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Abstract

Data augmentation with mixup has shown to
be effective on the NLP tasks. Although its
great success, the mixup still has shortcomings.
First, vanilla mixup randomly selects one sam-
ple to generate the mixup sample for a given
sample. It remains unclear how to best choose
the input samples for the mixup. Second, lin-
ear interpolation limits the space of synthetic
data and its regularization effect. In this pa-
per, we propose the dynamic nonlinear mixup
with distance-based sample selection, which
not only generates multiple sample pairs based
on the distance between each sample but also
enlarges the space of synthetic samples. Specif-
ically, we compute the distance between each
input data by cosine similarity and select multi-
ple samples for a given sample. Then we use
the dynamic nonlinear mixup to fuse sample
pairs. It does not use a linear, scalar mixing
strategy, but a nonlinear interpolation strategy,
where the mixing strategy is adaptively updated
for the input and label pairs. Experiments on
the multiple public datasets demonstrate that
dynamic nonlinear mixup outperforms state-of-
the-art methods.

1 Introduction

Deep neural networks have achieved great success
in NLP tasks, such as text classification (Zhang
et al., 2015), machine translation (Sutskever et al.,
2014), and dialogue tasks (Serban et al., 2016).
These models usually require a large amount of la-
beled data, but labeling data is time-consuming and
expensive. Data augmentation is a common tech-
nology to solve the data scarcity problem. Some of
them are based on rules (Wei and Zou, 2019) and
models (Edunov et al., 2018) to generate similar
text. Augmented data are trained by advanced train-
ing methods (Park et al., 2021). On the other hand,
mixup (Zhang et al., 2017b) trains the classifier on
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the synthetic data which are generated by the linear
interpolation of the input and label pairs.

Recently, many variants of mixup are proposed
and successfully applied to NLP tasks. It mainly
includes two categories: input-level mixup (Yoon
et al., 2021) and hidden-level mixup (Sun et al.,
2020; Guo, 2020). Hidden-level mixup is more
popular because of the discrete nature of text data
and variable sequence lengths. It usually fuses the
hidden vectors like embeddings or intermediate
representations. While the hidden-level mixup is
effective, it still has some issues. First, mixup
produces the sample pairs by randomly choosing
a sample for a given sample. How to select the
optimal input and label pairs is unclear. Second, the
space of synthetic data is limited due to its linear
nature. Although nonlinear mixup (Guo, 2020)
is proposed and utilizes the matrix mixing policy
for the sample pairs, the matrix is fixed during
the training process and it is difficult to get the
appropriate parameters.

In this paper, we propose a dynamic nonlin-
ear mixup with distance-based sample selection
method to address the above problems. First, we
compute the distance between each input sample
by cosine similarity. Then we pick the Top-K sam-
ples with the largest distance and the Top-K sam-
ples with the smallest distance for a given sample.
Second, we obtain mixed inputs by performing a
dynamic mixing strategy on these sample pairs.
Unlike nonlinear mixup (Guo, 2020), where the
fixed matrix fusion method is applied to the sample
pairs, our method uses the vector mixing policy
and dynamically updates its parameters. The fea-
ture space of the generated data is further enlarged
by this way. Since the dimensions of the one-hot
label and vector mixing policy are different, we
learn the label embedding instead of the original
label. The mixing policy of labels is adaptively
learned based on the mixed input. In summary, the
main contributions of our work are summarized as
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follows:
• We propose the dynamic nonlinear mixup,

which expands the space of the generated data by
the dynamic vector mixing policy. Besides, we
introduce distance-based sample selection to gen-
erate more mixup samples, which improves the
generalization ability of the model.
• We conducted comparative experiments on

four datasets. The experimental results demonstrate
that our method outperforms other state-of-the-art
methods, especially in low-resource scenarios.

2 Related work

Traditional data augmentation methods are catego-
rized into adding noise and back-translation. Easy
Data Augmentation (EDA) (Wei and Zou, 2019)
proposes four methods to add noise: synonym
replacement, random insertion, random deletion,
and random swap. It can create a large number
of augmented training samples but may lose se-
mantic information due to random deletion. Back-
translation (BT) (Zhang and Zong, 2016; Edunov
et al., 2018) trains target-to-source system to gener-
ate the source language. BT keeps the semantics of
the original text, but the augmentation data depends
on the quality of the translation model.

Another class of methods is based on the tech-
nique of interpolation. A data augmentation
method mixup (Zhang et al., 2017b) is proposed
and has shown good performance in the image
classification. Mixup trains the classifier on the
synthetic data which are generated by the linear
interpolation of the input and label pairs. In NLP
tasks, it usually uses hidden-level mixup. Word-
Mixup and senMixup (Guo et al., 2019) are two
linear interpolation methods that are implemented
on the word embeddings and sentence embeddings.
Sun et al. (2020) incorporate mixup to transformer-
based pre-trained architecture to boost the perfor-
mance of NLU tasks. Park and Caragea (2022)
propose a novel mixup strategy for pre-trained lan-
guage models by both the Area Under the Mar-
gin (AUM) statistic and the saliency map of each
sample. Chen et al. (2020) propose a data aug-
mentation method called Tmix for semi-supervised
learning, which interpolates labeled and unlabeled
samples in the hidden space to improve the per-
formance of text classification. BatchMixup (Yin
et al., 2021) utilizes interpolation strategy in a mini-
batch to improve model performance on the pre-
trained language model RoBERTa (Liu et al., 2019).

Yoon et al. (2021) propose the Saliency-Based Span
Mixup (SSMix), which generates a sentence while
reserving the locality of two original texts by span-
based mixing and keeping more tokens related to
the prediction relying on saliency information.

The above methods just randomly select one
sample for a given sample. The number of gen-
erated samples is insufficient. We choose Top-K
largest distance samples and Top-K smallest dis-
tance samples according to the distance between
each sample. It can generate more sample pairs for
mixup. Besides, mixup uses linear interpolation
which limits the space of generated data. We utilize
dynamic nonlinear mixup which expands the space
of the generated data. Similar to us, the nonlinear
mixup (Guo, 2020) uses the fixed matrix mixing
strategy. Finding an appropriate hyperparameter is
difficult. In contrast, our method utilizes a vector
mixing strategy that can be dynamically updated
throughout the training process.

3 Approach

In this section, we first present the mixup, followed
by distance-based sample selection, and the de-
tails of the dynamic nonlinear mixup. Finally, the
training strategy is introduced. Figure 1 gives an
overview of our method.

3.1 Mixup
Mixup is first introduced for image classification,
which uses the linear interpolation to generate the
synthetic data based on the input and label pairs.
Specifically, a sample pair (xi, yi) and (xj , yj),
where x and y denote the input samples and corre-
sponding labels, respectively. The synthetic sample
is generated as follows:

xij = λxi + (1− λ)xj

yij = λyi + (1− λ)yj
(1)

where λ is the mixing-ratio and sampled from a
Beta(α,α) distribution with the hyper-parameter
α ∈ (0,∞). Inspired by its great success in the
image domain, this method is introduced into text
classification. Unlike the image data, the text is
composed of discrete and variable-length tokens.
Generally, we extract the sentence embedding of
the sample pairs by CNN, LSTM, or Transformer.
Then, the sample pairs are linearly interpolated.

3.2 Distance-based Sample Selection
For sample (xi, yi), mixup randomly selects an-
other sample (xj , yj) to generate the new sample
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Figure 1: The architecture of the dynamic nonlinear mixup with distance-based sample selection, where m̃ is the
predicted value and m̂ is the ground truth. Ldnm is loss. For easy explanation, we select Top-1 largest distance
samples and Top-1 smallest distance samples.

(xij , yij). The number of generated samples is lim-
ited because only one sample is picked. Intuitively,
if the distance between a given sample and another
sample is larger, the potential generation space of
generated sample is larger. If only the samples
with the largest distance are selected, the distribu-
tion of synthetic samples may not cover the middle
area, which will reduce the performance of the
model. In this paper, We propose the distance-
based sample selection method which combines
Top-K largest distance samples and Top-K smallest
distance samples. We assume that there is training
data X = {xi, yi}Ni=1, where N is the number of
training data. The text representation H = {hi}Ni=1

is obtained through the feature encoder. We com-
pute the distance L ∈ RN×N between each sam-
ple embedding representations by cosine similar-
ity as the basis for selecting samples. For sample
(xi, yi), we find Top-K largest distance samples
XLi = {xLi

j , yLi
j }Kj=1 and Top-K smallest distance

samples XSi = {xSi
j , ySi

j }Kj=1. We generate 2K
mixed samples for a given sample (xi, yi) by inter-
polating the Top-K largest distance samples XLi

and Top-K smallest distance samples XSi .

3.3 Dynamic Nonlinear Mixup

To expand the space of generated samples, we pro-
pose the dynamic nonlinear mixup method. First,
we use dynamic vector mixing policy to obtain the
mixed input, where the parameters of the vector are
learnable. Second, The mixing policy is a vector
instead of a scalar, which cannot be applied to the
label pairs because of dimension difference. We
use the label embeddings to encode the one-hot
labels. The label weights are updated based on the
mixed input samples. In the following, we describe
the details of this method successively.

3.3.1 Mixed Input
Although nonlinear mixup (Guo, 2020) expands
the space of generated samples, the parameters of
matrix mixing policy are constant. In this paper,
we propose the dynamic nonlinear mixup which up-
dates the mixing policy during the training process.
We assume that v1, v2 ∈ R1×d denote the weight
vectors, where d is the dimension. In order to make
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the probability between 0 and 1, we normalize the
vectors v1 and v2 in each dimension to get v̂1 and
v̂2 by softmax. The input of dynamic nonlinear
mixup is computed as follows:

hij = v̂1 ◦ hi + v̂2 ◦ hj (2)

where hij is the input representation of the syn-
thetic sample. ◦ denotes the element-wise product.
The parameters of the vector are updated through-
out the training process. Compared with the matrix
mixing method, the space of the synthetic samples
is wider and the model has better generalization
ability. Note that our method mixes samples at the
[CLS] hidden state representations level of the top
layer of the pre-trained language model.

3.3.2 Mixed Label
Since our mixing strategy is a vector instead of a
scalar, it cannot be applied to one-hot label because
the vector and label have different dimensions. To
overcome this problem, we use label embedding
(Zhang et al., 2017a) which adopts different vec-
tors to encode each category. M ∈ Rc×d is the
label embedding matrix, where c is the number of
categories. The mixed label m̂ij is computed as
follows:

Φi = (v̂1 ◦ hi)W
Φj = (v̂2 ◦ hj)W
m̂ij = Φ̂i ◦mi + Φ̂j ◦mj

(3)

where W ∈ Rd×d is the weight matrix. Similarly,
we also normalize the weight vector Φi,Φj in each
dimension to get Φ̂i, Φ̂j . mi is the label embedding
of the i-th sample. In this way, the target weight
vector is generated based on the mixed input sam-
ple, which makes the model automatically obtain
the appropriate synthetic sample target. Finally,
the input and label of the generated samples are
(hij , m̂ij).

3.4 Training strategy
We obtain the predicted d-dimensional class vector
m̃ij by feeding the mixing input into fully con-
nected layer:

m̃ij = fc(hij) (4)

We use cosine similarity to measure the corre-
lation between the predicted vector m̃ij and true
vector m̂ij . Since the cosine value is closer to 1,
the similarity of the two vectors is higher. We use

the mean squared error (MSE) to compute the loss:

Lij = MSE(Cos(m̃ij , m̂ij), 1) (5)

We add up the losses of all synthetic samples to
get Ldnm. Finally, the loss is as follows:

Ldnm =
1

N × 2K

N∑
i=1

2K∑
j=1

Lij (6)

In testing phase, the cosine value is calculated be-
tween the predicted class vector m̃ij and the set
of label embedding matrix M , and the class corre-
sponding to the maximum value is regarded as the
predicted label. Algorithm 1 describes the training
procedure of our method.

Algorithm 1 Training procedure of our method
Input: Labeled data D, label embedding
matrix M , weight vector v1, v2, weight ma-
trix W , F is feature encoder, N is the
batch size, iters is the total number of itera-
tions.

1: Let t = 0.
2: while t <iters do
3: t = t+1
4: Total_Loss = 0
5: Loss = 0
6: Tb = RandomSelect(D,N)
7: Obtain the hidden layer representation

HTb
= F (Tb)

8: Compute the distance L according to HTb

9: for i = 1 to N do
10: Select Top-K largest distance samples

XLi

11: Select Top-K smallest distance samples
XSi

12: Generate 2K mixed inputs using Eq. (2)
13: Generate 2K mixed labels using Eq. (3)
14: Compute the predicted value of each

mixed input using Eq. (4)
15: Compute the dynamic nonlinear mixup

loss of each mixed sample using Eq. (5)
16: Loss = Loss+ LossLi + LossSi

17: end for
18: Total_Loss = Total_Loss+ Loss
19: Update the model parameters by minimizing

Total_Loss
20: end while
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4 EXPERIMENT

4.1 Dataset Preparation
We use four datasets to evaluate our method. They
are single-sentence classification tasks. Subj is
a subjective dataset and the label is subjective or
objective (Pang and Lee, 2004). MR is a movie
review dataset with positive or negative (Pang and
Lee, 2005). SST-1 is the Stanford Sentiment Tree-
bank with five categories of very positive, positive,
neural, negative, and very negative (Socher et al.,
2013). SST-2 removes the neural label of SST-1
and is a binary classification task. Table 1 summa-
rizes the all datasets.

Data c l Train Test Val
Subj 2 23 8000 1000 1000
MR 2 20 8528 1068 1066

SST-2 2 19 6920 1821 872
SST-1 5 18 8544 2210 1101

Table 1: Statistics of the experimental datasets. c: num-
ber of labels. l: average sentence length.

4.2 Implementation Details
We utilize the WordPiece to split the sentences
into tokens. In our experiment, we adopt the
BERTbase(uncased) to obtain the sentence embed-
ding. The maximum sequence length, batch size,
step, and dropout is 128, 20, 4000, and 0.1, respec-
tively. The learning rate is 2e-5. The dimension
of the label embedding is 768. For each dataset,
the average and standard error of the accuracy
are calculated over 5 runs with different random
seeds. Besides, we explore the effectiveness of
our method under low-resource scenarios, and we
select 50, 200, 500, 1000, and 2000 training data.
For the hyper-parameter K, we select the optimal
parameters on the three datasets (Table6 and Ta-
ble7). Finally, We set K=5 in all our experiments.
Additionally, all parameters are optimized by the
adaptive momentum algorithm.

4.3 Baselines
We consider the following approaches for compar-
isons:

WordMixup: it applies linear interpolation at
word embedding level (Guo et al., 2019).

SenMixup: it applies linear interpolation at sen-
tence embedding level, namely the layer before the
softmax layer (Guo et al., 2019).

NonlinearMixup: it uses the matrix mixing
method to obtain the synthetic data (Guo, 2020).

BERT: it fine-tunes vanilla BERT on training
data.

BERT+WordMixup: it fuses the the BERT-
based word embeddings by the mixup.

BERT+SenMixup: it uses mixup to fuse the
BERT-based sentence embeddings.

BERT+NonlinearMixup: it utilizes the BERT-
based word embeddings and NonlinearMixup to
train model.

We compare our method with other state-of-the-
art methods on the four datasets and the experi-
mental results are shown in Table 2, Table 3, Ta-
ble 4, and Table 5. As can be seen, our method
has achieved the best performance on most tasks.
Besides, the results reveal several interesting ob-
servations. (1) The first is that the training data
is sufficient. WordMixup, SenMixup, and Nonlin-
earMixup use CNN or LSTM to obtain the embed-
ding representation and achieve good performance.
The classification accuracy of vanilla BERT all
surpasses WordMixup, SenMixup, and Nonlin-
earMixup. It shows that BERT model can pro-
duce better word embedding vectors. Comparing
with BERT, BERT+WordMixup outperforms 0.7%
on Subj dataset, 0.4% on MR dataset, 0.3% on
SST-2 dataset and 0.3% on SST-1 dataset, respec-
tively. BERT+SenMixup also outperforms BERT.
Mixup is beneficial to improve the performance
of large pre-trained language models. Comparing
with BERT+NonlinearMixup, our method exceeds
0.7% on Subj dataset, 0.4% on MR dataset, 0.9%
on SST-2 dataset and 1.0% on SST-1 dataset, re-
spectively. The distance-based sample selection
method can generate multiple sample pairs, and
the dynamic nonlinear mixup expands the space
of generated samples. Therefore, the generaliza-
tion ability of the model is improved. (2) The
second is that the training data is scarce. The
classification accuracy of WordMixup, SenMixup,
and NonlinearMixup dropped sharply. BERT
can achieve better performance due to the pre-
training on the large-scale unlabeled corpus. The
classification accuracy of BERT+WordMixup and
BERT+SenMixup also outperforms BERT. Com-
pared with BERT+NonlinearMixup, our method
exceeds 1.0% on Subj dataset, 2.3% on MR dataset,
1.8% on SST-2 dataset, and 2.4% on SST-1 dataset
for 50 training data, respectively. The performance
improvement with less data is higher than using
full training data. It shows that our method is more
effective in low-resource settings.
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Training Data 50 200 500 1000 2000 all
WordMixup 72.4±0.6 80.6±0.7 84.1±0.6 87.4±0.5 91.6±0.4 94.3±0.6
SenMixup 73.1±0.7 81.4±0.5 84.8±0.4 88.1±0.3 92.4±0.2 95.0±0.3

NonlinearMixup 74.5±0.2 82.2±0.3 86.1±0.2 89.7±0.3 93.2±0.2 94.1±0.1
BERT 89.5±0.4 93.1±0.6 93.5±0.4 94.3±0.5 94.9±0.2 96.0±0.3

BERT+WordMixup 91.8±0.3 93.9±0.2 94.7±0.4 94.9±0.2 96.0±0.5 96.7±0.3
BERT+SenMixup 92.1±0.4 93.8±0.3 94.2±0.3 94.8±0.4 95.6±0.4 96.6±0.5

BERT+NonlinearMixup 92.4±0.5 94.3±0.4 94.9±0.4 94.6±0.2 95.9±0.3 97.3±0.4
Ours 93.4±0.2 95.2±0.5 95.6±0.4 95.8±0.3 96.9±0.4 98.0±0.3

Table 2: Classification accuracy (%) on the Subj dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 65.7±0.6 68.7±0.6 70.5±0.4 72.2±0.7 76.5±0.3 79.7±0.5
SenMixup 66.3±0.4 67.9±0.5 69.4±0.3 73.1±0.5 77.1±0.5 80.3±0.6

NonlinearMixup 67.4±0.2 69.5±0.3 71.1±0.1 74.6±0.3 78.2±0.5 83.4±0.4
BERT 76.6±0.5 81.0±0.5 82.2±0.6 82.9±0.5 84.7±0.4 87.8±0.3

BERT+WordMixup 77.2±0.5 81.3±0.4 82.3±0.4 83.9±0.3 85.0±0.5 88.2±0.4
BERT+SenMixup 77.0±0.4 81.4±0.3 82.6±0.3 83.7±0.5 85.4±0.5 88.1±0.3

BERT+NonlinearMixup 77.3±0.5 81.7±0.6 83.0±0.4 84.3±0.4 85.6±0.3 88.8±0.5
Ours 79.6±0.3 82.6±0.4 83.9±0.4 85.2±0.4 86.4±0.3 89.2±0.4

Table 3: Classification accuracy (%) on the MR dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 66.3±0.6 73.2±0.7 79.4±0.4 78.7±0.5 83.2±0.6 87.1±0.3
SenMixup 67.2±0.7 74.0±0.5 78.7±0.3 77.9±0.6 83.4±0.3 87.2±0.4

NonlinearMixup 68.1±0.3 75.2±0.4 80.2±0.5 79.3±0.5 84.3±0.5 88.6±0.3
BERT 82.6±0.5 85.8±0.3 86.6±0.2 87.9±0.3 89.7±0.4 90.7±0.3

BERT+WordMixup 83.1±0.4 86.4±0.5 87.6±0.3 88.6±0.4 89.6±0.4 91.0±0.3
BERT+SenMixup 83.0±0.5 86.1±0.4 87.8±0.3 88.4±0.2 89.9±0.3 91.1±0.2

BERT+NonlinearMixup 83.3±0.5 86.7±0.6 88.4±0.4 88.9±0.5 90.9±0.3 91.6±0.6
Ours 85.1±0.3 87.7±0.4 88.1±0.3 89.5±0.2 91.4±0.3 92.5±0.2

Table 4: Classification accuracy (%) on the SST-2 dataset.

Training Data 50 200 500 1000 2000 all
WordMixup 26.3±0.6 32.4±0.7 35.4±0.5 38.3±0.6 42.5±0.8 48.2±1.0
SenMixup 27.1±0.7 33.0±0.4 36.2±0.5 37.8±0.5 41.7±0.3 48.6±0.2

NonlinearMixup 27.8±0.3 33.8±0.3 36.7±0.5 38.9±0.4 43.5±0.2 49.3±0.4
BERT 33.3±0.5 39.7±0.4 45.6±0.3 46.1±0.4 48.8±0.2 52.6±0.3

BERT+WordMixup 33.7±0.4 39.3±0.5 45.1±0.3 48.0±0.6 49.4±0.4 52.9±0.2
BERT+SenMixup 33.8±0.4 38.8±0.3 44.8±0.4 47.4±0.2 49.3±0.3 53.0±0.2

BERT+NonlinearMixup 34.9±0.3 40.6±0.4 46.6±0.5 47.5±0.4 50.3±0.4 53.4±0.3
Ours 37.3±0.3 41.8±0.2 47.7±0.5 48.6±0.2 51.4±0.3 54.4±0.2

Table 5: Classification accuracy (%) on the SST-1 dataset.

4.4 Regularization Effect

We plot the training set loss and testing set accuracy
using all training data on Subj and SST-1 datasets in
Figure 2. Compared with BERT+NonlinearMixup,

our method can reduce the training loss faster
and have higher classification accuracy. Besides,
the classification accuracy has not dropped even
through a long training time. It shows that our
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Figure 2: Training set loss and testing set accuracy on Subj dataset (a) (b) and SST-1 dataset (c) (d) when using all
training data.

method can effectively prevent overfitting because
of more training samples and larger generated sam-
ple space.

4.5 Selection of Top-K

We investigate the effects of the K value on Subj,
MR, and SST-1 datasets using 50 and all training
data in Table 6 and Table 7. We vary the K value
with 1, 3, 5, 7, 9, respectively. We find that the
classification accuracy increases first and then de-
creases as K value increases. The best performance
is achieved when K = 5 on most tasks. Compared
with all training data, the improvement of model
performance is more obvious in 50 training data.
Moreover, as K value increases, the generated sam-
ples cannot improve the performance of the model
due to overfitting. It is necessary to find an appro-
priate parameter K.

Top-K Subj MR SST-1
1 92.5±0.4 77.2±0.3 35.2±0.3
3 91.7±0.3 78.3±0.2 36.1±0.4
5 93.4±0.2 79.6±0.3 37.3±0.3
7 93.1±0.3 78.8±0.3 36.9±0.5
9 92.9±0.2 79.2±0.4 36.6±0.4

Table 6: Classification accuracy under different K values
on Subj, MR, and SST-1 datasets when using 50 training
data.

Top-K Subj MR SST-1
1 97.2±0.4 88.7±0.4 53.3±0.3
3 97.6±0.3 88.5±0.5 53.8±0.4
5 98.0±0.3 89.2±0.4 54.4±0.2
7 97.9±0.5 89.4±0.2 54.0±0.3
9 97.4±0.4 89.1±0.5 53.5±0.4

Table 7: Classification accuracy under different K values
on Subj, MR, and SST-1 datasets when using all training
data.

4.6 Effects of Input Weights and Output
Weights

We construct four different ways to observe the
effects of weights on Subj, MR, and SST-1 datasets
using 50 and all training data in Table 8 and Table
9: tuned input weights (TIW), tuned output weights
(TOW), fixed input weights (FIW), and fixed output
weights (FOW). The input weights are shown in Eq.
(2), and the output weights are shown in Eq. (3).
The experimental results show that when the input
weights or output weight is fixed, the prediction
accuracy of our method is reduced. Compared
with FIW+FOW, TIW+TOW exceeds 2.3% on Subj
dataset, 2.8% on MR dataset, and 3.1% on SST-1
dataset for 50 training data, respectively. Compared
with FIW+FOW, TIW+TOW exceeds 1.5% on Subj
dataset, 1.4% on MR dataset, and 2.1% on SST-1
dataset for all training data, respectively. It shows
that our method is more suitable for low resource
situations.

Method Subj MR SST-1
TIW+TOW 93.4±0.2 79.6±0.3 37.3±0.3
TIW+FOW 91.7±0.3 77.9±0.2 35.1±0.2
FIW+TOW 92.1±0.2 78.2±0.4 34.9±0.3
FIW+FOW 91.1±0.1 76.8±0.3 34.2±0.2

Table 8: Effects of input weights and output weights on
Subj, MR, and SST-1 datasets when using 50 training
data.

Method Subj MR SST-1
TIW+TOW 98.0±0.3 89.2±0.4 54.4±0.2
TIW+FOW 96.7±0.3 88.4±0.3 53.1±0.3
FIW+TOW 96.5±0.4 88.1±0.2 53.0±0.4
FIW+FOW 96.2±0.2 87.8±0.3 52.3±0.3

Table 9: Effects of input weights and output weights on
Subj, MR, and SST-1 datasets when using all training
data.
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Figure 3: The t-SNE visualization of original samples and generated samples. The red, green and blue points denote
original samples, the generated samples with the Top-k largest distance and the generated samples with the Top-k
smallest distance.
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Figure 4: The t-SNE visualization of the Subj task (a) (b) and SST-2 task (c) (d). The red and blue points denote
different labels.

4.7 Ablation Studies

To analyze the effect of distance-based sample se-
lection (DSS), largest distance samples (LDS), and
smallest distance samples (SDS), and dynamic non-
linear mixup (DNM), we conduct the ablation ex-
periments using 50 and all training data in Table 10
and Table 11. The w/o DSS randomly selects a sam-
ple for a given sample. Our method can improve
the classification accuracy of the model by generat-
ing more sample pairs. Furthermore, we study the
contributions of the largest distance samples and
smallest distance samples. We can find the samples
with the largest distance has a greater impact than
samples with the smallest distance. The w/o DNM
follows the original mixing strategy to fuse the sen-
tence embeddings. When we interpolate sample
pairs by mixup, the classification accuracy of w/o
DNM degrades on Subj, MR, and SST-1 datasets.
It shows that dynamic nonlinear mixing strategy
can expand the space of generated samples.

4.8 Feature Visualization

To prove the idea in Section 3.2, we visualize the
original samples and generated samples by the t-
SNE (Van der Maaten and Hinton, 2008) in Figure
3. The distribution of the generated samples with

Method Subj MR SST-1
Ours 93.4±0.2 79.6±0.3 37.3±0.3

w/o DSS 91.3±0.5 78.3±0.3 36.1±0.3
w/o LDS 90.5±0.3 76.4±0.4 32.4±0.3
w/o SDS 91.6±0.4 77.9±0.3 35.2±0.4
w/o DNM 92.4±0.4 78.5±0.2 35.9±0.5

Table 10: Results of ablation on Subj, MR, and SST-1
datasets when using 50 training data.

Method Subj MR SST-1
Ours 98.0±0.3 89.2±0.4 54.4±0.2

w/o DSS 97.4±0.4 88.7±0.2 53.5±0.4
w/o LDS 93.9±0.2 86.5±0.4 50.5±0.5
w/o SDS 97.1±0.3 88.2±0.3 53.1±0.3
w/o DNM 97.3±0.3 88.3±0.2 53.6±0.4

Table 11: Results of ablation on Subj, MR, and SST-1
datasets when using all training data.

the Top-k largest distance is similar to the origi-
nal samples, and the generated samples with the
Top-k smallest distance are mainly distributed in
the middle area of the original samples. Besides,
we also select test samples and visualize the fea-
ture of the last layer in Figure 4. We perform the
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visualization on Subj and SST-2 datasets using all
training data. The vanilla BERT mixes samples
with different labels (Figure 4a and Figure 4c). Our
method can better separate samples with different
labels (Figure 4b and Figure 4d). The boundary of
text classification is clear. It proves that our method
can improve the performance of the model.

5 Conclusion

In this paper, we propose the dynamic nonlin-
ear mixup with distance-based sample selection
method to enhance the performance of pre-trained
language models. First, we introduce distance-
based sample selection to choose the Top-K largest
distance samples and Top-K smallest distance sam-
ples for a given sample. More generated samples
improve the generalization ability of the model.
Second, we utilize the dynamic nonlinear mixing
policy on the input sample pairs to enlarge the
space of the synthetic samples. The mixed labels
are constructed through the learned label embed-
dings and mixed input so that the mixed labels are
updated adaptively. Experiments on the Subj, MR,
SST-2, and SST-1 datasets demonstrate that our
method outperforms the state-of-the-art methods.
For future work, we plan to further enhance perfor-
mance by exploring different weighting schemes
for origin samples and augmented samples.
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