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Abstract

Automatic evaluation of grammatical error cor-
rection (GEC) is essential in developing use-
ful GEC systems. Existing methods for au-
tomatic evaluation require multiple reference
sentences or manual scores. However, such
resources are expensive, thereby hindering au-
tomatic evaluation for various domains and cor-
rection styles. This paper proposes an Impact-
based Metric for GEC using PARAllel data,
IMPARA, which utilizes correction impacts
computed by parallel data comprising pairs of
grammatical/ungrammatical sentences. As par-
allel data is cheaper than manually assessing
evaluation scores, IMPARA can reduce the cost
of data creation for automatic evaluation. Cor-
relations between IMPARA and human scores
indicate that IMPARA is comparable or better
than existing evaluation methods. Furthermore,
we find that IMPARA can perform evaluations
that fit different domains and correction styles
trained on various parallel data.

1 Introduction

Grammatical error correction (GEC) is a task of
correcting grammatically incorrect sentences (Yuan
and Briscoe, 2016; Chollampatt and Ng, 2018a;
Junczys-Dowmunt et al., 2018; Kaneko et al., 2020,
2022; Omelianchuk et al., 2020). A GEC system
is designed to be applicable in various domains,
such as web text (Flachs et al., 2020) and essays
written by language learners (Yannakoudakis et al.,
2011) and in different correction styles, such as
minimal and fluency edits (Ng et al., 2013; Napoles
et al., 2017; Hotate et al., 2019). Idealy, GEC
models should be evaluated by manually assessing
the quality of corrections made by these models for
certain target domains and styles. However, it is
expensive to perform manual evaluation every time
a GEC model outputs a correction; we thus need
to establish an automatic evaluation method that
correlates well with manual assessments.

Method Fine-tuning Domain
data dependence

Based on language models None No
With manual assessments P and M on P and M
This work (IMPARA) P on P

Table 1: Comparison of reference-less methods (P: par-
allel data; M: manual assessment data). As discussed
in Section 3, the method that is based only on language
models underperforms the others. IMPARA achieves
a comparable or better performance than the method
trained on manual assessments, although IMPARA does
not depend on manual assessment data.

Automatic evaluation methods of GEC are cat-
egorized into two. The first category is reference-
based methods (Dahlmeier and Ng, 2012; Napoles
et al., 2015; Bryant et al., 2017) that evaluate the
closeness of output sentences from a GEC system
and human-written reference sentences. In general,
an ungrammatical sentence can be corrected in dif-
ferent ways. Thus, reference-based methods re-
quire multiple reference sentences for the accurate
evaluation. However, Choshen and Abend (2018b)
argued that it is unrealistic to prepare reference
sentences that cover all possible corrections. In
addition, they showed that low-coverage reference
sets deteriorate the reliability of evaluation.

The second category is reference-less method,
which uses only input sentences and system out-
puts (see Table 1 for comparison). Several stud-
ies applied language models for automatic eval-
uation (Napoles et al., 2016; Flachs et al., 2020;
Islam and Magnani, 2021). However these stud-
ies had low correlations with human judgements
because the perplexity of language models does
not necesarily reflect the grammaticality but the
frequency of words. Therefore, Asano et al. (2017)
and Yoshimura et al. (2020) proposed using human
assessment scores for training automatic evalua-
tion models and hence reported performance im-
provements. However, applying their methods to
various domains and styles is expensive because
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they require a dataset of human assessment for
each domain/style and because the availability of
such datasets is limited. In addition, it is diffi-
cult to create a reliable dataset for human assess-
ment (Choshen and Abend, 2018a).

We propose a novel reference-less method called
Impact-based Metric for GEC using PARAllel data
(IMPARA)1. This method can be trained using
only parallel data comprising ungrammatical and
grammatical sentence pairs, which are widely avail-
able in various domains and correction styles. Fur-
thermore, creating parallel data is less expensive
than manually rating GEC outputs. Therefore, we
can use IMPARA for various domains/styles with
much less effort than performing manual assess-
ments.

The simplest way to build a model for correction
quality judgement is learning to discriminate be-
tween original and grammatical sentences in paral-
lel data. However, this approach has two problems.
First, an automatic evaluation method receives a
pair of original sentence and GEC output, whereas
the parallel data only includes pairs of original and
grammatical sentences. Therefore, the discrim-
inator may receive a pair of two ungrammatical
sentences during inference, although it is trained
only with pairs of ungrammatical and grammat-
ical sentences. Second, an automatic evaluation
method must handle incomplete corrections made
by GEC methods. Even if an original sentence in-
cludes multiple grammatical errors, a GEC method
may correct some of the errors and leave others.
Hence, the supervision data for training an auto-
matic evaluation method should include instances
where grammatical errors are partially corrected.

IMPARA addresses these issues by automatic
generation of supervision data with partially-
corrected sentences. Decomposing corrections be-
tween original and corrected sentences into edits,
we measure the impact of each edit to determine
the preferences of edits. Then, we generate pairs
of partially corrected sentences from parallel data
and determine the preference order of generated
pairs based on the impacts of the involved edits.
The evaluation model is trained on the generated
pairs so that it reproduces the preference order of
sentence pairs.

The meta-evaluation (Section 3) demonstrates
that IMPARA achieves a comparable or better eval-
uation performance than existing reference-less

1https://github.com/Silviase/IMPARA

methods, even without tailored data of human as-
sessments, but only with parallel data. Furthermore,
IMPARA exhibits high capability of adapting its
evaluation metric to the target domain and style
given by the parallel data.

2 IMPARA

2.1 Architecture

IMPARA comprises quality estimator (QE) and
similarity estimator (SE) based on BERT (Devlin
et al., 2019), as illustrated in Figure 1. Given a
pair of original sentence and GEC output, the QE
evaluates the quailty of the GEC output. Then, the
SE computes the semantic similarity of two sen-
tences. We use a pre-trained BERT model without
fine-tuning to build the SE, but fine-tune the BERT
model for the QE.

Let X and Y denote an original sentence and an
output of GEC system, respectively. Given a GEC
output Y , the QE yields a score QE(Y ) ∈ [0, 1].
Given X and Y , the SE computes the similarity
SE(X,Y ) ∈ [0, 1] of the sentences. Equation 1
defines the overall score of the correction from X
to Y ,

score(X,Y ) =

{
QE(Y ) (if SE(X,Y ) > θ)
0 (otherwise)

.

(1)
Here, θ is a threshold to output the score of the QE;
the score is SE(X,Y ) if the semantic similarity
is higher than θ and 0 otherwise. The threshold
prevents the high overall score even when output
Y is deviated from original sentence X .

This study aims to build a relative evaluation
measure that can compare two sentences in terms
of the quality of grammatical correction2. We
are not interested in building an absolute mea-
sure, unlike other metrics, e.g., recall and precision
used in M2 (Dahlmeier and Ng, 2012). Adjusting
score(X,Y ) with manual assessment scores may
be possible. However, we leave this as a future
work because our focus is to learn an evaluation
measure only from parallel data.

2.2 Quality estimator

The QE computes a score as a dot product between
a parameter vector and contextualized embeddings
from the BERT model, followed by the sigmoid

2Therefore, score(X,Y ) = 0.99 does not mean that 99%
of errors in X are corrected in Y .

https://github.com/Silviase/IMPARA
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Figure 1: The IMPARA model architecture

function σ. Formally, let y ∈ Rd denote the con-
textualized embeddings of the first token of the
output sentence Y at the final layer of the BERT
model (where d is the number of dimensions of em-
beddings). We define q(Y ) ∈ R as a dot product
between parameter vector w ∈ Rd and embeddings
y of sentence Y ,

q(Y ) = w⊤y. (2)

Then we compute a QE score

QE(Y ) = σ(q(Y )). (3)

We train the parameter vector w by fine-tuning the
BERT model on the supervision data T (to be de-
scribed in Section 2.4). Supervision data comprises
pairs of positive S+ and negative S− sentences. We
train the model so that it prefers positive sentences
to negative ones by minimizing loss function L.

L =
1

|T |
∑

(S−,S+)∈T

σ (q(S−)− q(S+)) (4)

Here, we use the sigmoid function σ(.) to stabilize
training3.

2.3 Impact of edits
Before describing the procedure for generating the
supervision data T , we introduce the notion of an
edit and its impact in grammatical error correction.

Let (S, T ) be a pair of sentences from parallel
data and E be a set of edits to obtain the corrected
sentence T from the original one S. Here, edits are

3Preliminary experiments confirmed that the sigmoid func-
tion contirubted to improve the evaluation performance.

extracted automatically by using ERRANT (Bryant
et al., 2017), a tool for aligning two sentences and
extracting edits and their types.

For an edit e ∈ E , T−e denotes the sentence with
all edits except for e, i.e., E \ {e}, applied to S. In
other words, T−e presents the sentence where edit
e is omitted when rewriting S into T . Hence, T is
obtained by applying edit e to T−e. We evaluate
the impact of edit e in terms of the magnitude of
the semantic change from T−e to T ,

impact(T, e) = 1− BERT(T ) · BERT(T−e)

∥BERT(T )∥∥BERT(T−e)∥
.

(5)

Here, BERT(T ) ∈ Rd presents the mean pool-
ing of contextualized embeddings of all tokens in
sentence T at the final layer of the BERT model.
Equation 5 provides a higher impact to an edit that
greatly changes the meaning between T−e and T .
Given a set of edits E, we define its overall impact
I(T,E) as the sum of impacts of all edits,

I(T,E) =
∑
e∈E

impact(T, e). (6)

Choshen and Abend (2018a) also proposed the
concept of computing an impact of an edit. How-
ever, they define an impact as the number of ap-
plied edits without considering the impact of an
individual edit. Conversely, we assume that a sen-
tence with more semantically important corrections
should receive a higher impact than others with se-
mantically unimportant corrections.

2.4 Generating supervision data for QE
As detailed in Equation 4, the QE model requires
supervision data T with pairs of positive and nega-
tive sentences. We cannot use parallel data of origi-
nal and corrected sentences as they are because the
QE model needs to measure the quality of imper-
fect corrections. In addition, in some parallel data
with fluency corrections (e.g., JFLEG (Napoles
et al., 2017)), the difference from an original to its
corrected sentence is so large that the QE model
may not learn the importance of each individual
edit in parallel sentences.

Therefore, we generate partially corrected sen-
tences from the sentence pairs of parallel data and
determine the preference order between two sen-
tences. Figure 2 depicts the generation process for
a pair of the original S and corrected T sentences in
the parallel data. First, we apply ERRANT (Bryant



3581

We looked in every hotel in Town trying to give you the best offerd.

We looked at every hotel in town, trying to give you the best offer.

Original 𝑆𝑆:

Corrected 𝑇𝑇:

Parallel corpus

Edit ℇ Impact

in / at 0.00451

Town / town, 0.01775

offerd / offer 0.00799

Edits from 𝑆𝑆 to 𝑇𝑇

Edit 𝐸𝐸1 ⊆ ℇ

in / at

Town / town,

Edit 𝐸𝐸2 ⊆ ℇ

Town / town,

offerd / offer

𝐸𝐸− 𝐸𝐸+

𝐼𝐼 𝑇𝑇,𝐸𝐸1 = 0.02226 𝐼𝐼 𝑇𝑇,𝐸𝐸2 = 0.02574<

Extract edits and 
compute their impacts

Create two 
subsets of ℇ

We looked at every hotel in town, trying to give you the best offerd.

We looked in every hotel in town, trying to give you the best offer.

𝑆𝑆−:

𝑆𝑆+:

An instance of the supervision data for QE: 𝑆𝑆−, 𝑆𝑆+ ∈ 𝒯𝒯

Apply 𝐸𝐸− and 𝐸𝐸+ to 𝑆𝑆 and     obtain 𝑆𝑆− and 𝑆𝑆+, respectively

Figure 2: Procedure for generating supervision data for QE. We generate partially corrected sentences from a pair of
original and corrected sentences in the parallel data, and determine their preference orders.

et al., 2017) to automatically extract a set of edits
E between the original sentence S and corrected
sentence T in the parallel data. We generate two
subsets of edits E1, E2 ⊆ E using the procedure
presented in the subsequent paragraph. We choose
E− and E+ from the two subsets E1 and E2 such
that I(T,E−) < I(T,E+),

E− = argmin
E∈{E1,E2}

I(T,E), (7)

E+ = argmax
E∈{E1,E2}

I(T,E). (8)

Finally, we obtain two sentences S− and S+ by
applying E− and E+, respectively, to the original
sentence S. In this way, the supervision data T
provides tuples of (S−, S+) where the sentence
S+ has a higher impact than S− measured by the
impacts of edits (Equation 6).

At last, we describe the procedure to obtain E1

and E2 from E . We randomly create a subset E1 ⊆
E with k elements, where k ∈ {1, 2, . . . , |E|}
is chosen from the discrete uniform distribution.
Then, we modify E1 to obtain another subset
E2 ⊆ E . Initializing E2 = E1, we perform the
following operation for each element e ∈ E with
the probability 1

|E| :

E2 ←

{
E2 ∪ {e} if e /∈ E1 ∧ e /∈ E2

E2 \ {e} if e ∈ E1 ∧ e ∈ E2

. (9)

We discard E1 and E2 if E1 = E2 even after re-
peating the operation. Consequently, we randomly
sample partial edits from E and enhance the diver-
sity of partially corrected sentences.

2.5 Similarity estimator
The SE computes the semantic similarity between
the original sentence X and its GEC output Y .
Specifically, we compute the cosine similarity be-
tween contextual embeddings of two sentences X
and Y ,

SE(X,Y ) =
BERT(X) · BERT(Y )

∥BERT(X)∥∥BERT(Y )∥
. (10)

Here, the definition of BERT(.) is compatible with
that for Equation 5.

3 Experiments

We conducted two types of experiments to examine
the performance of IMPARA over existing meth-
ods. First, we compared correlations between auto-
matic evaluation metrics and human assessments
in GEC; this experiment measures the closeness of
automatic and human evaluations. Second, we eval-
uate automatic evaluation metrics trained and tested
in different text domains and correction styles; this
experiment investigates the importance to train
evaluation metric in a target domain/style and the
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ability of IMPARA to adapt to different domains
and styles.

3.1 Experimental settings

3.1.1 Hyperparameters

We used BERT-BASE-CASED4 on HuggingFace
as the pre-trained BERT model for the SE and QE.
We kept the number of training instances |T | con-
stant to 4096, regardless of test sets, to avoid the ef-
fects of the size of training data on the performance.
The maximum number of training instances gen-
erated from a parallel sentence pair is 30. We set
the learning rate to 10−5 and the batch size to 32.
A dataset is split into training, validation, and test
sets at a ratio of 8 : 1 : 1. We selected the num-
ber of epochs from 1, 2, ..., 10 that showed the best
performance on the validation set. The threshold
θ is set to 0.9 for the SE. This similarity value is
higher than the maximum similarity value com-
puted for any combinations of corrected sentences
in the CoNLL-2014 dataset.

3.1.2 Baselines

Baseline methods include two reference-less au-
tomatic evaluation methods with different archi-
tectures: SOME (Yoshimura et al., 2020) and
Scribendi Score (Islam and Magnani, 2021).

SOME employs BERT models optimized on hu-
man assessments for corrections and estimates cor-
rection quality from three perspectives: grammat-
icality, fluency, and meaning preservation. Mod-
els were trained on tmu_gfm_dataset5, where
five human raters manually assign evaluation scores
for sentence pairs in the CoNLL-2013 dataset, with
the hyperparameter settings of Yoshimura et al.
(2020). Note that SOME was trained with addi-
tional human assessments for the CoNLL-2013
dataset, whereas IMPARA was trained only on the
parallel data of the CoNLL-2013 dataset. Scribendi
Score uses a language model to determine whether
a correction improves the quality of a sentence.
It also performs a superficial comparison of sen-
tences to determine whether a correction is appro-
priate. We employed the pre-trained model gpt-2
released by HuggingFace and fuzzywuzzy6, a
publicly available Python package to calculate the

4https://github.com/huggingface/
transformers

5https://huggingface.co/datasets/tmu_
gfm_dataset

6https://pypi.org/project/fuzzywuzzy

token sort ratio and Levenshtein distance ratio for
sentence comparison.

3.1.3 Datasets and meta-evaluation metrics
The first experiment measured correlations be-
tween automatic evaluation metrics and human
assessments on the dataset presented by Grund-
kiewicz et al. (2015). This dataset contains human
rankings created for the outputs of 12 GEC systems
on the CoNLL-2014 dataset. We computed Pear-
son’s correlation coefficient (Pea) and Spearman’s
rank correlation coefficient (Spe) at the corpus level
using the Expected Wins shown in Table 3(b) of
Grundkiewicz et al. (2015). We also measured
accuracy (Acc) and Kendall’s rank correlation co-
efficient (Ken) for sentence-level comparison.

Meanwhile, Choshen and Abend (2018a) pro-
posed MAEGE, an automatic methodology for
GEC metric validation. MAEGE generates multi-
ple partially corrected sentences from an incorrect
sentence, and assigns pseudo scores to them, which
are based on the number of edits applied. Then
it computes correlation coefficients between the
pseudo scores and the scores computed by auto-
matic evaluation metrics. As this method do not
require human assessment, it overcame difficul-
ties such as low inter-rater agreement on human
rankings. We calculated five correlations coeffi-
cients for meta-evaluation: Pearson’s correlation
coefficient (Pea) and Spearman’s rank correlation
coefficient (Spe) at corpus and sentence levels; and
Kendall’s rank correlation coefficient (Ken) at the
chain level.

For the second experiment, we conducted meta-
evalution using MAEGE on four different corpora:
CoNLL-2013 dataset (Ng et al., 2013) (minimal
edits), JFLEG (Napoles et al., 2017) (fluency ed-
its), CWEB (Flachs et al., 2020) (website texts)
and FCE (Yannakoudakis et al., 2011) (essay). We
meta-evaluated IMPARA with different combina-
tions of training and test sets to examine whether
IMPARA can incorporate the characteristics of a
dataset in the GEC evaluation. In this evaluation,
we split each dataset into training and test sets at a
ratio of 9 : 1. In addition, we compared IMPARA
with the two baseline methods in terms of domain
adaptability on the four datasets.

3.2 Correlations with human assessments

Table 2 shows correlations between automatic eval-
uation metrics and human rankings. As we could
not reproduce the scores reported in Islam and Mag-

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/datasets/tmu_gfm_dataset
https://huggingface.co/datasets/tmu_gfm_dataset
https://pypi.org/project/fuzzywuzzy


3583

Method Corpus Sentence
Pea Spe Acc Ken

Scribendi Score (paper) 0.951 0.940 - -
Scribendi Score (ours) 0.303 0.729 0.414 -0.170
SOME 0.956 0.923 0.777 0.555
IMPARA 0.974 0.934 0.748 0.496
IMPARA (parallel only) 0.936 0.929 0.742 0.485

Table 2: Correlation with manual evaluation (Grund-
kiewicz et al., 2015) on CoNLL-2014.

Method Corpus Sentence Chain
Pea Spe Pea Spe Ken

Scribendi Score 0.884 0.981 0.374 0.421 0.824
SOME 0.965 1.000 0.394 0.439 0.563
IMPARA 0.951 0.990 0.522 0.608 0.692

Table 3: Meta-evaluation result using MAEGE on
CoNLL-2014.

nani (2021), the first two rows presents the scores
reported in their paper (“paper”) and reproduced
by our implementation (“ours”).

IMPARA and SOME are the contenders in this
evaluation; IMPARA was better than SOME at the
corpus level, but inferior at the sentence level. It
should be noted that IMPARA achieves the com-
parable performance to SOME without additional
human assessments on the CoNLL-2013 dataset7.
We also show IMPARA trained without the super-
vision data described in Section 2.4, but only on the
parallel data (“parallel only” in Table 2). We ob-
served the improvement by generating supervision
data, comparing the last two rows in Table 2.

Table 3 reports the meta-evaluation results us-
ing MAEGE. As Choshen and Abend (2018a) sug-
gested, we regarded this evaluation more important
than the evaluation of Table 2. Again, IMPARA
exhibits a comparable performance to SOME in
this evaluation. Although IMPARA is slightly in-
ferior to SOME at the corpus level, the correla-
tion coefficients are quite high (≈ 1) to compare
the two methods. Therefore, we focused on the
evaluation at sentence and chain levels, which is
more fine-grained than that at the sentence level.
At the sentence and chain levels, IMPARA outper-
formed SOME with wide margins, +0.128 point
(Pea), +0.169 point (Spe), and +0.129 point (Ken)8.

7Again, we emphasize that SOME uses additional supervi-
sion data tmu_gfm_dataset for training the model.

8Scribendi Score overwhelmes other metrics in Ken, but
this is because Scribendi Score assigns tie scores to many
instances. Although such instances are difficult to decide
preference orders, the MAEGE implementation excludes tie
instances from the evaluation. In other words, MAEGE did not
evaluate difficult instances for Scribendi Score. For reference,
the ratios of tie instances are 42.5% (Scribendi Score), 0.04%

Dataset Dataset Corpus Sentence Chain
(eval) (train) Pea Spe Pea Spe Ken

CoNLL-2013 0.932 1.000 0.411 0.515 0.688
CoNLL- CWEB 0.961 1.000 0.380 0.468 0.574
2013 JFLEG 0.959 0.990 0.344 0.408 0.568

FCE 0.967 1.000 0.404 0.490 0.567

CWEB

CoNLL-2013 0.750 0.836 0.331 0.328 0.713
CWEB 0.790 0.963 0.472 0.432 0.780
JFLEG 0.757 0.818 0.353 0.354 0.775
FCE 0.805 0.936 0.350 0.397 0.775

JFLEG

CoNLL-2013 0.959 0.990 0.516 0.604 0.677
CWEB 0.952 0.972 0.524 0.572 0.644
JFLEG 0.937 1.000 0.618 0.685 0.783
FCE 0.961 0.990 0.581 0.649 0.627

FCE

CoNLL-2013 0.865 0.972 0.377 0.388 0.758
CWEB 0.882 0.990 0.435 0.441 0.753
JFLEG 0.852 0.972 0.390 0.429 0.739
FCE 0.853 0.990 0.541 0.616 0.848

Table 4: Performance of IMPARA with different com-
binations of datasets used for training and evaluation.
Using parallel data of the same domain and correction
style for training and evaluation is important.

Dataset Method Corpus Sentence Chain
Pea Spe Pea Spe Ken

CoNLL-2013
Scribendi 0.938 0.984 0.331 0.355 0.698
SOME 0.961 1.000 0.370 0.419 0.502
IMPARA 0.932 1.000 0.411 0.515 0.688

CWEB
Scribendi 0.637 0.451 0.177 0.194 0.616
SOME 0.767 0.663 0.055 0.155 0.678
IMPARA 0.790 0.963 0.472 0.432 0.780

JFLEG
Scribendi 0.932 0.945 0.255 0.303 0.574
SOME 0.955 0.990 0.523 0.531 0.639
IMPARA 0.937 1.000 0.618 0.685 0.783

FCE
Scribendi 0.869 0.933 0.342 0.449 0.897
SOME 0.843 0.972 0.165 0.254 0.663
IMPARA 0.853 0.990 0.541 0.616 0.848

Table 5: Performance of IMPARA and the two baseline
methods on different datasets.

These results suggest that IMPARA achieves better
evaluation performance than existing reference-less
methods even without tailored data of human as-
sessments, but only with parallel data.

3.3 Evaluation on other datasets

Table 4 summarizes correlation coefficients com-
puted by MAEGE with different combinations of
datasets used for training and evaluating the IM-
PARA model. For example, the second row of
Table 4 shows the performance of IMPARA trained
on CWEB and tested on CoNLL-2013. The table
also indicates that IMPARA performed the best
when the QE model was trained and evaluated on
the same dataset. This observation is clearer when
we evaluate IMPARA at the sentence and chain
levels. Given that creating tailoerd evaluation data

(SOME), and 0.07% (IMPARA).
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Error type Impact (10−2) Frequency
NOUN 0.652 408
VERB:TENSE 0.649 480
VERB 0.580 557
NOUN:NUM 0.385 534
PUNCT 0.367 473
DET 0.364 1142
PREP 0.325 700

Table 6: Edit impacts for different error types (exclud-
ing OTHER) and their frequencies of occurrences in
CoNLL-2014.

for each dataset with different domains and styles
is expensive, IMPARA can provide a useful and
practical solution, requiring only the parallel data
on domains and styles.

Table 5 reports the performance of IMPARA and
the two baseline methods on different datasets. IM-
PARA was trained on the training split of a dataset
and evaluated on the test split. We did not adapt
Scribendi Score to a target dataset because it is
purely based on a pre-trained language model. It
is impossible to adapt SOME to a target dataset
because no human assessment data is available on
the other datasets. SOME and Scribendi Score
exhibits low performance on CWEB, FCE, and JF-
LEG in Table 5. In contrast, IMPARA achieved the
highest correlations among all datasets. This result
demonstrates the ability of IMPARA in adapting
its evaluation metric to the target domain and style
given by the parallel data.

3.4 Analysis
We analyzed the characteristic of edit impacts
(Equation 5) computed by the BERT model. We
examine edit impacts of different error types ex-
tracted by ERRANT on the CoNLL-2014 dataset.
Table 6 presents the mean of edit impacts of error
types, which appeared more than 400 times (ex-
cluding OTHER type)9. It is reasonable to find that
edits for content words, such as NOUN (nouns) and
VERB (verbs), have higher impacts than those for
functional words, such as DET (determiner) and
PREP (prepositions).

We focused more on the characteristics of im-
pact by analyzing the highest and lowest correc-
tion impacts. Table 7 presents the corrections with
the five largest edit impacts in the CoNLL-2014
dataset. In the first example, the sentence is not
grammatical, and in the third, fourth, and fifth ex-
amples, the meanings of the sentences have been

9Insertion, replacement, and deletion are considered the
same type.

changed10. These sentences with higher impacts
have relatively short length, indicating that a single
correction has a large impact on the meaning of
the entire sentence. In contrast, edits with the top
five lowest impacts appeared in very long sentences
(in 80, 235, 235, 235, and 235 words). Therefore,
the longer a sentence, the smaller an impact of a
correction in the sentence. These observations are
consistent with the definition of Equation 6 and the
importance of corrections recognized by humans.

When we generated supervision data in Section
2.4, edit impacts are not affected by the sentence
length, which is constant for a given corrected sen-
tence. Therefore, we compared edit impacts for
the same corrected sentence. Table 8 shows an
example of edits for content and functional words
applied to the same corrected sentence. It demon-
strates that the content word (i.e., VERB) has a
higher impact than the functional words (i.e., DET,
PREP) in the same corrected sentence, which is
consistent with the results presented in Table 6.

4 Related Work

Reference-based metrics. Reference-based
metrics for GEC use manually written ref-
erence sentences to evaluate a GEC system.
M2 (Dahlmeier and Ng, 2012), I-measure (Felice
and Briscoe, 2015), and ERRANT (Bryant et al.,
2017) are methods for evaluating GEC systems
based on F-score. These methods requires explicit
edit annotations to recognize the difference be-
tween the output and reference sentences to cal-
culate precision, recall, and F0.5. Napoles et al.
(2015) proposed GLEU, a variant of BLEU met-
ric (Papineni et al., 2002) commonly used for ma-
chine translation. GLEU does not require explicit
edit annotations because it evaluates the quality
of correction at the n-gram level. However, the
reliability of reference-based metrics is low when
reference sentences have low coverage (Choshen
and Abend, 2018b).
Reference-less metrics. To address the issue of
reference-based metrics, Napoles et al. (2016) in-
troduced the reference-less metric that does not use
reference sentences for the GEC evaluation. Their
metric comprises a grammatical error detection tool
and a language model, and showed a comparable
performance to reference-based metrics. Islam and
Magnani (2021) proposed Scribendi Score, which

10The correction of the second example in Table 7 is erro-
neous, but it actually appears in the CoNLL-2014 dataset.
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Error Type Sentence Impact (10−2)
VERB As a consequence , interpersonal skills _ / are affected . 6.57
NOUN To some extent , this makes our life more luxurious and blundering / _ . 5.16
NOUN One of the diseases is sickle cell trait / anaemia . 4.95
DET People and friends often mock your / their conditions . 4.93
NOUN They may not be able to enjoy a _ /life normal people can enjoy . 4.68

Table 7: Top-5 examples with the largest edit impacts in CoNLL-2014.

Error Type Sentence Impact (10−2)

Correct Using text-messaging language as an informal way of communicating on social media
networks also has a bad effect on us in the long term .

VERB Using text-messaging language as an informal way of communicating on social media 0.421networks also brings in / has a bad effect on us in the long term .

PREP Using text-messaging language as an informal way of communicating on social media 0.236networks also has a bad effect for / on us in the long term .

DET Using text-messaging language as an informal way of communicating on social media 0.164networks also has a bad effect on us in a / the long term .

Table 8: Examples of edits and their impacts computed for the same corrected sentence in CoNLL-2014.

is based on the perplexity of GPT-2 (Radford et al.,
2019), token sort ratio, and Levenshtein distance
ratio. These metrics require no GEC-specific lan-
guage resource (e.g., supervision data for GEC).
However, they cannot be adapted specifically to
a particular domain or a correction style. Our ex-
periments showed that they cannot evaluate GEC
output robustly for a variety of domains and correc-
tion styles.

Some researchers proposed methods to directly
optimize evaluation metrics on manual assess-
ment scores for GEC outputs. Asano et al.
(2017) presented a metric to evaluate GEC sys-
tems by combining sub-metrics of grammaticality,
fluency, and meaning preservation. This metric
is based on a regression model trained on GUG
data (Heilman et al., 2014), language model, and
METEOR (Denkowski and Lavie, 2014) as sub-
metrics. Yoshimura et al. (2020) proposed a BERT-
based metric wherein sub-metrics were optimized
for human assessment scores. However, Takahashi
et al. (2022) discovered that differences in learners’
CEFR proficiency level11 of a dataset affect the reli-
ability of these metrics. Manual assessment scores
are essential to these metrics to work in various
domains and correction styles.
Meta evaluation methods. The performance
of the metrics were judged by their closeness to
human assessments (Banerjee and Lavie, 2005).
A metric is generally compared using correlation
coefficients between system outputs and human as-
sessments for the outputs. Several studies have con-

11https://www.cambridgeenglish.org/
exams-and-tests/cefr/

ducted meta-evaluations of automatic evaluation
methods for several GEC systems (Grundkiewicz
et al., 2015; Napoles et al., 2016; Asano et al.,
2017). However, human annotations are known
to yield poor inter-rater agreement. Therefore,
Choshen and Abend (2018a) proposed MAEGE
to meta-evaluate metrics without human annota-
tions using sentence pairs ranked by the number of
editing operations applied to ungrammatical sen-
tences.
Reranking methods. Reranking methods used
in GEC systems also estimate the quality of GEC
outputs for choosing better corrections. Chollam-
patt and Ng (2018b) proposed the first neural-based
reranking model that does not require any hand-
crafted features for GEC. Using language models
trained on large-scale corpora, such as BERT, sev-
eral studies have improved the GEC performance
further (Chollampatt et al., 2019; Kaneko et al.,
2019). Liu et al. (2021) considered interactions
of multiple outputs instead of evaluating them in-
dependently in reranking GEC outputs. The goal
of these reranking models is to improve the GEG
performance by selecting a better candidate from
multiple candidates, not replicating a human GEC
evaluation as in our study.

5 Conclusion

In this paper, we presented IMPARA, a novel
reference-less metric for GEC. This method gener-
ates partially corrected sentences from parallel data
comprising ungrammatical and grammatical sen-
tence pairs. IMPARA learns their preference order
of pairs of partially corrected sentences, which are

https://www.cambridgeenglish.org/exams-and-tests/cefr/
https://www.cambridgeenglish.org/exams-and-tests/cefr/
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determined by the impact of edits. The experiment
results demonstrated that IMPARA achieved a com-
parable or better evaluation performance than ex-
isting reference-less methods even without tailored
data of human assessments. In addition, IMPARA
exhibited a high capability of adapting its metric to
the target domain and style given by parallel data.

Future work includes providing an interpretable
scale to scores computed by IMPARA. In addition,
we plan to incorporate parallel data obtained by
grammatical error generation. This may reduce the
cost of building the parallel data and improve the
quality of automatic evaluation metrics.
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