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Abstract

Pre-trained masked language models have
demonstrated remarkable ability as few-shot
learners. In this paper, as an alternative, we
propose a novel approach to few-shot learning
with pre-trained token-replaced detection mod-
els like ELECTRA. In this approach, we refor-
mulate a classification or a regression task as a
token-replaced detection problem. Specifically,
we first define a template and label description
words for each task and put them into the in-
put to form a natural language prompt. Then,
we employ the pre-trained token-replaced de-
tection model to predict which label descrip-
tion word is the most original (i.e., least re-
placed) among all label description words in the
prompt. A systematic evaluation on 16 datasets
demonstrates that our approach outperforms
few-shot learners with pre-trained masked lan-
guage models in both one-sentence and two-
sentence learning tasks. 1

1 Introduction

Few-shot learning aims to learn models with a few
examples and the learned models generalize well
from very limited examples like humans. Recently,
few-shot learning has become an important and
interesting research field of intelligence (Lake et al.,
2015; Yogatama et al., 2019). Compared to data-
rich supervised learning, few-shot learning greatly
overcomes the expensive data annotation challenge
in reality.

Some large pre-trained language models such as
GPT-3 (Brown et al., 2020) have achieved remark-
able few-shot performance by reformulating tasks
as language model problems. However, its hun-
dreds of billions of parameters deter researchers
and practitioners from applying it widely. To tackle
this, a new paradigm, equipping smaller masked

∗*Corresponding author
1Our code is available at https://github.com/

cjfarmer/TRD_FSL

language models (Devlin et al., 2018) with few-
shot capabilities (Schick and Schütze, 2020a,b;
Gao et al., 2021) has been explored, wherein down-
stream tasks are treated as cloze questions. Typi-
cally, as illustrated in Figure 1(b), each input sen-
tence is appended with a prompt phrase such as “It
was [MASK]” to each input sentence, allowing the
model to fill in the [MASK] by reusing the masked
language model head.

Instead of masked language models, another self-
supervised pre-training task called token-replaced
detection has been proposed by Clark et al. (2020)
and it trains a model named ELECTRA to distin-
guish whether each token is replaced by a gen-
erated sample or not. One major advantage of
token-replaced detection pre-training modeling
is that it is more computationally efficient than
masked language modeling. Moreover, their re-
search demonstrates that given the same model
size, pre-trained token-replaced detection models
achieve substantially better performance than the
pre-trained masked language model such as BERT
(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019) in many downstream tasks.

In this paper, inspired by the above unique effec-
tiveness of the pre-trained token-replaced detection
model, we propose a new approach, pre-trained
token-replaced detection models as few-shot learn-
ers, aiming to further improve the few-shot learning
performances. The key idea of our approach is to
reformulate downstream tasks as token-replaced
detection problems. Specifically, we first define a
template and label description words which will be
used to convert the input sentence into a prompted
text. Then, we directly insert the template and all
label description words into the sentence to form a
prompt that might be an ungrammatical sentence.
The motivation of this operation is to make our in-
puts similar to those in the data for training ELEC-
TRA, having some replaced tokens. Lastly, we
use a pre-trained token-replaced detection model

https://github.com/cjfarmer/TRD_FSL
https://github.com/cjfarmer/TRD_FSL
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Figure 1: Different approaches of applying pre-trained models to sentiment classification.

to distinguish which label description word is the
most original (i.e., least replaced) among all label
description words. For instance, as illustrated in
1(c), when performing a sentiment classification
task, the input sentence “I am so excited about the
concert.” is converted into a new one “I am so
excited about the concert. It was great terrible”
where “great” and “terrible” are two label descrip-
tion words for the two sentimental categories: pos-
itive and negative. Consequently, the pre-trained
token-replaced detection model may predict the la-
bel description word “great” is more original (i.e.,
less replaced) than “terrible”, which indicates that
the input belongs to a positive category. Compared
to few-shot learners with pre-trained masked lan-
guage models, in general, there are two major dif-
ferences as follows. First, the designed phrases of
few-shot learners with pre-trained masked don’t
contain any label description word. However, in
our approach, we put them in prompts directly,
which is easier to understand. Second, few-shot
learners with pre-trained masked language models
predict which label description word is the most
appropriate to fill in [MASK], but our approach
predicts which label description word is the most
original (i.e., least replaced).

To evaluate the few-shot capacity of our
approach, we use both ELECTRA-Base and
ELECTRA-Large as pre-trained token-replaced de-
tection models to perform few-shot learning in our

approach and conduct experiments in a wide vari-
ety of both one-sentence and two-sentence tasks.
Empirical studies demonstrate that our approach
outperforms few-shot learners with pre-trained
masked language models.

The contributions of this study are as follows:

• We propose a new approach for few-shot learn-
ing, which is simple and effective. To the best
of our knowledge, few-shot learners with pre-
trained token-replaced detection models is a
novel branch of research that has not been
explored in few-shot learning studies.

• A systematic evaluation of 16 popular datasets
demonstrates that when given only a small
number of labeled samples per class, our ap-
proach outperforms few-shot learners with
pre-trained masked language models on most
of these tasks.

The remainder of this paper is organized as
follows. Section 2 overviews related studies
about few-shot learning approaches and pre-trained
token-replaced detection models. Section 3 pro-
poses our few-shot learner with a pre-trained token-
replaced detection model in detail. Section 4
presents the experimental results and analysis. Fi-
nally, Section 5 discusses the conclusions and fu-
ture work.
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2 Related Work

2.1 Prompt-based few-shot learning

Few-shot learning with language model prompting
has arisen with the introduction of GPT-3 (Brown
et al., 2020), which adds a task description (prompt)
with a training example demonstration to make
the language model a few-shot learner. GPT-3’s
naive “in-context learning” paradigms have been
applied to various tasks such as text classification
(Min et al., 2021; Lu et al., 2021), question an-
swering (Liu et al., 2021a), and information ex-
traction (Zhao et al., 2021), which shows that a
large pre-trained language model can achieve re-
markable performance with only a few annotated
samples. However, GPT-3’s dependence on gigan-
tic pre-trained language models narrows its scope
of real applications.

Instead of using a gigantic pre-trained language
model, Schick and Schütze (2020a,b) reformulates
a natural language processing (NLP) task as a cloze-
style question with smaller masked language mod-
els (Devlin et al., 2018). Their results show that it is
possible to achieve few-shot performance similar to
GPT-3 with much smaller language models. Due to
the instability of manually designed prompts, many
subsequent studies explore automatically searching
the prompts, either in a discrete space (Gao et al.,
2021; Jiang et al., 2020; Haviv et al., 2021; Shin
et al., 2020; Ben-David et al., 2021) or in a continu-
ous space (Qin and Eisner, 2021; Hambardzumyan
et al., 2021; Han et al., 2021; Liu et al., 2021b;
Zhang et al., 2022). The discrete prompt is usually
designed as natural language phrases with blank
to be filled while the continuous prompt is a se-
quence of vectors that can be updated arbitrarily
during learning. For instance, LM-BFF (Gao et al.,
2021) employs pre-trained mask language models
and generates discrete prompts automatically. Liu
et al. (2021b) propose a prompt-based approach
named P-tuning, which searches prompts in the
continuous space by LSTM. Zhang et al. (2022)
propose another prompt-based approach named
DifferentiAble pRompT (DART), which optimizes
the prompt templates and the target labels differen-
tially.

Different from all existing above few-shot learn-
ing approaches, our approach reformulates NLP
tasks as token-replaced detection problems and
leverages label description words in the prompt.

2.2 Token-replaced detection

The token-replaced detection pre-training task is
first introduced by Clark et al. (2020). Similar to
the structure of GAN (Goodfellow et al., 2014), it
pre-trains a small generator to replace some tokens
in an input with their plausible alternatives and then
a large discriminator to distinguish whether each
word has been replaced by the generator or not.
The unique effectiveness of the pre-trained token-
replaced detection model intrigues many studies
to apply it in many NLP tasks, such as fact veri-
fication (Naseer et al., 2021), question answering
(Alrowili and Shanker, 2021; Yamada et al., 2021),
grammatical error detection (Yuan et al., 2021),
emotional classification (Zhang et al., 2021; Gu-
ven, 2021), and medication mention detection (Lee
et al., 2020). There are also some other studies
that upgrade or extend the token-replaced detec-
tion pre-training mechanism. For instance, Meng
et al. (2021) jointly train multiple generators of
different sizes to provide training signals at various
levels of difficulty. Futami et al. (2021) transfer the
mechanism to visual pre-training and Fang et al.
(2022) propose an extended version of ELECTRA
for speech recognition.

Different from all the above studies, to the best
of our knowledge, this paper is the first study to
apply pre-trained token-replaced detection models
to few-shot learning.

3 Our approach

A pre-trained token-replaced detection model like
ELECTRA (Clark et al., 2020) trains a discrimina-
tor D that detects whether a token xt in an input
token sequence x = [x1, . . . , xt, . . . , xn] is an orig-
inal or replaced one. Suppose that the output from
the discriminator is y = [y1, . . . , yt, . . . , yn]. Then,
yt = 0 (or 1) indicates that xt (at the position t) is
an original (or a replaced) token. Specifically, in
ELECTRA (Clark et al., 2020), the discriminator is
trained together with a masked language modeling
generator which is used to generate replaced tokens
in a token sequence. Finally, the discriminator per-
forms the prediction with a sigmoid output layer,
i.e.,

P (yt | xt) = sigmoid
(
wThD (xt)

)
(1)

where hD (xt) is the encoder function in the dis-
criminator D.
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3.1 Few-shot Classification
3.1.1 Few-shot Fine-tuning Phase
Suppose that the downstream classification task is
a one-sentence classification problem and it has
k labels with label space Y where |Y | = k. For
the i-th category, we hand-craft a label description
word LABEL(i). Then an input x is rewritten as
a prompt as follows:

xprompt =x It was LABEL(1) . . .

LABEL(i) . . .LABEL(k)
(2)

When the downstream classification task is a two-
sentence classification problem, the input (x1, x2)
is rewritten as a prompt as follows:

xprompt = < x1 > ? LABEL(1) . . .

LABEL(i) . . .LABEL(k), < x2 >
(3)

Suppose that this sample belongs to the i-th la-
bel and the positions of the label description words
are [t1, . . . , ti, . . . , tk]. Thus, the output of the i-th
description word yti is set to be 0 and this label
description word is considered as original. In con-
trast, the outputs of all the other label description
words are set to be 1 and these description words
are considered as replaced. Note that the outputs
of all tokens beyond label description words are set
to be 0. Formally, the output of the whole prompt
is obtained as follows:

yprompt = [. . . , yt1−1 = 0, yt1 = 1, . . . , yti = 0,

. . . , ytk = 1, ytk+1 = 0, . . .]
(4)

For instance, in a 5-category sentiment classifi-
cation task, an input x ="This is one of his best
films." could be rewritten as xprompt = "This is one
of his best films. It was great good okay bad ter-
rible" where "great", "good", "okay", "bad", and
"terrible" are used as the label description words
for the very positive, positive, neutral, negative,
and very negative category. The output of xprompt
becomes yprompt = [. . . , 0, 0, 1, 1, 1, 1].

All prompt samples, together with their labels
are used to update the parameters in the discrimi-
nator D of the pre-trained token-replaced detection
model. Specifically, following the original progress
of pre-training a token replaced model, we train the
discriminator D by minimizing the binary cross en-
tropy loss. It is important to note that our approach
reuses the pre-trained weights wT in the formula
(1) and does not use any other new parameters.

3.1.2 Testing Phase
In the testing phase, a testing sample is rewritten
as a prompt according to formula (2) or (3) and the
labels of all label description words in this prompt
is predicted with the following formula, i.e.,

P (y | LABEL(i)) = sigmoid (

wThD(LABEL(i))
)
(5)

Then, the real label of the sample, i.e., ltest , is
determined by the following formula, i.e.,

ltest = argmax
i

(P (y = 0 | LABEL(i))) (6)

3.2 Few-shot Regression

3.2.1 Few-shot Fine-tuning Phase
Suppose that the downstream task is a regression
problem and it has label space Y where Y is a
bounded interval [vl, vu]. Following Gao et al.
(2021), we reformulate the problem as a "binary
classification"—predicting the probabilities of be-
longing to two opposing poles, {cl, cu} with values
vl and vu respectively.

Then, a few-shot regression problem can be han-
dled as a few-shot classification problem that has
two labels with label space {cl, cu}. Same as clas-
sification tasks above, we rewrite an input x as a
prompt for a one-sentence regression task as fol-
lows:

xprompt = x It was LABEL(l)LABEL(u) (7)

When the downstream task is a two-sentence re-
gression task, we rewrite an input x as a prompt as
follows:

xprompt = < x1 > LABEL(l)LABEL(u),

< x2 >
(8)

where LABEL(l) and LABEL(u) denote the la-
bel description words for the low and upper bound
categories.

Suppose that the positions of the two label de-
scription words are [tl, tu]. Then, the output of the
whole prompt is obtained as follows:

yprompt = [. . . , ytl−1 = 0, ytl = (1− P (cl | x)) ,
ytu = (1− P (cu | x)) , ytu+1 = 0, . . .]

(9)
where P (cl | x) and P (cu | x) are the posterior
probabilities of x belonging to cl and cu and satisfy
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Category Dataset |Y | #Train #Test Type

One-sentence

SST-2 2 6,920 872 sentiment
SST-5 5 8,544 2,210 sentiment
MR 2 8,662 2,000 sentiment
CR 2 1,775 2,000 sentiment
MPQA 2 8,606 2,000 opinion polarity
Subj 2 8,000 2.000 subjectivity
TREC 6 5,452 500 question classification
CoLA 2 8,551 1,042 acceptability

Two-sentence

MNLI 3 392,702 9,815 natural language inference
MNLI-MM 3 392,702 9,832 natural language inference
SNLI 3 549,367 9,842 natural language inference
QNLI 2 104,743 5,463 natural language inference
RTE 2 2,490 277 natural language inference
MRPC 2 3,668 408 paraphrase
QQP 2 363,846 40,431 paraphrase
STS-B R 5,749 1,500 sentence similarity

Table 1: The details of 16 datasets: |Y |: # of classes for classification tasks (Note that STS-B is a regression task
over a bounded interval [0, 5]). In our few-shot experiments, we train and develop on limited examples sampled
from the original training set and evaluate on the complete test set.

the equation, i.e., P (cl | x) + P (cu | x) = 1. Fol-
lowing Gao et al. (2021), these two probabilities
could be estimated as follows:

P (cl | x) =
vu − y

vu − vl
(10)

P (cu | x) = y − vl
vu − vl

(11)

For instance, in a two-sentence similarity regres-
sion task over the interval [0, 5], the label value of
two sentences "Kittens are eating food." and "Kit-
tens are eating from dishes." is 4.0. We use No and
Yes as the label description words for the low and
upper bound categories. According to formula (8-
11), we construct its xprompt as "Kittens are eating
food. No Yes, Kittens are eating from dishes." and
obtain its output yprompt = [. . . , 0,0.8,0.2, 0, . . .].

Same as classification tasks, we also adopt bi-
nary cross entropy loss and utilize all prompt sam-
ples together with their labels to fine-tune the dis-
criminator D. It is important to note that our ap-
proach reuses the pre-trained weights wT in the
formula (1) and does not use any other new param-
eters.

3.2.2 Testing Phase

In the testing phase, a testing sample xtest is rewrit-
ten as a prompt according to formula (7) or (8) and
the outputs of the few-shot learner is obtained with

the following formula, i.e.,

yl = sigmoid
(
wThD(LABEL(l))

)
(12)

yu = sigmoid
(
wThD(LABEL(u))

)
(13)

From formula (9), we can get

P (cl | xtest ) = 1− yl (14)

P (cu | xtest ) = 1− yu (15)

Note that these two posterior probabilities might
not satisfy the equation, i.e., P (cl | x) +
P (cu | x) = 1. Therefore, we use a normaliza-
tion method to update the two probabilities, i.e.,

P ′ (cl | xtest ) =
P (cl | xtest )

((P (cl | xtest ) + P (cu | xtest ))
(16)

P ′ (cu | xtest ) =
P (cu | xtest )

((P (cl | xtest ) + P (cu | xtest ))
(17)

Then, the regression value of the test sample, i.e.,
vtest , is obtained by using the following formula
(Gao et al., 2021):

vtest = vl ·P ′ (cl | xtest )+vu ·P ′ (cu | xtest ) (18)
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Task Template Label Space Label(1) . . . Label(k)
One-sentence
SST-2 <S1> It was Label(1) . . . Label(k) positive, negative great, terrible

SST-5 <S1> It was Label(1) . . . Label(k) very positive, positive, neutral,
negative, very negative

great, good, okay,
bad, terrible

MR <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
CR <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
MPQA <S1> It was Label(1) . . . Label(k) positive, negative great, terrible
Subj <S1> This is Label(1) . . . Label(k) subjective, objective subjective, objective

TREC Label(1) . . . Label(k): <S1>
abbreviation, entity, description,

human, location, numeric
Expression, Entity, Description,

Human, Location, Number
COLA <S1> This is Label(1) . . . Label(k) grammatical, not_grammatical correct, incorrect
Two-sentence
MNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
MNLI-MM <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
SNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, neutral, contradiction Yes, Maybe, No
QNLI <S1> ? Label(1) . . . Label(k), <S2> entailment, not_entailment Yes, No
RTE <S1> ? Label(1) . . . Label(k), <S2> entailment, not_entailment Yes, No
MRPC <S1> Label(1) . . . Label(k), <S2> equivalent, not_ equivalent Yes, No
QQP <S1> Label(1) . . . Label(k), <S2> equivalent, not_ equivalent Yes, No
STS-B <S1> Label(1) . . . Label(k), <S2> [0,5] Yes, No

Table 2: Manual templates and label description words in our experiments.

4 Experiments

In this section, we compare our approach with a
few-shot learning approach based on pre-trained
masked language models. Furthermore, we evalu-
ate the impact of different templates, label descrip-
tion words and training data scales.

4.1 Evaluation Setting

We conduct a systematic empirical study based on
the datasets used in Gao et al. (2021). The experi-
mental data contains 16 datasets from many kinds
of NLP tasks such as sentiment analysis, question
classification, opinion polarity, subjectivity, accept-
ability, natural language inference, paraphrase, and
sentence similarity (Wang et al., 2018; Bowman
et al., 2015). Following Gao et al. (2021), we divide
these tasks into two categories, i.e., one-sentence
(single sentence) input and two-sentence (sentence
pair) input tasks. In addition, these tasks not only
contain binary or multi-class classification but also
contain regression. See the statistics of datasets in
Table 1.

4.2 Evaluation protocol

Note that the results of few-shot learning experi-
ments are very sensitive and unstable to the dif-
ferent splits of data and hyper-parameter setups
(Dodge et al., 2020; Zhang et al., 2020), because the
size of the training examples is so small. Thus, we
follow the evaluation protocol of (Gao et al., 2021)
by running 5 experiments with 5 different training

and development splits, randomly sampled from
the original training set using a fixed set of seeds,
and then measuring the average results and stan-
dard deviations. Note that, following (Gao et al.,
2021), we sample the same size of development
set as the training set. For the hyper-parameters,
we also utilize grid search to get the best hyper-
parameter setup. We set the weight_decay to be
2e-3, max_length to be 256 and use AdamW opti-
mizer with epsilon 1e-8. We change the learning
rate in the set of {1e-5,2e-5,3e-5,4e-5,5e-5} and
the batch size between 4 or 8. Besides, we use
manual templates and label description words for
each task and the details are shown in Table 2.

4.3 Main results

We use 16 samples per class for few-shot learn-
ing experiments and conduct our experiments on
both base-level and large-level pre-trained model
scenarios. We compare our approach with several
baselines including 1) Fine-tuning: standard fine-
tuning of pre-trained models; 2) P-tuning (Liu et al.,
2021b): few-shot learner that searches prompts in a
continuous space by LSTM; 3) LM-BFF (Gao et al.,
2021): few-shot learner that employs pre-trained
mask language models and discrete prompts. For
a fair comparison, we use the same templates and
label description words as our approach and do not
use any demonstrations; 4) DART (Zhang et al.,
2022): few-shot learner that optimizes the prompt
templates and the target labels differentially.
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One-sentence SST-2
(acc)

SST-5
(acc)

MR
(acc)

CR
(acc)

MPQA
(acc)

Subj
(acc)

TREC
(acc)

CoLA
(matt)

AVG

Fine-tuning(RoBERTa) 77.8 (2.8) 38.5 (1.6) 70.1 (4.9) 76.7 (2.8) 70.1 (8.0) 89.7 (0.8) 81.5 (4.3) 18.9 (11.7) 65.4
Fine-tuning(ELECTRA) 82.8 (3.5) 41.6 (3.6) 73.9 (3.5) 82.9 (4.1) 70.7 (5.1) 92.0 (0.5) 78.5 (5.8) 39.3 (3.4) 70.2
P-tuning(RoBERTa) 83.3 (5.3) 43.1 (2.1) 81.7 (1.2) 86.0 (3.6) 74.0 (5.2) 89.0 (1.1) 76.9 (8.3) -0.8 (2.5) 66.7
LM-BFF(RoBERTa) 87.2 (1.3) 44.5 (0.8) 83.4 (1.4) 89.1 (1.5) 81.3 (3.9) 89.3 (1.8) 77.5 (6.1) 5.3 (5.3) 69.7
DART(RoBERTa) 88.9 (0.5) 45.3 (1.5) 83.7 (1.0) 89.2 (1.4) 76.6 (6.3) 88.9 (2.2) 77.3 (7.2) 4.2 (5.0) 69.3
Ours(ELECTRA) 91.7 (0.8) 49.7 (1.0) 86.8 (2.8) 90.8 (1.0) 84.5 (1.5) 87.5 (1.2) 82.2 (3.3) 24.7 (11.8) 74.7

Two-sentence MNLI
(acc)

MNLI-MM
(acc)

SNLI
(acc)

QNLI
(acc)

RTE
(acc)

MRPC
(f1)

QQP
(f1)

STS-B
(pear)

AVG

Fine-tuning(RoBERTa) 38.6 (2.5) 39.5 (2.7) 48.0 (4.7) 63.2 (6.7) 51.9 (1.6) 74.5 (4.4) 58.6 (6.0) 65.2 (8.7) 54.9
Fine-tuning(ELECTRA) 46.9 (3.6) 48.9 (3.8) 50.6 (2.1) 59.9 (2.3) 52.6 (2.5) 76.9 (2.9) 64.1 (2.8) 72.4 (2.0) 59.0
P-tuning(RoBERTa) 50.6 (1.1) 50.6 (1.1) 55.0 (4.3) 58.1 (3.1) 56.0 (4.2) 70.2 (2.3) 58.7 (2.8) - 57.0
LM-BFF(RoBERTa) 59.1 (2.4) 60.9 (2.4) 64.3 (2.9) 61.8 (4.8) 57.9 (6.7) 72.3 (6.6) 62.7 (2.1) 68.6 (5.7) 63.5
DART(RoBERTa) 55.3 (2.4) 55.3 (2.4) 62.6 (2.6) 58.4 (4.3) 58.2 (6.0) 72.4 (2.5) 60.4 (1.7) - 60.4
Ours(ELECTRA) 59.7 (2.4) 61.8 (2.0) 68.9 (3.2) 61.9 (2.4) 61.5 (2.9) 73.9 (3.9) 58.0 (3.8) 66.6 (2.9) 64.0

Table 3: Experimental results of different approaches when base pre-trained models are used.

4.3.1 RoBERTa-Base and ELECTRA-Base
Results

Table 3 gives the experimental results of different
prompt-based approaches to few-shot learning with
a base pre-trained model, i.e., RoBERTa-Base or
ELECTRA-Base. The best performance in each
task is bold in the table. Note that since there
is no implementation for regressions tasks in the
two baseline approaches, i.e., P-tuning and DART
and thus we do not reproduce their approach on
STS-B which is a regression task. From this table,
we discuss the results in two scenarios, i.e., one-
sentence and two-sentence tasks.

In one-sentence tasks, first, fine-tuning with
RoBERTa-Base performs worse than fine-tuning
with ELECTRA-Base on average (65.4% vs.
70.2%), which indicates that ELECTRA-Base is
a better fine-tuner even when only a few training
samples are available. This result is consistent with
the conclusion reported in Clark et al. (2020) when
many training samples are available. Second, all
prompt-based approaches greatly outperform stan-
dard fine-tuning on most tasks, which indicates that
few-shot learners with either base masked language
model or base token-replaced detection model are
powerful in few-shot learning. One big exception
is CoLA (Warstadt et al., 2019) where few-shot
learning approaches perform much worse than fine-
tuning approaches. This might be because the task
aims to detect whether a sentence is grammatical or
non-grammatical which is difficult to find suitable
label description words. However, interestingly,
we find that ELECTRA-Base performs much better
than RoBERTa-Base in this task. Third, our ap-
proach yields excellent results and performs much
better than P-tuning, LM-BFF and DART on aver-

age (74.7% vs. 66.7%, 69.7% and 69.3%), which
encourages using a pre-trained token-replaced de-
tection model for few-shot learning in one-sentence
tasks.

In two-sentence tasks, first, standard fine-tuning
with RoBERTa-Base still performs worse than fine-
tuning with ELECTRA-Base. Second, all prompt-
based approaches greatly outperform standard fine-
tuning on most tasks, which once again indicates
that few-shot learners with either mask language
model or token-replaced detection model are pow-
erful in few-shot learning. Third, our approach
performs better than P-tuning, LM-BFF and DART,
although the average improvements are quite lim-
ited (64.0% vs. 57%, 63.5% and 60.4%).

4.3.2 RoBERTa-Large and ELECTRA-Large
Results

Table 4 gives the experimental results of different
prompt-based approaches to few-shot learning with
a large pre-trained model, i.e., RoBERTa-Large or
ELECTRA-Large. The best performance in each
task is bold in the table. From this table, we discuss
the results in two scenarios, i.e., one-sentence and
two-sentence tasks.

In one-sentence tasks, first, fine-tuning with
RoBERTa-Large performs a bit better than fine-
tuning with ELECTRA-Large on average (68.1%
vs. 70.4%), which indicates that the choice of
ELECTRA and RoBERTa might depend on the
tasks when large models are used. Second, all
prompt-based approaches greatly outperform stan-
dard fine-tuning on most tasks, which indicates
that few-shot learners with either large masked
language models or large token-replaced detec-
tion models are powerful in few-shot learning.
However, CoLA is still the exception and even
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One-sentence SST-2
(acc)

SST-5
(acc)

MR
(acc)

CR
(acc)

MPQA
(acc)

Subj
(acc)

TREC
(acc)

CoLA
(matt)

AVG

Fine-tuning(RoBERTa) 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1) 33.9 (14.3) 70.4
Fine-tuning(ELECTRA) 79.9 (7.9) 41.2 (1.9) 73.0 (5.4) 75.0 (6.4) 65.3 (6.9) 94.0 (1.0) 82.8 (8.0) 33.4 (10.4) 68.1
P-tuning(RoBERTa) 89.6 (2.6) 48.0 (1.3) 85.4 (1.9) 88.7 (2.6) 76.3 (3.3) 90.9 (1.5) 86.2 (3.4) 4.0 (5.3) 71.1
LM-BFF(RoBERTa) 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3) 73.4
DART(RoBERTa) 91.6 (1.0) 47.4 (3.3) 85.7 (3.0) 90.3 (0.8) 66.6 (6.4) 89.9 (1.7) 84.8 (4.6) 10.0 (8.4) 70.8
Ours(ELECTRA) 92.8 (0.6) 50.7 (2.9) 89.4 (0.8) 90.5 (2.2) 83.2 (1.4) 92.1 (0.7) 87.2 (3.8) 16.3 (15.1) 75.3

Two-sentence MNLI
(acc)

MNLI-MM
(acc)

SNLI
(acc)

QNLI
(acc)

RTE
(acc)

MRPC
(f1)

QQP
(f1)

STS-B
(pear)

AVG

Fine-tuning(RoBERTa) 45.8 (6.4) 47.8 (6.8) 48.4 (4.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3) 53.5 (8.5) 55.9
Fine-tuning(ELECTRA) 54.4 (2.4) 56.7 (1.7) 58.8 (4.8) 62.9 (4.1) 53.8 (3.7) 78.7 (3.1) 67.2 (3.4) 78.5 (0.5) 63.9
P-tuning(RoBERTa) 59.7 (3.0) 59.7 (3.0) 71.8 (3.5) 62.5 (6.5) 61.8 (2.6) 72.7 (7.4) 64.2 (1.5) - 64.6
LM-BFF(RoBERTa) 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3) 71.0(7.0) 70.1
DART(RoBERTa) 67.1 (2.6) 67.0 (2.5) 74.0 (4.0) 63.1 (3.0) 64.5 (5.2) 75.9 (4.7) 63.4 (4.4) - 67.9
Ours(ELECTRA) 69.2 (4.0) 71.0 (3.5) 79.3 (3.2) 69.0 (4.5) 74.2 (3.1) 73.2 (7.5) 68.2 (3.4) 74.7 (2.9) 72.4

Table 4: Experimental results of different approaches when large pre-trained models are used.

worse, the performance of few-shot learning with
ELECTRA-Large performs worse than ELECTRA-
Base, (16.3% vs. 24.7%). This result shows that the
prompting style in our few-shot learning approach
seems not suitable for the task of grammatical or
non-grammatical detection. Third, our approach
yields performances better than P-Tuning, LM-BFF
and DART, achieving 4.2%, 1.9% and 4.5% aver-
age improvements respectively.

In two-sentence tasks, first, fine-tuning with
RoBERTa-Large performs much worse than fine-
tuning with ELECTRA-Large (55.9% vs. 63.9%).
Second, all prompt-based approaches greatly out-
perform standard fine-tuning on many tasks, which
once again indicates that few-shot learners with
either mask language model or pre-trained token-
replaced detection model are powerful in few-shot
learning. Third, our approach performs better than
P-Tuning, LM-BFF and DART on average (72.4%
vs. 64.6%, 70.1% and 67.9%).

4.4 Impact of templates and label description
words

We further conduct experiments on the one-
sentence task SST-2 and the two-sentence task
MNLI to study the impact of different templates
and label description words in our approach. Due to
a large number of trials in the grid search, we use a
fixed batch size 4 and learning rate 2e-5 in this part.
Table 5 shows the results of the LM-BFF approach
with RoBERTa-Base, the best-performed approach
in all prompt-based baselines, and our approach
with ELECTRA-Base in the tasks of SST-2 and
MNLI. From this table, we can see that the impact
of different templates and label description words
for our method is similar to LM-BFF. In terms of

label description words, the more semantic-related
the designed label words are to the categories, the
more likely to achieve stable and excellent results.
For instance, in SST-2, regardless of LM-BFF or
our approach, the semantic-related label descrip-
tion words great/terrible and good/bad always
outperform the words dog/cat and terrible/great
which are semantically irrelevant or even opposite
with the categories positive and negative. In terms
of templates, the performance is a bit sensitive to
the templates, even a punctuation mark. Besides,
there seems to be no general principle to design
templates to optimally adapt to our approach and
LM-BFF. For instance, In MNLI, LM-BFF obtains
the best performance with the template "<S1>. La-
bel(1) . . . Label(k), <S2>", while our approach
obtains the best performance with the template
"<S1>? Label(1) . . . Label(k), <S2>".

4.5 Impact of training data scales

We further conduct experiments on the one-
sentence task SST-2 and the two-sentence task
MNLI to study the impact of the numbers of la-
beled instances in our approach. In this part, we
also use a fixed batch size 4 and learning rate 2e-5.
Figure 2 shows the trends of the LM-BFF approach,
the best-performed approach in all prompt-based
baselines, and our approach when using different
numbers of labeled instances. From this figure, we
can see that our approach outperforms LM-BFF
in different numbers of labeled instances in the
one-sentence task SST-2. In the two-sentence task
MNLI, our approach performs similarly to LM-
BFF when the numbers of labeled instances are
less than 64. But our approach outperforms LM-
BFF when the numbers of labeled instances are
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Task Template Label(1) . . . Label(k) LM-BFF
(acc)

Our approach
(acc)

SST-2
(positive/negative)

<S1> It was Label(1) . . . Label(k)

great, terrible 88.6 (1.3) 91.4 (1.6)
good, bad 88.9 (0.6) 91.0 (2.0)
dog, cat 85.2 (2.0) 79.6 (7.3)
terrible, great 82.4 (3.3) 89.2 (1.9)

Label(1) . . . Label(k) : <S1>

great, terrible 85.6 (3.0) 91.1 (1.2)
good, bad 87.5 (0.4) 90.8 (0.7)
dog, cat 80.1 (3.5) 69.7 (8.2)
terrible, great 67.4 (3.5) 76.4 (9.6)

MNLI
(entailment/neutral

/contradiction)

<S1>? Label(1) . . . Label(k), <S2>

Yes, Maybe, No

58.3 (2.4) 58.8 (2.5)
<S2>. Label(1) . . . Label(k), <S1> 58.7 (1.3) 57.6 (2.5)
<S1> Label(1) . . . Label(k) <S2> 56.4 (1.8) 53.6 (2.2)
<S1>. Label(1) . . . Label(k), this is good, <S2> 54.0 (2.4) 55.8 (3.5)

Table 5: The impact of different templates and label description words.

Figure 2: LM-BFF vs. our approach when using different numbers of labeled instances (K: # of labeled instances
per class).

among [128, 512].

5 Conclusion and Future Work

In this paper, we propose a novel few-shot learn-
ing approach with pre-trained token-replaced de-
tection models, which transforms traditional clas-
sification and regression tasks into token-replaced
detection problems. Empirical studies on 16 NLP
datasets demonstrate that, in both one-sentence and
two-sentence learning tasks, our approach gener-
ally achieves better performances in the few-shot
scenario when compared to the masked language
model-based few-shot learner. These results high-
light that our approach is a comprehensive alterna-
tive for few-shot learning.

In the future, we would like to explore the follow-
ing directions. First, we notice that in some tasks
like CoLA, standard fine-tuning is also a strong
baseline and even performs much better than few-
shot learners based on either a masked language
model or a token-replaced detection model. Thus,
it is interesting to combine [CLS] output vector,
i.e., the standard fine-tuning style, with the prompt-

ing style, to further improve the few-shot learning
performance. Second, we would like to apply our
approach to some other NLP tasks, such as multi-
label text classification and sequence labeling tasks
like named entity recognition.
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