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Abstract

Word sense disambiguation (WSD), identify-
ing the most suitable meaning of ambiguous
words in the given contexts according to a pre-
defined sense inventory, is one of the most
classical and challenging tasks in natural lan-
guage processing. Reformulating WSD as a
text span extraction task is an effective ap-
proach, which accepts a sentence context of an
ambiguous word together with all definitions
of its candidate senses simultaneously, and re-
quires to extract the text span corresponding
with the right sense. However, the approach
merely depends on a short definition to learn
sense representation, which neglects abundant
semantic knowledge from related senses and
leads to data-inefficient learning and subopti-
mal WSD performance. To address the limita-
tions, we propose a novel WSD method with
Knowledge-Enhanced and Local self-attention-
based Extractive Sense Comprehension (KE-
LESC). Specifically, a knowledge-enhanced
method is proposed to enrich semantic repre-
sentation by incorporating additional examples
and definitions of the related senses in Word-
Net. Then, in order to avoid the huge comput-
ing complexity induced by the additional in-
formation, a local self-attention mechanism is
utilized to constrain attention to be local, which
allows longer input texts without large-scale
computing burdens. Extensive experimental re-
sults demonstrate that KELESC achieves better
performance than baseline models on public
benchmark datasets.1

1 Introduction

Word sense disambiguation (WSD) is to identify a
proper sense with an ambiguous word in a given
context according to a predefined sense inventory,
which is one of the most typical and challenging
tasks in natural language processing (NLP) and

∗Corresponding author
1The source code of this paper can be obtained from

https://github.com/Stubborn-z/KELESC

play a critical role for human language understand-
ing (Conia and Navigli, 2021). For instance, the
noun word plant conveys different senses in indus-
trial plant and plant seeds. WSD has been able to
determine accurate meanings of ambiguous words,
which is beneficial to a variety of downstream NLP
applications, such as machine translation, infor-
mation extraction and retrieval (Song et al., 2021;
Pasini and Navigli, 2020).

In recent years, with the rapid development of
deep learning, the performance of WSD with neural
networks-based methods has great improvement.
The early neural networks-based models have cast
WSD as a multi-label classification task, which
disambiguated all polysemous words with a uni-
fied classier (Kågebäck and Salomonsson, 2016;
Raganato et al., 2017a). However, these models
have focused on modeling contexts containing am-
biguous words from sense-labeled training data,
which ignored the rich semantic knowledge in lexi-
cal resources, such as WordNet and BabelNet (Nav-
igli et al., 2021), and resulted in their inability to
outperform the traditional word expert supervised
methods (Song et al., 2021).

Due to the semantic knowledge in a lexical dic-
tionary including sense definitions (glosses), ex-
amples, relations, etc., defined by professional lex-
icographers, which is essential and valuable for
WSD, some works (Banerjee and Pedersen, 2002;
Basile et al., 2014) have attempted to integrate
gloss information into neural WSD models in order
to leverage the lexical knowledge. GAS (Luo et al.,
2018) has incorporated glosses into WSD, which
jointly encoded glosses and contexts, and captured
their relations with a memory network. Gloss-
BERT (Huang et al., 2019) has utilized glosses
in WordNet together with the annotated data to
construct context-gloss pairs, reformulated WSD
as a text matching task. BEM (Blevins and Zettle-
moyer, 2020) has been a bi-encoder method that
encodes the target word and candidate glosses inde-
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pendently and optimizes the encoders in the same
representation space. Although these works con-
sidered the gloss information in WordNet, they
neglected to explore the knowledge contained in
semantic relations such as hypernyms. Therefore,
EWISER (Bevilacqua and Navigli, 2020) has been
proposed to enhance WSD by integrated synset em-
beddings and semantic relations including hyper-
nyms and hyponyms. ESR (Song et al., 2021) has
further enhanced sense representations by incor-
porating synonyms, example sentences and sense
glosses of hypernyms.

Although the methods mentioned above have
achieved great successes, they have treated WSD
as multi-label classification or text matching tasks,
which focused on modeling the relations between
a context and each specified candidate sense. None
of them considers all candidate senses of an am-
biguous word simultaneously, which is not con-
sistent with human behaviors, as humans always
justify the right sense by comparing all possible
senses with the context. In order to simulate the
cognitive process of human, ESC (Barba et al.,
2021) has reformulated WSD as a text span extrac-
tion task, called extractive sense comprehension,
which accepted a context of an ambiguous word
together with all definitions of its candidate senses.
Although ESC demonstrated the superiority over
the competitive methods, it merely relied on a short
definition (gloss) to represent a sense, which was
insufficient to learn an ideal sense representation
and inevitably hinder the improvement of WSD
performance.

To address the above-mentioned limitations, we
propose a novel WSD method with Knowledge-
Enhanced and Local self-attention-based
Extractive Sense Comprehension (KELESC),
inspired by ESR (Song et al., 2021). Specifically,
a knowledge-enhanced method is proposed to
enrich semantic representation by incorporating
additional examples and definitions of the related
senses in WordNet. Then, in order to avoid
the huge computing complexity induced by the
additional information, a local self-attention
mechanism is utilized to constrain attentions to
be local, which allows longer input texts without
large-scale computing burdens (Beltagy et al.,
2020; Manakul and Gales, 2021). Extensive
experiments have been conducted to verify the
effectiveness of the proposed model on public
benchmark datasets. In summary, this paper makes

the following contributions:

• We propose a novel end-to-end WSD model
with Knowledge-Enhanced and Local self-
attention-based Extractive Sense Comprehen-
sion (KELESC). The model reformulates
WSD as a text extraction task, fully utilizes
lexical knowledge to enhance sense represen-
tation, and considers all candidate senses si-
multaneously instead of one by one to identify
the right sense.

• We devise a knowledge enhancement method
to enrich semantic representation by incorpo-
rating additional sense information of related
senses in WordNet. Besides, we exploit a
local self-attention mechanism to reduce the
computing burden of training the model.

• Extensive experiments are conducted on pub-
lic datasets to demonstrate the superiority
of our proposed model on all-words English
WSD tasks by making comparisons with the
baseline models.

2 Related Work

The existing works on WSD can be categorized
into three groups: knowledge-based, supervised
and neural-based methods.

2.1 Knowledge-based WSD methods

These methods focus on leveraging semantic
knowledge contained in lexical resources to iden-
tify the right sense (Luo et al., 2018). They mainly
exploit two kinds of knowledge: sense definitions
and structure of semantic network. For sense defi-
nitions’ knowledge, Lesk algorithm and its variants
are the typical works, which select the right sense
according to the overlap of contexts and sense defi-
nitions (Lesk, 1986). For structure knowledge of
semantic network, Personalized PageRank (Agirre
et al., 2014; Scozzafava et al., 2020), BabelNet
(Navigli and Ponzetto, 2012) and structural seman-
tic interconnections (Navigli and Velardi, 2005)
are the representative methods, which construct se-
mantic graphs with senses and their relations, and
utilize graph-based algorithms to choose the most
important sense as the right one. With the support
of lexical knowledge, knowledge-based methods
achieve satisfied WSD coverage while their accu-
racy usually is worse than the others.
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2.2 Traditional supervised WSD methods

These methods utilize manually feature engineer-
ing to train a special classifier for each polyse-
mous word, i.e., word expert. IMS system first
proposes instance and feature extractors to extract
instances and their features, then trains an inde-
pendent classifier for each word type on sense-
annotated SemCor corpus (Zhong and Ng, 2010).
Iacobacci et al. (2016) investigate how word embed-
dings has been utilized in WSD, which combines
word embeddings and traditional manual features
to enhance the original IMS system. Although
these traditional supervised methods show better
performance on WSD, they are confused by the
manually engineered features and sense-annotated
training dataset. Besides, they train a dedicated
classifier for each word, which are hard to be ap-
plied on all-word WSD tasks.

2.3 Neural-based WSD methods

These approaches usually train a unified classifier
based on neural networks to disambiguate all of the
polysemous words. The early neural-based mod-
els mainly focus on modeling the relations of sen-
tence context and sense labels contained in training
datasets. For example, (Kågebäck and Salomon-
sson, 2016) and (Raganato et al., 2017a) employ
bidirectional LSTM and encoder-decoder architec-
ture to train unified models for all-word WSD tasks.
However, they neglect to utilize the valuable se-
mantic knowledge contained in lexical resources
such as WordNet. Thus, The GAS model attempts
to incorporate gloss information into an end-to-
end WSD model (Luo et al., 2018). GlossBERT
(Huang et al., 2019) also leverages glosses in Word-
Net to construct context-gloss pairs, reformulates
WSD as a text matching task to model the match-
ing relations of sense glosses and the contexts of
ambiguous words. BEM (Blevins and Zettlemoyer,
2020) proposes a jointly optimized bi-encoder (the
context encoder and the gloss encoder), which en-
code the context and sense glosses, and choose the
nearest sense with the context according to gloss
and context embeddings. However, these methods
merely utilize the gloss information in WordNet,
which still ignore the semantic relation knowledge
such as hypernyms. Therefore, EWISER (Bevilac-
qua and Navigli, 2020) is proposed to integrate
sense embeddings together with hypernyms and
hyponyms relations to enhance WSD performance.
And, ESR (Song et al., 2021) further incorporates

synonyms, example sentences and sense glosses of
hypernyms to enhance sense representations. All
methods mentioned above focus on modeling rela-
tions between a context and each specified candi-
date sense individually, while human usually deter-
mines the sense by comparing all possible senses
with a context simultaneously. This means that
there are still some room to improve the neural-
based WSD methods. In order to simulate the cog-
nitive progress of human, that is, to comparing all
candidate senses simultaneously, ESC (Barba et al.,
2021) reformulates WSD as a text span extraction
task, which accepts a context of an ambiguous word
together with the definitions of all possible senses,
and choose the text span of the right sense by com-
paring all sense definitions at once. ESC has shown
the superiority on WSD task, however, it merely
utilizes a short definition to learn a sense, which is
insufficient.

3 Methodology

In this section, we first give the task defini-
tion. Then, we detail our proposed model,
Knowledge-Enhanced and Local self-attention-
based Extractive Sense Comprehension (KELESC)
for WSD.

3.1 Task Definition

Given the context with target word with glosses,
example sentences and hypernym glosses of all
candidate senses, the task of the paper is to identify
the text span that indicates the right sense. Specif-
ically, we represent the context of target word ŵ
as C = {wc

1, · · · , wc
m}, where m is the number

of words in the context. For the k-th candidate
sense of the target word ŵ, its gloss, example sen-
tence and hypernym gloss are represented as Gk =
{wgk

1 , · · · , wgk
|gk|}, ESk = {wek

1 , · · · , wek
|ek|}, and

HGk = {whk
1 , · · · , whk

|hk|}. |gk|, |ek| and |hk| in-
dicate their lengths. Given the concatenation of
the context C and the information G,ES,HG of
all candidate senses, our model will identify the
interval [icor, jcor], which indicates the start and
end positions of the text span corresponding with
the gloss, example sentence and hypernym gloss of
the right sense of ŵ.

3.2 Model Architecture

The overall structure of KELESC model is shown
in Figure 1. KELESC model consists of three core
modules: (1) a knowledge enhancement module,
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Figure 1: Overview structure of KELESC model. Concatenate the context of target word together with the gloss,
example sentence, hypernym gloss of each candidate sense as the input of our model. Start and End represent the
logits for each word, which indicates whether it is the start or end of the text span of the right sense of the target
word, respectively. icor and jcor is the start and end indices of the correct sense, respectively.

Context Sentence You can buy your train tickets from large travel agents.

Sense#1
Gloss public transport provided by a line of railway cars coupled together and drawn by a

locomotive.
Example sentence express trains don’t stop at Princeton Junction.
Hypernym gloss conveyance for passengers or mail or freight.

Sense#2
Gloss a sequentially ordered set of things or events or ideas in which each successive mem-

ber is related to the preceding.
Example sentence train of mourners.
Hypernym gloss similar things placed in order or happening one after another.

Context and enhanced knowledge

You can buy your train tickets from large travel agents. public transport provided by a
line of railway cars coupled together and drawn by a locomotive. express trains don’t
stop at Princeton Junction. a sequentially ordered set of things or events or ideas in
which each successive member is related to the preceding. a string of islands. similar
things placed in order or happening one after another.

Table 1: An example of knowledge enhancement of the target word train.

which utilizes gloss, example sentence and hyper-
nym gloss to enhance the representation of each
candidate sense, (2) a local self-attention trans-
former, which encodes the entire input texts with
local self-attention transformer, (3) a span predic-
tion module, which extracts the text span with the
highest probability of expressing the correct sense
of the target word.

3.2.1 Knowledge Enhancement
Recent studies have shown that lexical knowledge
in WordNet is essential and valuable for accurate
sense representation learning (Song et al., 2021).
To this end, KELESC model devises a knowledge
enhancement module to explore and integrate the

richer lexical knowledge. As shown in Table 1, for
each candidate sense of a target word, the mod-
ule collects its gloss, example sentence and hyper-
nym glosses together to enrich sense representation.
Specifically, the gloss is a short definition of the
current sense in WordNet. The example sentence is
a sentence instance that conveys the corresponding
sense. The hypernym gloss refers to the sense defi-
nition of the hypernym synsets of the current sense,
which describes high-level semantic information.
The original context and all candidate senses of the
the target word with its glosses, example sentences
and hypernym glosses are concatenated together,
which is fed into our model.
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3.2.2 Local Self-Attention Transformer

In order to effectively encode the input text, we
adopt the pre-trained transformer-based model, i.e.,
BARTlarge, as it works well on long sequence
modeling and comprehension tasks (Lewis et al.,
2020; Beltagy et al., 2020). As shown in Fig-
ure 1 and Table 1, we concatenate the gloss, ex-
ample sentence and hypernym gloss of each can-
didate sense together for a target word, marked
as A = {G1, ES1, HG1, · · · , G|s|, ES|s|, HG|s|},
where |s| is the number of candidate senses of the
target word. The context sentence and enhanced
knowledge are fed into the transformer as the input.
There could be some exceptions: if there is no ex-
ample sentence in WordNet, we ignore it; if there
are multiple example sentences, we only select the
first one.

Specifically, we use the tags < s > and < /s >
to surround the entire input sequence. The context
sentence C and the enhanced lexical knowledge
A are segmented by the special symbol < /d >
and the target word ŵ is surrounded by < t > and
< /t >. The entire input of the transformer is as
follows:

input =< s > wc
1 · · · < t > ŵ < /t > · · ·wc

m

< /d > wg1
1 · · ·wg1

|g1|w
e1
1 · · ·we1

|e1|w
h1
1 · · ·wh1

|h1| · · ·

wgn
1 · · ·wgn

|gn|w
en
1 · · ·wen

|en|w
hn
1 · · ·whn

|hn| < /s >

where input is tokenized as T = {t1, t2, · · · , tn},
and n denotes the length of input token sequence.

The sense representation is enriched by our pro-
posed knowledge enhancement module. However,
it inevitably results in the longer sequence of in-
put text, which the memory requirement and com-
puting complexity of the transformer-based model
could be quadratic with the length of input se-
quence. It increases the huge burden during the
model training. To alleviate this problem, we intro-
duce a local self-attention mechanism proposed by
(Manakul and Gales, 2021). It is noteworthy that
the mechanism in KELESC focuses on the encoder
part. Our local self-attention transformer-based
module adopts a fixed window ⌢

w around each to-
ken which only focuses on the ones lying in the
window on each side. As shown in Figure 2, we set
a window size to 1 as a toy example to show the lo-
cal self-attention mechanism in an encoding layer.
The outputs of encoding layer in local self-attention
transformer are calculated as bellow:
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Figure 2: Local self-attention with a window size ⌢
w of

1, wl−1
i represents the embedding of the i-th token wi

generated by the previous encoding layer (l − 1). kl−1
i ,

vl−1
i and ql−1

i represent the vector of key, value and
query, respectively. wl

i is the embedding of wi obtained
with local self-attention mechanism in the current layer
(l).

wl
i = sum

(
softmax

(
Ql−1
i Kl−1

i

⊤

√
dk

)
Vl−1
i

)
where Ql−1

i =[ql−1
i ]

2∗⌢w+1
is the local query matrix,

Kl−1
i =[kl−1

i−⌢
w
,··· ,kl−1

i−1,k
l−1
i ,kl−1

i+1,··· ,k
l−1

i+
⌢
w
] is the local key

matrix, and Vl−1
i =[vl−1

i−⌢
w
,··· ,vl−1

i−1,v
l−1
i ,vl−1

i+1,··· ,v
l−1

i+
⌢
w
] is

the local value matrix. dk is the dimension of the
embedding vector. By stacking multiple layers
of this local self-attention transformer, a large re-
ceptive range will be obtained, in which the top
layer can access all input positions and has the abil-
ity to build a representation containing the whole
input information. In this way, the memory require-
ment and computational complexity of the model
increases linearly with the length of the input se-
quence. This reduce the training burden greatly.

After passing through the last layer of the local
self-attention transformer, we obtain the hidden
states representation of the final layer:

h1,h2, · · · ,hn = Transformer(T ),

where h ∈ Rd, d represents the dimension of
each hidden state. All these representations of
hidden units form the final matrix H, i.e., H =
[h1,h2, · · · ,hn] ∈ Rd×n, which is further trans-
ferred to a liner layer:

Z = W⊤H + b,

where W ∈ Rd×2 and b ∈ R2 are trainable param-
eters.

3.2.3 Loss Function
For the target word ŵ, the correct start and end
positions are represented as:

Start = [Z11 · · · Z1n] ,

End = [Z21 · · · Z2n] ,
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where Start and End indicate the logits for each
token, denoting whether it is the start or the end of
the text span corresponding with the correct sense
of the target word ŵ, respectively.

We add the two cross-entropy loss functions for
the start and end positions to train the model:

Ls = −Starticor + log
l∑

v=1

exp(Startv),

Le = −Endjcor + log

l∑
v=1

exp(Endv),

L = Ls + Le.

where Starticor and Endjcor are the scores corre-
spond to the correct start and end positions.

3.2.4 Prediction
Following the work of Barba et al. (2021), our
model outputs a pair of (icor, jcor), which indicate
the start and end positions of the right sense in the
input text. To assure the pair is exactly matched
with the text span of any sense, the model selects
its output by comparing their probability. First, the
logits Start and End are fed into softmax to obtain
the probability distribution. Then, we perform a
product operation on the probability distributions
of the start and end positions to generate the proba-
bility of pair (icor, jcor) that starts at i and ends at
j :

P(icor) = softmax(Start),

P(jcor) = softmax(End),

P(icor, jcor) = P(icor)× P(jcor),

where P(icor) and P(jcor) indicates the probability
that icor is the correct start position or the jcor is
the correct end position, respectively. P(icor, jcor)
represents the probability of span that starts at icor
and ends at jcor across all the other spans in the
input T .

Finally, the model outputs the pair with max
probability, as follows:

output = argmax P(icor, jcor).

4 Experiment

4.1 Datasets
Following the existing works, we evaluate our
proposed model on English all-words WSD task

through a public unified evaluation framework (Ra-
ganato et al., 2017b). SemCor is selected as our
training corpus (Miller et al., 1994), the small-
est SemEval-2007 dataset (SE07) (Pradhan et al.,
2007) is chosen as development set, and the rest are
used as test datasets, including Senseval-2 (SE2)
(Edmonds and Cotton, 2001), Senseval-3 (SE3)
(Snyder and Palmer, 2004), SemEval-2013 (SE13)
(Navigli et al., 2013), SemEval-2015 (SE15) (Moro
and Navigli, 2015). The four test datasets are con-
catenated together marked as ALL. F1 score is
used as the evaluation measure to report the perfor-
mance.

4.2 Baselines

According to the exploitation of lexical knowledge,
we categorize the baselines into three groups.

The first group includes the methods without
any lexical knowledge, which merely rely on the
training data and don’t utilize any lexical knowl-
edge, such as glosses and hypernyms. In this group,
we first consider the MFS baseline, which simply
adopts the most frequent sense in training datasets
as the right sense of each word. Then, BiLSTM
(Kågebäck and Salomonsson, 2016) is adopted,
which is a early neural-based method and trains
bidirectional LSTM to obtain a unified model for
all-word WSD task. Besides, we select BERTbase

(Devlin et al., 2019) as another baseline, which
learns a linear classifier based on frozen BERT
representations .

The second group involves the neural-based
methods which exploit glosses of candidate senses,
i.e., GAS (Luo et al., 2018), LMMS (Loureiro
and Jorge, 2019), GlossBERT (Huang et al., 2019),
ARES (Scarlini et al., 2020), BEM (Blevins and
Zettlemoyer, 2020), ESCHER (Barba et al., 2021).
These models utilize glosses to represent the cor-
responding senses. GAS is the first model to in-
corporate glosses into neural-based WSD, which
jointly optimizes the representations of contexts
and glosses of ambiguous words. Both LMMS
and ARES are the nearest neighbors methods (k-
NN), which identify the right sense according to
the similarity between context and sense represen-
tation. LMMS generates sense representation from
sense-annotated data, which is further enhanced
with sense glosses in WordNet. ARES generates
sense representation by leveraging the contexts
in SemCor and the glosses in WordNet, which is
further enriched with synset embeddings. Gloss-
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Model Dev Set Test Sets Concatenation of all Datasets
SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Baselines without any lexical knowledge
MFS baseline 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
BiLSTM - 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
BERTbase 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7
Baselines with gloss information
GAS∗ - 72.0 70.0 66.7 71.6 71.7 57.4 76.5 83.5 70.1
LMMS∗ 68.1 76.3 75.6 75.1 77.0 - - - - 76.8
GlossBERT∗ 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
ARES∗ 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
BEM∗ 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
ESCHER∗ 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7
Baselines with gloss and other knowledge
EWISER† 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
ESR†

base 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
KELESC† 76.7 82.2 78.1 82.2 83.0 84.3 69.4 84.0 86.7 81.2

Table 2: Comparison of F1 scores (%) on the English all-words WSD task. ∗ indicates that the model exploit glosses
of candidate sense, † indicates that the model utilizes sense glosses as well as other knowledge in WordNet. We
bold the best score for each column.

BERT reformulates WSD as a text matching task,
which evaluates the matching degree between sense
glosses and the contexts of ambiguous words to
identify the right sense. BEM utilizes two encoders
to represent contexts and candidate senses indepen-
dently, and identify the right sense by finding the
nearest sense embedding for the context embed-
ding. ESCHER reformulates WSD as a text span
extraction task, which is optimized to extract the
text span of the gloss expressing the right sense
when the model is fed with a sentence contain-
ing an ambiguous word and all its candidate sense
glosses.

The third group consist of the methods which ex-
ploit more lexical knowledge, such as hypernyms,
example sentence and gloss information. EWISER
(Bevilacqua and Navigli, 2020) learns sense in-
formation from WordNet, which considers seman-
tic relations between senses, such as hypernyms
and hyponyms. ESRbase (Song et al., 2021) fur-
ther enhance sense representations by incorporat-
ing synonyms, example phrases or sentence and
sense gloss of hypernyms.

4.3 Parameter Settings

We select BARTlarge (Lewis et al., 2020) as our
based model, whose encoder and decoder have 12
layers, respectively. In the encoder, the original

self-attention is replaced by the local self-attention
with a window size of 512 to avoid the huge com-
puting complexity induced by the additional in-
formation. The optimizer is RAdam (Liu et al.,
2020). Besides, we set batch size to 900 tokens,
learning rate to 2e-6, and weight decay to 0.01. F1
score is calculated on validation dataset every 2000
steps, and stop training is applied if the model does
not improve in 15 successive times. Our model is
trained on one A100 GPU, which takes about 10
hours.

4.4 Overall Results

We evaluate the performance of our method by
comparing it with the baselines. The overall results
on English all-words WSD task are summarized in
Table 2. According to the table, we have several
observations.

First, the methods exploiting gloss information
(i.e., the second group) usually outperform the
methods without any lexical knowledge (i.e., the
first group), except for BERTbase and GAS. This
demonstrates that gloss information is critical and
essential for WSD, which is beneficial for learning
better sense representations. Besides, the exception
of BERTbase and GAS may be caused that GAS
is realized with BiLSTM whose learning ability is
much weaker than BERT.
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Second, the methods exploiting gloss and other
lexical knowledge (i.e., the third group) outper-
form most of the methods in second group and all
methods in first group. This is because that the
methods in third group incorporate more lexical
knowledge, such as hypernyms and example sen-
tence, to enhance neural-based models, and the
enhanced knowledge is useful for sense representa-
tion, which can further improve WSD performance.

Third, our model consistently outperform all
competitive baseline methods on ALL. Our model
also achieves the best performance on SE07, SE2,
SE13, Nouns and Adj.. The reason for the su-
periority of our model is two-fold. One is that
our model reformulates WSD as a text extraction
task, which can accept and perceive all candidate
sense, simultaneously. The other is that our model
enhances sense representation with more lexical
knowledge including hypernyms and examples.
Among the baselines, ESCHER is the most similar
to our model. Both models reformulate WSD as
a text span extraction task. However, our model
is better than ESCHER and increases F1 score by
0.5% on ALL. This is because that our model uti-
lize more lexical knowledge than ESCHER.

4.5 Ablation Study

To evaluate the effectiveness of different lexical
knowledge in our model, i.e., example sentence
and hypernym gloss, we conduct ablation studies
by removing them one by one to observe the change
of overall performance.

Reserved Lexical Knowledge ALL (%)
Example sentence + hypernym gloss 81.2
Example sentence 81.0
Hypernym gloss 80.8

Table 3: Comparison of ablated models on ALL.

As shown in Table 3, if we remove the gloss
of hypernyms from our model, this leads to 0.2%
drop from 81.2% to 81.0%. And, if we remove the
example sentence, there is 0.4% drop from 81.2%
to 80.8%. The above results indicate that the role
of example sentence is more important than the
gloss of hypernyms in our model. One explanation
is that the example sentence is more semantically
representative for the target sense.

4.6 Window Size in Local Self-Attention

In order to evaluate model training complexity and
effectiveness, we employ different configurations
of local self-attention. At the same time, we com-
pare local self-attention with self-attention. The
results are shown in Table 4:

Model Window GiB ALL (%)
Self-attention Full 31.2 80.8
Local self-attention 128 18.0 80.3
Local self-attention 256 20.8 80.8
Local self-attention 512 23.4 81.2

Table 4: Comparison of memory requirement and per-
formance with different window sizes.

In Table 4, we observe that local self-attention
mechanism can significantly reduce the memory
usage, which is beneficial for accelerating training
speed and reducing the training burden. Moreover,
we find that the performance with window size of
128 is 80.3, which is 0.5% lower than the original
self-attention, which is due to the fact that the win-
dow is too small and the model cannot effectively
model the sense representation.

5 Conclusion and Future Work

In this paper, we proposed a novel WSD method
with knowledge-enhanced and local self-attention-
based extractive sense comprehension. Specifically,
a knowledge-enhanced method was devised to en-
rich semantic representation by incorporating addi-
tional examples and definitions of the related senses
in WordNet. Then, in order to avoid the huge com-
puting complexity induced by the additional in-
formation, a local self-attention mechanism was
utilized to constrain attentions to be local, which
allowed longer input texts without large-scale com-
puting burdens. Extensive experimental results
had demonstrated the effectiveness of the proposed
model on public benchmark datasets.

Although our model achieved better perfor-
mance, it still could be improved. Currently, we uti-
lized example sentence and hypernym gloss. There
are many other unexplored semantic relations in
WordNet and BabelNet. We leave it as future
work to explore more semantic relations in more
lexical resources to further enhance WSD perfor-
mance. Besides, a detailed qualitative analysis on
rare senses and frequent ones should be considered.
We will attempt to evaluate the performance on
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different situations to further enhance our model.
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