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Abstract

Pre-trained Language Models (PLMs) have
achieved remarkable performance gains across
numerous downstream tasks in natural lan-
guage understanding. Various Chinese PLMs
have been successively proposed for learning
better Chinese language representation. How-
ever, most current models use Chinese char-
acters as inputs and are not able to encode se-
mantic information contained in Chinese words.
While recent pre-trained models incorporate
both words and characters simultaneously, they
usually suffer from deficient semantic interac-
tions and fail to capture the semantic relation
between words and characters. To address the
above issues, we propose a simple yet effec-
tive PLM CLOWER, which adopts the Con-
trastive Learning Over Word and charactER
representations. In particular, CLOWER im-
plicitly encodes the coarse-grained information
(i.e., words) into the fine-grained representa-
tions (i.e., characters) through contrastive learn-
ing on multi-grained information. CLOWER is
of great value in realistic scenarios since it can
be easily incorporated into any existing fine-
grained based PLMs without modifying the pro-
duction pipelines. Extensive experiments con-
ducted on a range of downstream tasks demon-
strate the superior performance of CLOWER
over several state-of-the-art baselines.

1 Introduction

Pre-trained language models (PLMs) have gained
tremendous success in the field of natural language
processing recently. As a major milestone of PLMs,
BERT (Devlin et al., 2019) and its variants (Yang
et al., 2019; Liu et al., 2019; Clark et al., 2019)
have demonstrated outstanding performance on
a wide variety of natural language understanding
(NLU) tasks, such as sentiment analysis and ma-
chine reading comprehension tasks. The archi-
tecture of Transformer (Vaswani et al., 2017) is

∗Equal contribution.
†Corresponding authors.

typically the foundation for these models, which
models the semantic and syntactic relationships be-
tween the tokens of the entire input text and learns
the contextual representations for each token.

Early Chinese PLMs (Sun et al., 2019) often
take the sequences of Chinese characters as the
input. These models require relatively small vo-
cabulary and learn the representations of each char-
acter from the corpus, which avoids the Out-Of-
Vocabulary problem (Li et al., 2019). However, the
meanings of a Chinese word can be totally differ-
ent from the meanings of each Chinese character
in the word. For example, the meaning of “小
心” (careful) can not be derived from summing the
meaning of “小” (small) and “心” (heart). In gen-
eral, the phenomenon of semantic gaps between
coarse-grained language units and fine-grained lan-
guage units (e.g., words & characters, phrases &
words) exists not only in Chinese but also in many
other languages.

To alleviate the gap, prior studies improve the
pre-trained models in two directions. One direction
is to enrich the masking strategies in the masked
language model (MLM) objective to mask coarse-
grained units, such as the whole word masking
(WWM) (Cui et al., 2021) and phrase masking (Sun
et al., 2019). These methods encourage the pre-
trained model to recover the coarse-grained masks
with fine-grained tokens. However, the relation be-
tween the coarse-grained and fine-grained represen-
tations is modeled in an implicit manner, leading to
less effective representations. The other direction is
to leverage the multi-grained tokenizations as input.
AMBERT (Zhang et al., 2021) encodes both the
fine-grained and coarse-grained token sequences
and performs the masked language modeling tasks
correspondingly, while LICHEE (Guo et al., 2021)
merges the multi-grained token embeddings explic-
itly to integrate the information. Lattice-BERT (Lai
et al., 2021) adopts the lattice graph to construct
the multi-grained input. Nevertheless, these mod-
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els require additional computational costs (e.g., to-
kenization, graph construction, multi-grained en-
coding) and the multi-grained information is only
integrated in the embedding layer other than the
full encoder, leading to limited usability with low
effectiveness.

To fully leverage the semantic information of
multi-granularity and preserve the flexibility of
single-grained models in the fine-tuning stage, we
propose a novel PLM named CLOWER to effi-
ciently model the multi-grained semantic informa-
tion in pre-training to improve the representation
capability. CLOWER adopts the contrastive learn-
ing framework to carry out the semantic interac-
tion between multi-grained representations. Specif-
ically, in the pre-training stage, we perform both
character and word level tokenizations separately
for each input sequence and feed them into the
encoder to obtain the contextual representations.
Then we conduct the contrastive learning over char-
acter and word representations on both token-level
and sentence-level. In this way, the word-level se-
mantic information is encoded into the character
tokens by bringing their representations closer. Dif-
ferent from AMBERT or LICHEE, in fine-tuning,
CLOWER requires no additional computation and
can be directly used in any fine-grained PLMs. The
merit makes CLOWER production-friendly since
it could be deployed easily without modifying the
established production pipeline.

We perform comprehensive experiments on dif-
ferent downstream NLU tasks. The experimental
results show that CLOWER achieves considerable
improvements over several baselines. Ablation
studies demonstrate the effectiveness of contrastive
learning in our pre-training framework. Our contri-
butions are summarized as follows:

• We present a novel approach that adopts con-
trastive learning over both word and charac-
ter representations, which effectively captures
their semantic relations.

• With the help of the aforementioned con-
trastive learning approach, we introduce a Chi-
nese pre-trained language model that connects
multi-grained semantic information for learn-
ing high quality word and character encoders.

• We conduct an extensive set of experiments
on several benchmarks and demonstrate the
effectiveness of the proposed model.

2 Related Work

Multi-grained Pre-trained Language Models
There have been some efforts to explore the multi-
granularity information on the pre-trained language
models (Tay et al., 2021; Xue et al., 2022). Cui
et al. (2021) adopts the whole word masking strat-
egy to select the masking tokens for pre-training.
Similarly, ERNIE 1.0 and 2.0 (Sun et al., 2019,
2020), utilize named entity masking and phrase
masking to encode the coarse-grained information
into the models, while ERNIE-Gram (Xiao et al.,
2021) uses explicit n-gram identities as predicted
targets for the enhancement with coarse-grained
information. Besides, Joshi et al. (2020) propose
the SpanBERT to mask text spans and train the
span boundary objective. However, these methods
mainly concentrate on fine-grained tokens. The
coarse-grained information is only implicitly ex-
plored in the masked language modeling by design-
ing the masking strategies and the coarse-grained
representations are absent.

Instead of designing the coarse-grained masking
strategy on the fine-grained token sequences, sev-
eral methods focus on improving the pre-training
models with multi-grained tokenization. AMBERT
(Zhang et al., 2021) utilizes two encoders with
shared parameters to process the fine-grained and
coarse-grained token sequences. LICHEE (Guo
et al., 2021) proposes to merge the multi-grained
tokenizations at the embedding level to incorporate
multi-grained information of input. Recently, Lai
et al. (2021) propose the Lattice-BERT, which intro-
duces the lattice graph constructed from characters
and words to explicitly explore the word represen-
tations in a multi-granularity way. However, these
models are either computationally intensive or lack
the integration of multi-grained information in the
deep encoder layers, resulting in the limitations of
usability and effectiveness.

Contrastive Learning in Pre-trained Language
Models As contrastive learning become popu-
lar in visual representation learning (Chen et al.,
2020; He et al., 2020; Khosla et al., 2020) and
NLP tasks (Wu et al., 2020; Meng et al., 2021;
Wang et al., 2021), there have been several works
exploring the effects of contrastive learning for
pre-trained language models. CERT (Fang et al.,
2020) adopts the framework of MOCO (He et al.,
2020) and performs the sentence augmentations
by back-translation. Zhang et al. (2020) propose
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Figure 1: An overview of CLOWER. Fine-grained and coarse-grained representations are encoded by two
encoders.Token-level and sentence-level contrastive learning are conducted together with the MLM and WWM-
MLM tasks.

the unsupervised sentence embedding model IS-
BERT, increasing the mutual information between
the global representations and the local context
when training the model. ConSERT (Yan et al.,
2021) applies a variety of data augmentation tech-
niques to generate various input views at the em-
bedding level for contrastive learning. Similarly,
SimCSE (Gao et al., 2021) utilizes dropout acts as
data augmentation in sentence-level. The above
methods conduct the contrastive learning to fine-
tune the pre-trained language encoder. As for pre-
training the language model, DeCLUTR (Giorgi
et al., 2021) and CLEAR (Wu et al., 2020) utilize
the architecture of SimCLR (Chen et al., 2020)
to combine the contrastive learning objective with
the masked language modeling. Compared to the
above models, our CLOWER conducts the con-
trastive learning over word and character represen-
tations in pre-training and we have the flexibility
to fine-tune it in specific downstream tasks.

3 Methodology

In this section, we present CLOWER, the pre-
trained language model based on contrastive learn-
ing over word and character representations. We
first present the overall model architecture of
CLOWER, and then we introduce its details in the
pre-training stage. Finally, we discuss the strategy

of fine-tuning the model efficiently using only the
fine-grained input.

3.1 Model Architecture

Figure 1 illustrates an overview of CLOWER pre-
training, where the contrastive learning framework
is leveraged across multiple granularity informa-
tion to enhance the representation ability of the
model.

CLOWER takes the text sequences as input and
performs multi-grained tokenization on the input
to obtain the fine-grained and coarse-grained token
sequences. It should be noted that the fine-grained
and coarse-grained tokens share the same vocab-
ulary, which aims at improving the alignment of
embedding spaces between multi-grained tokens.
In this paper, we treat the characters and words
as fine-grained and coarse-grained tokens respec-
tively. Formally, given the input text sequence s,
we denote the fine-grained and coarse-grained to-
ken sequences by sf = {ωf

1 , · · · , ω
f
i , · · · , ω

f
m}

and sc = {ωc
1, · · · , ωc

j , · · · , ωc
n}, where m and n

are the lengths of two tokenized sequences.
Consistent with the shared vocabulary,

CLOWER adopts the shared embedding layers
to map the tokens ωf

i and ωc
j to the embedding

representations efi and ecj ∈ Rd respectively,
where d is the dimension of the embedding. The
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fine-grained and coarse-grained embeddings
are then passed to the two encoders to obtain
the contextualized representations respectively.
The encoders utilized in CLOWER can be any
pre-trained language model and two encoders of
fine-grained and coarse-grained have independent
parameters. In this paper, we adopt Chinese
BERT(Devlin et al., 2019) as the encoders.

Token-level and sentence-level contrastive learn-
ing are conducted over the fine-grained and coarse-
grained contextualized representations from the
above encoders, together with the traditional MLM
task and WWM-MLM task.

3.2 Pre-Training

Masked Language Model In the pre-training
stage, CLOWER adopts the MLM task at multi-
grained levels. Specifically, we denote the masked
fine-grained and coarse-grained token sequences
as s̃f and s̃c. The masked fine-grained and coarse-
grained tokens are represented as smf and smc re-
spectively. Then, the object of our MLM task at
multi-grained levels is to optimize the following
loss function:

Lmlm =−
∑

ωm
f ∈smf

logPθ(ω
m
f |s̃f )

−
∑

ωm
c ∈smc

logPθ(ω
m
c |s̃c),

(1)

where θ denotes the model parameters.
We adopt the WWM strategy (Cui et al., 2021)

as the strategy of fine-grained token sequences and
the conventional masking strategy introduced by
BERT(Devlin et al., 2019) for the coarse-grained
token sequences.

Contrastive Learning To fully learn from the
multi-grained information, we conduct contrastive
learning between the fine-grained representa-
tions and their corresponding coarse-grained rep-
resentations at both token-level and sentence-
level. Formally, for each pair of multi-grained
token sequences sf and sc, we randomly
choose some of the coarse-grained tokens sa =
{ωc

1, · · · , ωc
i , · · · , ωc

k} ⊂ sc as anchors, where k
is the maximum number of anchors for each se-
quence. The strategy of selecting the anchors will
be detailed in Section 4.1.

Given the anchor ωc
i , which is composed of the

fine-grained tokens ωf
b(i), · · · , ω

f
e(i) where b(i) de-

notes the begin index of the anchor ωc
i and e(i)

denotes the end index of the anchor ωc
i , we can ob-

tain its coarse-grained representation hc
i generated

by the word encoder and its fine-grained represen-
tation pf

i = AVG
(
hf
b(i) · · ·h

f
e(i)

)
generated by

the character encoder, where AVG(·) means the
average pooling.

Our motivation is to close the gap between the
fine-grained representations and their correspond-
ing coarse-grained representations while enlarge
the gap between unrelated representations. Fol-
lowing the contrastive learning paradigm, it can be
implemented by constructing positive and negative
instance pairs. For the coarse-grained representa-
tion hc

i , we mark the fine-grained representations
of the same anchor pf

i as its positive instance and
the fine-grained representations of the other an-
chors in the same mini-batch pf

j as the negative
instances. We further introduce the “[CLS]” em-
beddings of each sentence as the sentence-level
representations, namely h̃c for the coarse-grained
representation and h̃f for the fine-grained repre-
sentation. Similar to the token-level, we treat the
multi-grained representations (h̃c, h̃f ) of the same
sentence as the positive instance pair and the multi-
grained representations of different sentences in a
mini-batch as the negative instance pairs.

Following the contrastive objective in Chen et al.
(2020), we utilize the normalized temperature-
scaled cross-entropy loss (NT-Xent) for both the
token-level and sentence-level representations. We
optimize the symmetric cross-entropy loss in the
pre-training. Specifically, the objective of con-
trastive learning in multi-grained token-level repre-
sentations Ltcl is as follows:

Lc
tcl = − 1

N

N∑
i=1

log
esim(hc

i ,p
f
i )/τ∑

j e
sim(hc

i ,p
f
j )/τ

, (2)

Lf
tcl = − 1

N

N∑
i=1

log
esim(pf

i ,h
c
i )/τ∑

j e
sim(pf

i ,h
c
j)/τ

, (3)

Ltcl =
1

2
(Lc

tcl + Lf
tcl), (4)

where N indicates the number of in-batch anchors,
sim(·) denotes the similarity function as we use the
cosine similarity, and τ is a temperature hyper-
parameter. Similarly, we define the symmetric
sentence-level contrastive loss Lscl with a mini-
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batch size M as:

Lc
scl = − 1

M

M∑
i=1

log
esim(h̃c

i ,h̃
f
i )/τ∑

j e
sim(h̃c

i ,h̃
f
j )/τ

, (5)

Lf
scl = − 1

M

M∑
i=1

log
esim(h̃f

i ,h̃
c
i )/τ∑

j e
sim(h̃f

i ,h̃
c
j)/τ

, (6)

Lscl =
1

2
(Lc

scl + Lf
scl), (7)

Therefore, the final object of contrastive learning
Lcon is the sum of Ltcl and Lscl.

Sentence Order Prediction Apart from the
MLM and contrastive learning tasks, we adopt the
sentence order prediction (SOP) task (Lan et al.,
2019) to effectively model the relationship of sen-
tence pairs and denote the training loss as Lsop.
Hence, the overall training loss of CLOWER in
pre-training is the combination of three tasks:

L = Lmlm + λLsop + µLcon (8)

where λ and µ are the hyper-parameters of balanc-
ing three task objectives.

3.3 Fine-Tuning

Note that the usage of the character encoder of
CLOWER is virtually the same as the fine-grained
Chinese PLMs like BERT, thus we can directly sub-
stitute them with our character encoder without any
modification while having the benefit of the coarse-
grained information encoded in the fine-grained
representations.

For the sentence-level downstream tasks, like sin-
gle sentence classification and sentence pair classi-
fication, we conduct classification base on the con-
textualized sentence-level representation h̃f . As
for the token-level tasks, such as question answer-
ing, fine-grained contextualized representations of
each token are extracted and used for predictions.

4 Experiments

We conducted comprehensive experiments on var-
ious Chinese NLU tasks to examine the effective-
ness of CLOWER. In this section, we first introduce
the details of pre-training and fine-tuning, includ-
ing the datasets and experimental settings. Then,
we present the overall results on different tasks and
conduct an in-depth analysis. Ablation studies are
also conducted to evaluate the impact of multi-level
contrastive learning in our model.

Dataset MSL BS LR Epoch

ChnSentiCorp 256 32 3e-5 10
THUCNews 512 16 3e-5 10

Tnews 128 32 3e-5 10

Bq Corpus 128 64 3e-5 10
Lcqmc 128 64 3e-5 10
Ocnli 128 32 3e-5 10
Xnli 128 64 3e-5 10

CMRC2018 512 8 3e-5 5
DRCD 512 8 3e-5 5

Table 1: Hyper-parameters settings for 9 fine-tuning
tasks. MSL: Maximum Sequence Length; BS: Batch
Size; LR: Learning Rate.

4.1 Pre-training Datasets

To the best of our knowledge, WuDaoCor-
pora (Yuan et al., 2021) is the largest open-source
Chinese corpora for pre-training. We utilize the
base version of WuDaoCorpora1, consisting of
about 200GB training data and 72 billion Chinese
characters in total. Following the settings of most
Chinese PLMs, we consider the characters as the
fine-grained tokens. We utilize Jieba2 to perform
the word segmentation on texts and the segmented
words are treated as the coarse-grained tokens.
There are 5, 466 Chinese characters and 40, 014
words in our vocabulary, together with other to-
kens like digits and some basic English tokens. We
conduct the fine-grained and coarse-grained tok-
enizations based on the vocabulary and the words
will be split to characters if they are not in the vo-
cabulary. For contrastive learning, we select up to
k anchors whose lengths are between 2 and 4 from
each sequence. Note that for semantic integrity,
the words that have been masked either on coarse-
grained sequences or their fine-grained characters
will not be selected as anchors.

4.2 Fine-tuning tasks

To thoroughly examine the effectiveness of
CLOWER, an extensive set of experiments are
performed on various Chinese NLU tasks, in-
cluding three single sentence classification (SSC)
tasks, four sentence pair classification (SPC) tasks
and two machine reading comprehension(MRC)
tasks. Specifically, three SSC tasks are ChnSen-
tiCorp (Tan and Zhang, 2008), THUCNews (Li

1https://resource.wudaoai.cn/home
2https://github.com/fxsjy/jieba

https://resource.wudaoai.cn/home
https://github.com/fxsjy/jieba
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Model Tnews THUCNews ChnSentiCorp AverageDev Dev Test Dev Test

BERT-wwm 66.59 98.16 97.41 94.97 95.55 90.53
BERT-wwm-sop 66.42 98.31 97.49 94.87 95.32 90.48

MM-BERT 66.39 98.18 97.53 94.92 94.80 90.36
MM-BERT-sop 66.27 98.16 97.45 94.62 95.65 90.43

MacBERT 67.07 98.29 97.34 95.16 95.18 90.61

CLOWER 67.15 98.39 97.74 95.18 95.84 90.86

Table 2: Experimental results on single sentence classification tasks.

Model Ocnli Lcqmc Xnli Bq AverageDev Dev Test Dev Test Dev Test

BERT-wwm 74.87 89.37 86.93 79.50 78.89 85.39 84.37 82.76
BERT-wwm-sop 75.73 89.75 87.30 79.74 78.45 85.73 84.81 83.07

MM-BERT 75.34 89.55 87.08 79.56 78.66 85.37 84.51 82.87
MM-BERT-sop 75.44 89.85 87.18 79.42 78.62 86.00 84.84 83.05

MacBERT 75.90 89.58 86.59 80.54 79.10 85.71 84.95 83.20

CLOWER 76.25 89.92 88.10 80.14 79.19 86.01 85.26 83.55

Table 3: Experimental results on sentence pair classification tasks.

Model
CMRC2018 DRCD

Dev Dev Test
EM F1 EM F1 EM F1

BERT-wwm 68.15 86.32 88.20 93.63 87.13 92.55
BERT-wwm-sop 67.47 85.86 87.54 93.15 87.33 92.61

MM-BERT 68.61 86.42 88.45 93.65 87.36 92.85
MM-BERT-sop 67.57 86.18 88.30 93.50 87.18 92.76

MacBERT 68.31 86.38 88.92 94.08 88.04 93.22

CLOWER 68.73 86.52 88.27 93.44 87.68 92.94

Table 4: Experimental results on MRC tasks.

and Sun, 2007) and Tnews (Xu et al., 2020); four
SPC tasks include Bq Corpus (Chen et al., 2018),
Lcqmc (Liu et al., 2018), Ocnli (Hu et al., 2020)
and Xnli (Conneau et al., 2018); two MRC tasks
are CMRC2018 (Cui et al., 2019) and DRCD (Shao
et al., 2018).

4.3 Experiment Settings

4.3.1 Pre-training
In pre-training of CLOWER, we initiate both
the character and word encoder with the Chinese
BERT-base released by Google3 in order to reduce
the total convergence time. Given a word not in the
vocabulary, we initiate its embedding with the av-

3https://github.com/google-research/
bert

erage pooling of the embeddings of the characters
that make up the word. For MLM tasks, as with
the BERT, 15% of the tokens are masked randomly.
For token-level contrastive learning, the maximum
number of anchors for each sequence is set as 20
and the temperature is 0.05. The hyper-parameters
λ and µ in Equation 8 are both set as 1. We set
the maximum sequence length to 512 throughout
the pre-training and adopt the ADAM (Kingma
and Ba, 2014) optimizer with weight decay whose
learning rate is 2e− 5. We train the model with a
batch size of 960 (24×40) for 300, 000 steps. The
pre-training is carried out on 40 NVIDIA V100
GPUs. To improve efficiency, mixed precision
training (Micikevicius et al., 2017) is adopted.

4.3.2 Fine-tuning

To make a fair comparison, we adopt the same
hyper-parameters for each fine-tuning task among
different models. The detailed parameter settings
are shown in Table 1. During fine-tuning, we en-
code each example using the fine-grained encoder
(i.e., character encoder). For three SSP tasks and
four SPC tasks, the “[CLS]” embedding is used
to represent the sentence and the classification ac-
curacies are reported. For two MRC tasks, the
token embeddings are used to extract the answer

https://github.com/google-research/bert
https://github.com/google-research/bert
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Figure 2: Ablation Results. We report the accuracy for sentence classification tasks and EM for MRC tasks.

span from the sentence, and both exact match (EM)
and F1-score are reported. For each task, we per-
form the experiments five runs with different ran-
dom seeds and report the average performance to
promise the results convincing. We report the re-
sults both on the development sets and test sets, ex-
cept for Tnews, Ocnli and CMRC2018, whose test
sets are not publicly available. Since each article in
the Tnews dataset consists of a title and several key-
words, we associate the titles with keywords as the
input sequences to perform the classification task.
We fine-tune all the models for each downstream
task on one NVIDIA V100 GPU.

4.4 Main Results

Since most of the existing Chinese PLMs are
trained with different corpus and setups, it is hard
to conduct ideally fair comparisons. Therefore,
we select the most representative Chinese PLM
(i.e., Chinese BERT-base) as the baseline and
achieve several pre-training models with differ-
ent settings on the same corpus. More concretely,
we implement the following four baselines: (1)
BERT-wwm (Cui et al., 2021), a BERT-base model
trained with the additional fine-grained WWM
task, (2) BERT-wwm-sop, a BERT-base model
trained with the addtional WWM and SOP tasks,
(3) MM-BERT, a BERT-base model trained with
the multi-grained MLM tasks, including a fine-
grained WWM task and a coarse-grained MLM
task, (4) MM-BERT-sop, Multi-grained MLM on
a BERT-base model trained with the multi-grained
MLM task and the SOP task. In addition, we also
include MacBERT (Cui et al., 2021) as a strong

baseline, which is one of the state-of-the-art Chi-
nese PLMs in literature. MacBERT utilize the
WWM as well as N-gram masking strategies to-
gether during pre-training. In terms of the masking
implementation, MacBERT masks the word with a
similar word rather than the [Mask] placeholder to
improve the performance further. The experimental
results of MacBERT are achieved with the released
model4 under the identical settings with the other
baselines among all downstream tasks.

For three SSC tasks, the results are shown in
Table 2. From the results, we can find that our
CLOWER yields consistent improvements over all
baselines on all three tasks (both on the develop-
ment and test sets), which proves the effectiveness
and advantages of our model. CLOWER outper-
forms the 4 baselines pre-trained with the identical
data while different settings, which demonstrates
the advantages of our multi-level contrastive learn-
ing approach. In addition, CLOWER outperforms
MacBERT by 0.25 points on average and achieves
a new state-of-the art on Chinese SSC tasks.

As for the SPC tasks, fair comparisons are
performed and the results are reported in Ta-
ble 3. From the results, we also observe that
CLOWER also achieves consistent improvements
over baselines on the four tasks. In comparison
to the four baselines pre-trained with the iden-
tical data, CLOWER outperforms the best one
(i.e., MM-BERT-sop) by 0.33 points on average.
In comparison to MacBERT, CLOWER achieves
a performance gain of 0.33 points on average.
CLOWER performs best on all datasets except Xnli

4https://github.com/ymcui/MacBERT

https://github.com/ymcui/MacBERT
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Model Tnews THUC Chn Ocnli Lcqmc Xnli Bq Average

CLOWER 67.15 97.74 95.84 76.25 88.10 79.19 85.26 84.22

w/o tcl 66.51 97.54 95.43 75.22 87.24 78.53 84.64 83.59
w/o scl 66.34 97.50 95.02 75.06 87.76 78.40 84.71 83.54

w/o tcl & scl 66.27 97.45 95.65 75.44 87.18 78.62 84.84 83.64

Table 5: Ablation results on SSC and SPC tasks. For Tnews and Ocnli, the results are on development sets and
others are on test sets.

Model
CMRC2018 DRCD

Dev Dev Test
EM F1 EM F1 EM F1

CLOWER 68.73 86.52 88.27 93.44 87.68 92.94

w/o tcl 67.93 86.25 88.01 93.34 87.19 92.69
w/o scl 68.35 86.18 88.05 93.38 87.21 92.68

w/o tcl & scl 67.57 86.18 88.30 93.50 87.18 92.76

Table 6: Ablation results on machine reading compre-
hension tasks.

Dev set.
The above SSC and SPC tasks are all sequence-

level tasks, to further examine the effectiveness of
our model, we also perform comparisons on MRC
tasks which are document-level span-extraction
tasks. The resuls are depicted in Tabel 4. Specif-
ically, for CMRC2018, CLOWER outperforms
MacBERT by 0.40 points and 0.14 points on EM
and F1 score respectively. As the EM score is
a stricter measurement of machine reading com-
prehension, the improvements over MacBERT are
considerable. While for DRCD, we find that the
performance of CLOWER is not as competitive
as the baselines. We conjecture that the reason
may be the original dataset of DRCD is in Tradi-
tional Chinese whereas our pre-training corpus is
in Simplified Chinese. Although we convert the
data to Simplified Chinese literally, there are some
differences such as syntax and semantics yet, the
performances of the pre-trained models may be
affected inevitably.

4.5 Ablation Study

To further investigative the effects of contrastive
learning over word and characters in CLOWER,
we conduct ablation study on the model variants
without token-level or sentence-level contrastive
learning tasks. Figure 2 shows the ablation results
on sentences classification and machine reading
comprehension tasks. The detailed ablation results
on 9 downstream NLU tasks are reported in Table 5

and 6 respectively.
When removing the token-level contrastive learn-

ing task (w/o TCL) or sentence-level (w/o SCL)
from CLOWER, there is a distinct drop in the per-
formance on sentence classification tasks (i.e., SSC
and SPC). Furthermore, when removing all the
contrastive learning tasks, i.e., actually the MM-
BERT-sop model, the performance is almost same
as the w/o TCL or w/o SCL models. It indicates
that only if the token-level contrastive learning task
works jointly with the sentence-level contrastive
learning task in pre-training, there will be a positive
impact on the sentence-level downstream tasks. We
conclude that it is vital for the model to encode the
coarse-grained semantic information into the fine-
grained sequences at token-level and sentence-level
consistently when we apply it on sentence-level
downstream tasks.

As for the MRC tasks, the EM score on
CMRC2018 drops a lot when removing the token-
level contrastive learning task, which demonstrates
the effectiveness of token-level task on the extrac-
tive MRC task. While removing the sentence-level
contrastive learning task, the EM metric of the
model drops less than that without the token-level.
Also, the performance of model without both con-
trastive learning tasks perform worst among these
models on CMRC2018. The results on DRCD re-
veal the similar trend.

5 Discussions

5.1 Flexibility
Compared to other Chinese PLMs which utilize
fine-grained and coarse-grained information, one
notable advantage of CLOWER is the high flexi-
bility of deployment. In real-world scenarios, fine-
grained PLMs are more popular due to its flexibil-
ity on processing inputs/outputs and low compu-
tational costs. Please recap that CLOWER could
be deemed as a fine-grained character encoder dur-
ing inference, which is enhanced with the coarse-
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Figure 3: Similarity Analysis of Embeddings. Top: the
words with length 2; Bottom: the words with length
longer than 2.

grained word encoder during pre-training. In partic-
ular, if a production system already deploys a fine-
grained Chinese PLM (e.g., the vanilla BERT), the
fine-grained encoder of CLOWER can be adopted
as a substitute without extra tailor cost seamlessly.
CLOWER also provides the coarse-grained en-
coder (i.e., word encoder) for scenarios where Chi-
nese word sequences are designed as input. The
coarse-grained encoder of CLOWER has also been
updated and acquired the knowledge from the large
corpus during pre-training. We can make flexible
choices according to downstream scenarios and
conditions when utilizing CLOWER.

5.2 Multi-grained Information Modeling

Through the pre-training, CLOWER implements
the multi-grained semantic information modeling
by performing the contrastive learning over words
to characters and thus implicitly encodes the coarse-
grained semantic information into fine-grained to-
kens and vice versa. To evaluate the character/word
representations learned by the interactions, we
adopt the measures of cosine similarity and Eu-

clid distance as proxies. We calculate the cosine
similarity and Euclid distance between the embed-
dings of words and the mean embeddings of the
characters that compose the words. In our cor-
pus, 72.1% words are composed of two characters.
So we conduct the similarity analysis by split the
words into two groups, two-character words and
the other words composed at least three characters.
The similarities produced by four models are shown
in Figure 3. We can clearly see that the token-level
contrastive learning task play an important role
of bringing the word and character embeddings
closer, as the similarity of CLOWER and w/o scl
are higher than the other two models and so is the
Euclid distance. According to the intuitive results,
we corroborate that our model indeed achieves our
motivation to encode the coarse-grained informa-
tion into fine-grained tokens.

6 Conclusion

To fully leverage the information of characters and
words in Chinese PLMs, we propose a novel PLM
CLOWER based on contrastive learning over word
and character representations jointly. Through the
token-level and sentence-level contrastive learn-
ing in the pre-training stage, the model encodes
the coarse-grained semantic information into fine-
grained tokens. We can not only enhance the model
with coarse-grained semantics but also enjoy the
flexibility of fine-grained inputs/outputs. The flexi-
bility promises that our model could be deployed
conveniently in real scenarios, where certain PLMs
like BERT have been established. Comprehensive
experiments on a variety of downstream natural
language understanding tasks demonstrate the com-
petitive performance of CLOWER. We also con-
duct a ablation study to evaluate the multi-grained
contrastive learning mechanism in CLOWER.
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