if some of the information appear
to be encoded. Klafka and Ettinger (2020) devel-
oped a suite of probing tasks with the aim of as-
sessing what kind of semantic information about
the surrounding words is encoded in a contextual
embedding. For instance, a task of this suite can
implement the question “What does the embedding
of the verb tell us about the animacy of the sub-
ject noun?” as a binary task for a MLP classifier
trained and tested on the embeddings of a single
word (Klafka and Ettinger, 2020, p. 4802). Rel-
evant for our purposes, these scholars report that
much information about subject’s animacy can be
recovered by inspecting the embedding of the verb.

However, our work is more strongly related, both
in goals and methods, to those by Fagarasan et al.
(2015), Utsumi (2020), Chersoni et al. (2021) and
above all to Lebani and Lenci (2021). All these
authors have used a linear transformation to learn a
mapping between an embedding space and a space
derived from human judgements. Fagarasan et al.
(2015) learned a mapping towards the short nor-
malized descriptions (feature norm) collected by
McRae et al. (2005) in order to learn to predict
perceptual features for novel words. Both Utsumi
(2020) and Chersoni et al. (2021) applied that strat-
egy to decode word vectors in terms of the brain
based semantic features collected in Binder et al.
(2016). Finally, Lebani and Lenci (2021) focused
on finding fine-grained Proto-Role information by
learning the mapping between several static embed-
dings and an entailment space based on the same
ratings we use in this experiment, i.e. the White
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et al. (2016) dataset that is introduced in the next
section. All in all, these works show that both con-
textual and static embeddings encode a wide range
of (psycho)linguistic relevant information that can
be inferred by means of a simple linear mapping.

3 Thematic Proto-Roles

Theories about the role played by the arguments
of the verb at the syntax-semantics interface have
come in many flavours. One of the most debated
and controversial matter in theoretical linguistics
concerns the definition of the notion of semantic
role and the development of a reliable method for
the identification of such categories.

In contrast with the traditional view of seman-
tic roles as discrete primitive semantic categories,
David Dowty proposed to reduce the total num-
ber of roles to two prototypical notions, which
he called Proto-Agent and Proto-Patient (Dowty,
1989, 1991). In Dowty’s view, roles are defined
by a set of entailments determined by the meaning
of the verb. Some properties contribute to charac-
terize an argument as Proto-Agent, while others as
Proto-Patient, but they can be present in different
degrees and in mixed configurations. These config-
urations correspond to classical intermediate roles
such as experiencer, theme, and so on.

This approach has some important advantages
over classical views of semantic roles, which have
always been in tension between the choice of the
right number of roles and the right mapping be-
tween grammatical and semantic role. Dowty’s
theory does not discard completely the possibility
of identifying a different role for each different
peculiar argument, placing a distinction between
specific roles and linguistic roles. While the former
are specific for each verb (e.g., to build has two
main arguments: the builder and the buildee), the
latter are generalizations aimed at capturing com-
mon traits about different specific roles. For exam-
ple builder, killer, worker, seller are all instances of
Proto-Agent, but all at a different degree.

Furthermore, concerning the selection of the ar-
gument, Dowty sets a straightforward rule in his
Argument Selection Principle stating that: "In
predicates with grammatical subject and object,
the argument for which the predicate entails the
greatest number of Proto-Agent properties will be
lexicalized as subject of the predicate; the argu-
ment having the greatest number of Proto-Patient
entailments will be lexicalized as the direct object."

(Dowty, 1991, p. 576). This claim received empiri-
cal validation on a cognitive perspective by Kako
(2006), among others. This scholar proved, through
a series of experiments, not only that the hypothesis
has psychological validity, but also that "speakers
can make inferences about these properties from
grammatical roles alone [...]" (Kako, 2006, p. 34).
Inspired by these findings Reisinger et al. (2015)
built a crowd-sourcing experiment to test the the-
ory against a large amount of data and substantially
confirmed the results by Kako (2006). The latter
approach has been the precursor of the dataset by
White et al. (2016) that we adopt here to build a
semantic space based on human judgments.

3.1 Human Judgements about Proto-Roles

As will be explained in more detail in Section 4, in
order to infer whether the BERT contextual embed-
dings are able to encode some information about
semantic roles, we studied the output of a map-
ping from the contextual embeddings of a group
of selected verbs and the ratings produced by a
group of speakers. In our experiment we rely on
the judgments collected by White et al. (2016).
This dataset was built by asking a group of native
speakers to read a series of sentences with a high-
lighted argument and to answer, on a five points
Likert scale, to a group of Dowty-inspired ques-
tions on the target argument. For example, to know
how plausible is for an argument to have a property
like awareness, the subjects were asked: "ARG
was/were aware of being involved in PRED?".

The paradigm used by White et al. (2016) was
developed from that described by Reisinger et al.
(2015). In the latter work the authors annotated sen-
tences from PropBank (Palmer et al., 2005) while
White et al. (2016) used the English Web Tree-
bank (Silveira et al., 2014), which is annotated
following the Universal Dependencies guidelines
(de Marneffe et al., 2021) and covers a greater va-
riety of genres. Furthermore, White et al. (2016)
revised the inventory of questions and the method
to present them and used redundant annotations.
The semantic decomposition principle behind the
whole paradigm is well suited to Dowty’s theory of
Proto-Roles, and vice-versa, due to their common
target of reducing semantics categories to smaller
dimensions of meaning. This reduction allows not
only linguists to better describe the categories, but
also naive speakers to understand the questions to
characterize the semantic roles.



4104

⟨n
su

bj
,a

w
ar

en
es

s⟩

⟨n
su

bj
,c

ha
ng

e
of

st
at

e⟩

⟨n
su

bj
,v

ol
iti

on
⟩

⟨d
ob

j,
aw

ar
en

es
s⟩

⟨d
ob

j,
ch

an
ge

of
st

at
e⟩

⟨d
ob

j,
vo

lit
io

n⟩

to affect 0 0.625 0 0.688 0.75 0.187

to amaze 0.25 0.25 0.25 1 0.708 0.792

to bring 0.922 0.422 0.828 0.562 0.472 0.319

to fill 0.875 0.25 0.875 0.5 0.875 0.562

to give 0.899 0.352 0.887 0.062 0.312 0.081

to ignore 1 0.875 1 0.75 0.5 0.125

to include 0.458 0.51 0.433 0.451 0.461 0.446

to kill 0.925 0.65 0.875 0.575 0.937 0.042

to put 0.833 0.492 0.84 0.275 0.75 0.11

to tell 0.99 0.357 0.959 0.968 0.561 0.714

Table 1: Portion of the entailment-based vector space (adapted from Lebani and Lenci (2021)).

4 General Methodology

Our ultimate goal is to probe the kind of distri-
butional knowledge encoded in contextual embed-
dings in order to assess whether BERT (and ar-
guable other models of the same family) is able to
encode Proto-Role semantic information. As such,
we opted for a methodology that has been tested
and proven in our reference literature (Fagarasan
et al., 2015; Utsumi, 2020; Chersoni et al., 2021;
Lebani and Lenci, 2021). Similarly to what has
been done by Lebani and Lenci (2021), indeed, we
created a linear mapping between a semantic space
composed of BERT embeddings and a vector space
derived from the ratings collected in the White et al.
(2016)’s Proto-Roles dataset.

Model We tested BERT (Devlin et al., 2019) in
its bert-large-cased version as released in
the Hugging Face python library (Wolf et al., 2019).
This deep encoder architecture has 24 layers, 1,024
hidden units per layer, 16 attention heads and a
total of 336M of parameters. It is pre-trained with
masked language modeling and next sentence pre-
diction tasks. As we want to know the semantic
properties that BERT encodes in its native repre-
sentations, we did not fine-tune the model.

Corpus The sentences annotated by White et al.
(2016) were extracted from the English Web Tree-
bank (Silveira et al., 2014) corpus, which is avail-
able in the Universal Dependencies repository.1

1https://universaldependencies.org/

From the training set of this corpus we extracted
a list of 2226 pre-tokenized sentences that were
later processed with BERT. From these sentences
we extracted only the verb embeddings either at
type or token level. For the type-level experiment,
verb vectors were averaged across different con-
texts (Bommasani et al., 2020)2.

Ratings-based semantic spaces We built differ-
ent rating-based semantic spaces for the type-level
and for the token-level analyses. For the type-level
analysis we followed Lebani and Lenci (2021) and
built a unique semantic space for both arguments,
as shown in Table 1. For the evaluation of the
token-level embeddings, on the other side, we built
different spaces for the nsubj and for dobj syn-
tactic roles, choosing to ignore the passive subjects
in order to remove excessive sparsity. The latter
procedure left us with 1972 token instances for
the nsubj space and 797 token instances for the
dobj space. The dimensions of these spaces corre-
spond to the 14 properties tested by the authors, as
ranked by annotators for each token. We indexed
each token with the id of its sentence, in order to
retrieve it and compare different occurrences of the
same verb type.

Learning Algorithm As a mapping strategy, in
the wake of previous works (Chersoni et al., 2021;
Fagarasan et al., 2015; Lebani and Lenci, 2021)

2We did not need to average between word pieces, as also
suggested in Bommasani et al. (2020), since we used sentences
that were pre-tokenized at the word level.

https://universaldependencies.org/
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we used the Partial Least Squares (PLS) regres-
sion implementation in the Scikit-learn Python li-
brary (Pedregosa et al., 2011), with the number of
components set to 10 and within a ten-fold cross-
validation. We evaluated the predicted vectors by
calculating its Spearman’s rank correlation with the
original ones, both row-wise and column-wise.

To check the quality of our model, we generated
a matrix for each experiment with values randomly
sampled from the interval [0, 1], shaping it like the
corresponding BERT space dimensions. We treated
the performance of the mapping learned from these
randomly generated spaces as a baseline.

5 Experiments

5.1 Experiment 1: Type-level

For the type-level analysis, we reproduced on
the BERT vectors the experimental settings as in
Lebani and Lenci (2021), mainly in order to obtain
a set of comparable results. The application of the
same filtering strategy resulted in a vector space
composed of 155 rows, one for each verb lemma,
and 41 columns, corresponding to features made
of <grammatical_function,property> pairs, which
were first aggregated by averaging between differ-
ent annotators judgments and instances of the same
lemma and than scaled to fit the range [0,1].

After constructing the BERT type embeddings
as described in Section 4, we moved on to learning
the mapping and, as we wanted to have a grasp of
the differences in performance across the whole
BERT model, we tested each of the layers averag-
ing between them in groups of four (e.g., layers 1-4,
layers 5-8, etc). Even if we weren’t able to identify
significant differences across groups, we found a
peak around the group of layers 13-16. We believe
that these results are consistent with the findings in
Tenney et al. (2019a), where it is shown that syntac-
tic and grammatical information (e.g., word order,
POS) is better encoded at lower layers, while se-
mantics features (e.g., semantic roles, coreference)
are better represented at higher layers, although
the latter seems to be more equally distributed than
the former across the whole model. Correlation
results for our best performing group of layers –
comprising layers 13-16 – are reported below in
Table 2, while scores for other groups can be found
in Table 3 in Appendix A. We obtained average
values directly comparable to the best performing
model found in Lebani and Lenci (2021), which
is a Skip-Gram model with negative sampling and

Model Row-wise Column-wise
BERT13_16 0.74 0.39

baseline_BERT 0.64 -0.07
SGNS.syn 0.71 0.31

baseline_SGNS 0.62 0.035

Table 2: Average Spearman’s scores for BERT, group
of layers 13-16, and SGNS.syn (the best performing
static model in Lebani and Lenci, 2021), with relative
baselines.

syntactic typing (SGNS.syn). All the groups of
layers we tested performed equally or slightly bet-
ter in absolute terms than the SGNS.syn used in
Lebani and Lenci (2021). In particular, our best
performing group of layers reaches average correla-
tion values of ρ = 0.74 row-wise (i.e., correlations
by verb) and ρ = 0.39 column-wise (i.e., correla-
tions by property), against the respective values
of SGNS.syn of ρ = 0.71 and ρ = 0.31. However,
we encountered the same problem of Lebani and
Lenci (2021) when evaluating the mapping row-
wise, that is an unexpected high baseline, which
in our case set itself at ρ = 0.643. We tried to
overcome this limit in the second experiment made
at the token-level. Overall, the interpretation sug-
gested by those results seems to be that, when re-
duced to static embeddings, BERT contextual vec-
tors perform only slightly better, if at all, than those
of a classic non-contextual Distributional Seman-
tic Model with proper hyper-parameters settings,
when it comes to retrieve fine-grained information
about thematic Proto-Roles.

Regarding correlations obtained by property at
the type-level, which are shown in detail in Fig-
ure 1, we found that the dobj argument seems
to be the one easier to model but, interestingly
enough, it shows higher values for Proto-Agent
properties, reaching the highest in awareness
with a ρ = 0.62. There are three properties specifi-
cally related to the Proto-Patient that are scored rel-
atively high for the dobj argument: change of
possession (ρ = 0.59), change of state
(ρ = 0.52) and was used (ρ = 0.49). As for
the nsubj argument, the best modeled proper-
ties seem to be those that characterize a Proto-
Agent role, that is to say sentient (ρ = 0.53),
volition (ρ = 0.49), awareness (ρ = 0.47)

3The baseline scores attested in our trials belonged to the
[0.62, 0.66] interval, coherently with the baseline score ρ =
0.62 reported by Lebani and Lenci (2021).
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and was for benefit (ρ = 0.43). Overall,
these results are consistent with those found in
Lebani and Lenci (2021) but partially deviate from
those we obtained at the token-level, as it will be
shown in the next sections.

Figure 1: Detailed properties correlation values at the
type-level for nsubj and dobj.

5.2 Experiment 2: Token-level

As already mentioned, we created two different
mappings at the token-level, one for nsubj argu-
ment and one for the dobj argument. Differently
from the type-level experiment, in which every
data point was an abstract representation of a de-
contextualised verb lemma described by the 41 fea-
tures made of the union of grammatical function
and Proto-Role property, here we deal with words
tokens in context. Since not every verb occurrence
received annotations both for nsubj and dobj in
White et al. (2016), we created the two sub-spaces,
in which each instance is described by the set of
fourteen properties elicited with the questions of
the SPR2 protocol found in White et al. (2016).
In this case we ran the experiment on single lay-
ers chosen among those of the best performing
group in the previous experiment, which was that
of layers 13-16, and we report here the results for
layer 16. Simply reproducing the mapping on those
spaces with the same settings as the type-level gave
us results really similar to the first experiment.

Concerning the high baseline problem, we took
into account the hypothesis put forward by Lebani
and Lenci (2021). They considered a possible justi-
fication of these results the fact that “Subjects tend
to have proto-agent properties, while object tend to
have proto-patient properties. From this associa-
tion[...] follows the fact that the vectors of our tar-
get entailment-based space are, to a certain extent,
bound to share a similar structure in which some di-
mensions tend to be consistently scored higher than
others.” (Lebani and Lenci, 2021). This proposal
is confirmed by measuring the cosine similarity
among the vectors of the entailment-based spaces.

In fact, a look at the average cosine similarity in the
semantic spaces gave us values of cos = 0.85 and
cos = 0.77, respectively for the nsubj and dobj,
showing that indeed there is a high similarity score
among the vectors, which can introduce noise and
alter the learning process of our model, thereby
allowing the baseline to reach high correlations.
Thus, we tried to use a dimensionality reduction
technique such as Sparse Principal Components
Analysis (sPCA) in its Scikit-learn implementation,
which is based on Mairal et al. (2009). The goal
was to introduce sparsity in our data and reduce
the noise, without reducing the number of dimen-
sions and losing interpretability. This technique is
mostly used for de-noising purposes in the field of
computer vision, but rarely employed in NLP (Drik-
vandi and Lawal, 2020). Differently from classic
PCA, sPCA does not yield orthogonal dimensions
in the space where it is applied, but seems to suc-
ceed in reducing similarity among the instances of
our ratings-based spaces. As a matter of fact, the
average cosine value, for both nsubj and dobj
space, resulted in cos ≈ 0 after the application of
this technique. Furthermore, the sparsity of the
loadings generated with this method allowed us to
have a better grasp of which principal component
represented which variable.

As shown in Figure 2, we obtained average cor-
relations of ρ = 0.50 for nsubj and ρ = 0.40 for
dobj at the row-level, with the baseline keeping
itself at ρ ≈ 0 in both cases4 . It should be noted
that the reported manipulations with sPCA affect
only the row-wise analysis, which was indeed the
only one suffering from the high baseline problem.
The average values obtained column-wise remain
the same, and the same has to be said for the fine
grained analysis of single properties. In fact, the
correlation values obtained by the new components
yielded by sPCA overlap perfectly with the original
variables. At the column level we got ρ = 0.43 for
the nsubj space and ρ = 0.38 for the dobj space.
Despite the fact that these correlations do not reach
outstanding values, they are significantly higher
than the baseline both row-wise and column-wise,
and the ones obtained with BERT and SGNS type

4We also experimented with standard PCA. We searched
for a number of components capable of accounting for the
85% of the variance, thus obtaining a different number of
components for our spaces: 6 for nsubj and 8 for dobj. The
correlations with this strategy are lower than those obtained
by using sPCA: ρ = 0.42 (by row) and ρ = 0.33 (by columns)
for the nsubj; of ρ = 0.38 (by row) and ρ = 0.34 (by column)
for the dobj.
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vectors.

Figure 2: Average correlations at the token-level.

5.3 Experiment 3: Modeling the
causative-inchoative alternation

As a third experiment, we decided to make a
more qualitative analysis focusing on the so called
causative alternation. This linguistic phenomenon
is directly tied with theories of semantic/thematic
roles and Dowty’s theory is no exception. Our
hypothesis here is that verbs participating to the
causative alternation, occurring both in transitive
and intransitive frames, should entail a set of prop-
erties more skewed toward the Proto-Agent role
when appearing in transitive contexts and should in-
cline toward those entailments typical of the Proto-
Patient in their intransitive occurrences. For ex-
ample, the verb to break can appear in transitive
sentences like John broke the window or in intransi-
tive ones as The window broke, entailing different
properties about the respective subjects. In fact,
the two subjects are supposed to be realizations of
different underlying Proto-Roles, a Proto-Agent in
the former case, a Proto-Patient in the latter.

Our aim was to test BERT embeddings to know
whether they are able to encode some information
about that alternation. We focused again on the
token level, using the nsubj space previously
created to train a PLS regression model on tran-
sitive verbs. We selected 100 sentences containing
50 alternating verb types, thus having 50 pairs of
causative alternation examples. Target verbs for
this experiment have been selected following the
Levin (1993)’s classification as coded in VerbNet
(Schuler, 2006). Sentences containing these target
verbs have been extracted manually from a variety
of sources, comprising VerbNet frames examples,
FrameNet (Baker et al., 1998) examples, and en-

TenTen corpus through Sketch Engine (Kilgarriff
et al., 2014). We found that causative alternation is
indeed well modeled in the majority of cases (35
out of 50 pairs of sentences, 70%), as can be seen
from Figure 3, which shows a visual representation
of a portion of our predicted vector space.

Figure 3: Visualization of the first 30 alternating verbs
in our predicted space. Even ids are for transitive frames,
odd for intransitive ones.

The alternation is clearly visible in the dif-
ference of intensity in those slots of the
heatmap corresponding to the Proto-Agent prop-
erties, mostly in awareness, sentient,
volition, instigation and, to a lesser ex-
tent, to those corresponding to the Proto-Patient,
mostly in change of state, change of
state continuous, was used. It should
be noted that our model fails to catch the alterna-
tion in some pairs of verbs (awaken, flex and roll in
the portion showed in Figure 3)5. However, these
failures, which represent the 30% of the predicted
outcomes (15/35), pave the way to further consid-
erations that we discuss in the next section.

6 General Discussion

6.1 Ability to recover fine-grained Proto-Role
information in BERT’s embeddings

All the three reported experiments show that it
is indeed possible to recover Proto-Role informa-
tion about the arguments from verb embeddings,
as demonstrated by the average correlation values

5Due to an error, ids for the verb inflate are switched. Thus
it seems that the intransitive has higher scores in Proto-Agent
properties than the transitive, which is the contrary.
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obtained both row-wise and column-wise, which
are significantly higher than those of the base-
line, mostly in the token-level experiment in which
a preliminary sPCA transformation has been ap-
plied. An even more fine-grained analysis can be
conducted taking into account single properties.
Although not directly comparable, the results at
the token-level partially contradict the trend ob-
tained at the type-level, such that in the former the
nsubj argument shows higher correlation values
than the dobj, while for the latter the contrary
happens. However, what they have in common
is the fact that in general Proto-Agent properties
seem to be better modeled in both experiments and
for both arguments. As a matter of fact, at the
token-level this happen not only, for the nsubj, as
expected, but also for the dobj even if, in this sec-
ond experiment, we obtained higher correlations
for the nsubj argument, as can be seen in Fig-
ure 4. In particular, three properties seem to be
pretty well modeled: awareness, sentient
and volition, which are the core entailments
of the Proto-Agent role, and are strongly related to
the animacy of typical subject arguments.

On the contrary, our model struggles to cope
with Proto-Patient properties at the token-level in
both spaces. Whether this evidence means that
Proto-Agent properties are better represented in
BERT or in just the rating-based space it is not
easy to say. But, from a theoretical point of view it
should be considered that the individuation of good
examples of properties for the Proto-Patient has
been an issue ever since the statement of Dowty’s
theory. In fact, Dowty himself claimed that “Proto-
Patient properties are harder to isolate entirely”
(Dowty, 1991, p. 576) than those of the Proto-
Agent.

Moreover, both Reisinger et al. (2015) and Kako
(2006) found out in their experiments that “Proto-
Agent properties have a greater effect than Proto-
Patient properties”(Reisinger et al., 2015, p. 481).
All these cues might suggest that the individuation
and the modeling of Proto-Patient properties might
be a more difficult matter than Proto-Agent ones
and that the latter have a more solid stand from sev-
eral point of views: theoretical analysis, cognitive
and corpus-level testing, and probably even in the
knowledge encoding operated by BERT. Also, it
should be taken into consideration that some fur-
ther developments of Dowty’s theory dispensed
with Proto-Patient properties at all, building only

on those of the Proto-Agent and characterizing its
opposite role in negative terms (see, for example,
the theory elaborated by Grimm, 2011).

Figure 4: Detailed single properties correlations for
nsubj and dobj.

6.2 Modeling the causative-inchoative
alternation

As it has been shown, we have been able through
our strategy to model the causative-inchoative
alternation in terms of Proto-Role properties
prediction. In fact in 70% of the pairs we predicted,
the transitive version of the verb scored higher val-
ues in Proto-Agent properties. In particular, those
cases representing prototypical instances of such
phenomenon are almost perfectly predicted. Con-
sider as an example, the pair of sentences regarding
the verb to break (break.0 and break.1 in Figure 3).
The corresponding sentences are taken directly
from VerbNet example frames and are: Tony broke
the window and The window broke, respectively
for the transitive and the intransitive frame. The
properties seem to be well predicted not only for
those concerning proto-agency, but also for those
entailments of the Proto-Patient. That is to say,
while the first verb, break.0, which is transitive,
shows a greater intensity (i.e., higher predicted
values) than break.1 in the slots corresponding to
awareness, instigation, volition,
sentient, existed after, existed
before and was for benefit, the reverse
is true if we consider Proto-Patient entail-
ments. In fact, the intransitive break.1 has
greater values in change of possession,
change of state, change of state
continuous, partitive. This is a re-
current pattern among all the predicted space.
Moreover, Figure 5 shows how on average Proto-
Agent properties are scored higher in the predicted
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subspace formed by only the transitive use of the
verbs. Vice-versa almost all the Proto-Patient
properties have higher mean scores among the
intransitive use, even if with a much smaller
difference. This is consistent with the assumption
that subjects of inaccusative verbs are less agentive
than those of their transitive counterpart. However,
there are a few notable exceptions to this trend.
Three properties in particular seem to contradict
the assumptions of the theory: change of
location, partitive and was used. The
first is assumed to be typical of Proto-Agent and,
instead, shows a higher average score for the
transitive use. The second and the third, supposed
to be Proto-Patient properties, reach the same
values in both sub-spaces. Among the 15/50
pairs (30%) which our model failed to predict,
there are 6 instances in which the subject of the
intransitive verb is more animate than that of the
transitive verb. We regard this fact as a possible
influence in the prediction, due to the fact that
animacy and agency, and consequently their
characterizing properties, are two strictly related
concepts and they might even overlap in some
circumstances, for example in the determination
of subjecthood. Given the contextual nature of
the BERT embeddings, it is no surprise that verb
representations are adjusted in relation to the
other elements of the sentence, incorporating
at each occurrence particular information about
surrounding words. In particular, the fact that
animacy information about the subject is projected
into the verb embedding and is recoverable from it
has been shown by Klafka and Ettinger (2020).

Figure 5: Average predicted properties for transitive and
intransitive use.

7 Conclusions

Although our strategy has been proven to be good
at modeling the Proto-Roles phenomenon in BERT
embeddings to a certain extent, some intrinsic limi-
tations of our work have to be taken into account.
Firstly, we used a linear regression (PLS) model as

a strategy to build the mapping, but, due to the com-
plexity of the type of information enquired and that
of the BERT space, more complex, non-linear trans-
formations, like a Multi Layer Perceptron, might
be a better choice for the task. Secondly, the data
we used are the best at our disposal, but they are
not necessarily the best possible in absolute and
might be further improved, by both revising the
questions and the set of properties. Thirdly, we
obtained mixed results between the token and the
type levels concerning which is the best modeled
Proto-Role.
Notwithstanding these limitations, we have shown
that fine-grained information about Proto-Roles
properties of the arguments is recoverable inspect-
ing the embeddings of the verbs yielded by BERT.
Also, our results suggest that there might be a dis-
crepancy between the properties of the two Proto-
Roles and that Proto-Agent properties are better
modeled and predicted. We have also been able
to show how different Proto-Roles entailments can
be predicted in verbs participating to the causative-
inchoative alternation. Additionally, we success-
fully employed sPCA to reduce the noise in our
data, which might be a promising cue about future
usages of this technique in the field of NLP.
It is worth emphasizing that the main goal of this
research is to test BERT’s ability to capture some
crucial aspects of the verbal argument structure.
Even if there can be practical applications of our
method (e.g., it can be used as a starting point
for Semantic Role labeling or, crucially, Semantic
Proto-role labeling; Reisinger et al. 2015; Teichert
et al. 2017), our main interest is more theoretical
and methodological. Many of the probing tasks that
are used today, indeed, do not focus on the proto-
typical nature of semantic roles, which is precisely
a fundamental pillar and the major innovation of
Dowty’s theory and of the present work. Moreover,
our analysis of the causative/inchoative alternation
is just a first example of a series of tasks that we
plan to develop to characterize the knowledge ac-
quired by these models to explore key aspects of the
syntax-semantic interface and of verb argument re-
alization. Finally, we will also extend our approach
to other contextual embeddings models, like GPT
(Radford and Narasimhan, 2018; Radford et al.,
2019) and XLNet (Yang et al., 2019).
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A Appendix

Here we report the results obtained computing the
average Spearman’s Rho between predicted vectors
and original ones at the type-level, both by row
and by column. We indicate each group with the
formula BERTx_y in which x is the first layer of
the group and y is the last one.

Model By Row By column
BERT1_4 0.71 0.31
BERT5_8 0.73 0.36
BERT9_12 0.72 0.34
BERT13_16 0.74 0.39
BERT17_20 0.73 0.36
BERT21_24 0.72 0.34
baseline_BERT 0.64 -0.07
SGNS.syn 0.71 0.31
baseline_SGNS 0.62 0.035

Table 3: Average correlation values obtained for each
group of BERT layers and for the best performing model
in Lebani and Lenci (2021), a SGNS.syn, with relative
baselines. Analysis at the type-level.


