@inproceedings{zhai-etal-2022-zero,
title = "Zero-shot Script Parsing",
author = "Zhai, Fangzhou and
Demberg, Vera and
Koller, Alexander",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.356/",
pages = "4049--4060",
abstract = "Script knowledge is useful to a variety of NLP tasks. However, existing resources only cover a small number of activities, limiting its practical usefulness. In this work, we propose a zero-shot learning approach to \textbf{script parsing}, the task of tagging texts with scenario-specific event and participant types, which enables us to acquire script knowledge without domain-specific annotations. We (1) learn representations of potential event and participant mentions by promoting cluster consistency according to the annotated data; (2) perform clustering on the event / participant candidates from unannotated texts that belongs to an unseen scenario. The model achieves 68.1/74.4 average F1 for event / participant parsing, respectively, outperforming a previous CRF model that, in contrast, has access to scenario-specific supervision. We also evaluate the model by testing on a different corpus, where it achieved 55.5/54.0 average F1 for event / participant parsing."
}
Markdown (Informal)
[Zero-shot Script Parsing](https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.356/) (Zhai et al., COLING 2022)
ACL
- Fangzhou Zhai, Vera Demberg, and Alexander Koller. 2022. Zero-shot Script Parsing. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4049–4060, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.