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Abstract

Biomedical events represent complex, graph-
ical, and semantically rich interactions ex-
pressed in the scientific literature. Almost all
contributions in the event realm orbit around se-
mantic parsing, usually employing discrimina-
tive architectures and cumbersome multi-step
pipelines limited to a small number of target in-
teraction types. We present the first lightweight
framework to solve both event extraction and
event verbalization with a unified text-to-text
approach, allowing us to fuse all the resources
so far designed for different tasks. To this end,
we present a new event graph linearization tech-
nique and release highly comprehensive event-
text paired datasets, covering more than 150
event types from multiple biology subareas (En-
glish language). By streamlining parsing and
generation to translations, we propose baseline
transformer model results according to multiple
biomedical text mining benchmarks and natu-
ral language generation metrics. Our extractive
models achieve greater state-of-the-art perfor-
mance than single-task competitors and show
promising capabilities for the controlled gener-
ation of coherent natural language utterances
from structured data.1

1 Introduction

In recent years, events have become an influential
formalism for modeling complex relations men-
tioned within the text as semantic graphs (Frisoni
et al., 2021, 2022). In bioinformatics, an event
generally refers to an interaction between one or
more biomedical entities (e.g., proteins, genes, dis-
eases, drugs), each contributing with a specific role
(e.g., Theme, Cause, Site). For instance, biomedi-
cal events include molecular reactions, organism-
level outcomes, and adverse drug reactions. Their
expressive power and flexibility have supported

*Equal contribution.
1The data and the code to reproduce our baseline results

are available at https://github.com/disi-unibo-
nlp/bio-ee-egv
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Figure 1: Illustration of an event graph and its textual
mention from our datasets. All text-event pairs refer to
human-crafted annotations above the biomedical litera-
ture (abstracts or full papers).

many practical applications like literature-based
knowledge discovery (Wang et al., 2021b), biologi-
cal network construction (Björne et al., 2010), di-
agnosis prediction (Zhang et al., 2020c), document
summarization (Zhang et al., 2020b), and question
answering (Berant et al., 2014).

Text-to-event (or event extraction, EE) and event-
to-text (or event graph verbalization, EGV) systems
effectively bridge natural language and symbolic
representations. They provide a step towards de-
coupling concept units (what to say) from language
competencies (how to say it) (Mel’čuk, 1973).
Strongly linked to natural language understanding,
EE is a fundamental task to automatically identify,
monitor, and aggregate the relational knowledge
disseminated within life science papers, speeding
up medical progress and promoting discoveries.
Yet, although much attention has been paid to EE,
no research efforts have been directed to its in-
verse task, namely EGV. Even if under-explored,
EGV targets the generation of informative text con-
strained on semantic graphs, holding a lot of poten-
tial in applications like conversational agents and
summarization systems (Frisoni. et al., 2022; Moro
and Ragazzi, 2022; Moro et al., 2022).

https://github.com/disi-unibo-nlp/bio-ee-egv
https://github.com/disi-unibo-nlp/bio-ee-egv
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Most state-of-the-art (SOTA) approaches handle
structured prediction by employing task-specific ar-
chitectures and discriminative models. Ordinarily,
they need to be adapted to the target events and their
schema, or they are not flexible enough to work
with different domains or analysis granularities
(sentence- vs document-level). The extraction pro-
cess is typically divided into subtasks, executed in
a pipeline or joint manner, where the output of sev-
eral classifiers needs to be integrated. Additionally,
each task is often associated with its own output
space, limiting knowledge sharing and multi-task
learning (MTL). Classes (i.e., event, argument role,
and entity types) are specified implicitly through
numerical indices, and models contain no prior in-
formation about their meaning. Furthermore, mod-
ern deep learning solutions require a non-trivial
amount of examples to train, but event annotations
are expensive to produce—a discrepancy that re-
sults in multiple, stand-alone, and closed-domain
datasets with few records and potentially overlap-
ping labels (Miwa et al., 2013).

On a parallel track, transfer learning has been
the pinnacle of the latest breakthroughs in natural
language processing (NLP). Large pre-trained lan-
guage models (PLMs) are powerful backbones that
can be fine-tuned for different tasks to achieve im-
pressive performance in wide-ranging applications
(Kalyan et al., 2021). PLMs capture contextual
information and latent linguistic/relational knowl-
edge (Petroni et al., 2019; Roberts et al., 2020),
incorporating syntax and semantics. In that sense,
textual representations and conditional generative
modeling can be seen as natural ways of encoding
different events in a shared predictive space.

In this paper, we design a framework to solve
both EE and EGV as text-to-text problems, thus
leveraging SOTA PLMs and disposing of the need
for complex and hardly adaptable architectures.
Concretely, we propose a way to decompose events
into text sequences, neatly preserving structure and
labels. Above it, we present the Biomedical Text-
to-Event (BIOT2E) and Event-to-Text (BIOE2T)
datasets, two corpora of textualized biomedical
event graphs paired with their mention. Precisely,
we aggregate and preprocess gold annotations com-
ing from 10 popular EE benchmarks, intending
to systematize the community work matured with
public evaluation programs and solving the low
coverage issue. Among the exciting multimodal op-
portunities enabled by these datasets, we show that

out-of-the-box transformer models can effectively
learn text → event and event → text translations
(Figure 1). We achieve this symmetry by using the
same architecture for parsing and generation, as
well as for all event instances, originally belong-
ing to separate EE tasks with independent output
spaces. To the best of our knowledge, this is the
first study to handle such a variety of event schema
without distinct models or additional task-specific
modules. Our key contributions are the following:

1. We devise a novel event linearization with
a consistent textual output format based on
formal grammar (§3).

2. We introduce BIOT2E and BIOE2T, two
large-scale biomedical event-text aligned
datasets designed to frame the extraction and
verbalization of general biomedical events as
text-to-text tasks (§4).

3. We experiment EE, EGV, and MTL (§5
and §6). We demonstrate that autoregres-
sive seq2seq models can achieve SOTA
performance—previously attained only by
discriminative solutions—while being much
more flexible and scalable.

2 Related Work

Graph-Text Paired Data. Many graph-text
paired datasets have sprung up. Nevertheless, an-
notating text or semantic graphs is expensive, espe-
cially for specific fields like biology. Most of the
resources are domain-general and focus on knowl-
edge graphs (KGs). Although there are datasets as-
sembled by crowdsourced human annotators—such
as WebNLG (Gardent et al., 2017), one common
thread is using NLP tools and automatic alignment
heuristics to forge silver pairs massively, e.g., map-
ping Wikipedia sentences to Wikidata triples (Elsa-
har et al., 2018; Agarwal et al., 2021) or Wikipedia
paragraphs to Freebase subgraphs (Wang et al.,
2021a). Predicate linkers and PLMs are already
used to inherently construct KGs from the biomed-
ical literature (Geleta et al., 2021), but the rela-
tions extracted for each document are generally
not openly released. In contrast, we present the
first datasets directly pairing scientific sentences to
biomedical event graphs, usable as evaluation gold
standards thanks to expert user provenance.

Event Extraction. In the NLP field, EE is placed
within the more general information extraction (IE)
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and structured prediction (SP) areas. Specifically,
it aims to interpret and distill free-text chunks into
structured, semantic, and fine-grained relations cap-
turing an interplay between many different partic-
ipants (entities or other events) usually subjected
to a state change. EE requires to recognize triggers
(text spans that clearly testify the occurrence of a
real-world event), classify the type of the events
for which they act as lawyers, detect involved
0-N arguments (entity mentions and corresponding
classes, or sub-event triggers), predict their seman-
tic role, and establish some optional event-level
modifiers. For example, a Localization event is
indicated in Figure 1 at “liberates”, involving three
bio-entities. Notably, end-to-end EE systems usu-
ally integrate named entity recognition (NER) and
coreference resolution. Compared to the more tra-
ditional binary relation extraction, where the goal
is deriving subject-relation-object triplets, EE is a
more complex task that needs to deal with high-
level linguistic phenomena, an avalanche of narra-
tive styles, and syntactic constructions.

Early approaches tackled EE with pipeline archi-
tectures to decompose the problem in its sequential
subtasks and independently train a classifier for
each of them, also relying on gold-tagged entities
to eventually ignore NER objectives. Historically,
first attempts made use of pattern-based techniques
(Cohen et al., 2009) or data-driven methods cen-
tered on generalizing classical machine learning
algorithms to SP, including, among others, support
vector machines (Miwa et al., 2012). More recently,
joint and MTL architectures have gained popular-
ity among researchers, training a single model on
all EE sub- and linked-tasks simultaneously, bene-
fitting from information sharing and mutually im-
proving local predictions. Deep learning is the
main architect of this transition, with many EE ef-
forts rooted in transformers (Ramponi et al., 2020),
convolutional (Björne and Salakoski, 2018), recur-
rent (Li et al., 2019), and graph (Zhao et al., 2021)
neural networks (CNNs, RNNs, GNNs). Current
SOTA EE solutions train end-to-end neural models
on top of the features learned by domain-specific
PLMs, such as SciBERT (Beltagy et al., 2019).
In this line of work, DeepEventMine (Trieu et al.,
2020) presently holds leading performance on most
biomedical EE (BEE) benchmarks, with custom
discriminative classification layers above SciBERT-
encoded intra-sentence spans. Most BEE systems
work within the sentence scope, not being able to

scale to entire documents and facts with scattered
arguments. Our framework is designed for joint
EE, also including the NER subtask2, and is not
limited to sentence-level extraction in principle.

Data-to-Text. Data-to-text is the task of gener-
ating natural language text conditioned on source
content provided in the form of structured data. Dif-
ferent GNNs have been proposed to better encode
the input structure in the case of graphs, like Graph
Transformers (Koncel-Kedziorski et al., 2019) and
DualEnc for KG-triples ordering and verbalization
(Zhao et al., 2020). On the other hand, recent works
(Kale and Rastogi, 2020; Wang et al., 2021c; Agar-
wal et al., 2021) have favored seq2seq pre-trained
models—with T5 (Raffel et al., 2020) as promi-
nent example—which showcased better grammat-
ical correctness and domain-shift robustness. To
the extent of our knowledge, no prior research has
attempted to verbalize event graphs. In this paper,
we start from these heated evidences to fill the gap.

Seq2seq for Structured Prediction and Graph
Verbalization. It has become increasingly popu-
lar to cast structured prediction problems as trans-
lations between natural languages, linearizing data
when necessary and leveraging the transfer learn-
ing capacity of a transformer-based PLM. Text-
to-text reframing has been applied to many con-
texts, from general NLP tasks (Raffel et al., 2020)
and semantic role labeling (Blloshmi et al., 2021)
to relation extraction (Huguet Cabot and Navigli,
2021). Closer to us, TANL (Paolini et al., 2021)
and TEXT2EVENT (Lu et al., 2021b) are the only
works carrying out this strategy on EE. However,
the authors solely consider ACE2005 and ERE, two
simplistic newswire datasets with a small type cov-
erage and flat target structures. More importantly,
TANL encodes event annotations in the form of
augmented text, dividing EE into different subtasks
with the lack of support for nested events, modifiers,
or event overlapping, which are instead common
in biology, thus being not directly applicable to our
datasets. Instead, we solve BEE by generating the
output graph at once, supporting complex struc-
tures and schema. Outside of our work, symmetric
parsing and generation have been chiefly explored

2We do not predict relationships between gold entities,
as is frequently assumed in other works dependent on extra
input annotations or external NER tools that interrupt the
backpropagation process. On the contrary, our models are
directly trained to recognize target entities and classify their
type as a fundamental subtask for the ultimate goal of end-to-
end event extraction via text translation.
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with AMRs (Konstas et al., 2017; Bevilacqua et al.,
2021). The aforementioned publications highlight
the relevance of seq2seq models. Not only do they
exhibit strong performance, but they also lean on
decoding mechanisms rather than predefined type
sets, being easily extendable to new or unseen in-
puts. We also underline that, by conditioning future
decoding on previous generations, they implicitly
deal with dependencies among graph records (i.e.,
non-atomic extractions).

3 Event Linearization

Seq2seq models require that both the input and tar-
get be presented as a linear sequence of tokens. In
this section, we describe our format design concept
to reformulate event graphs as strings.

Events have an n-ary and potentially nested struc-
ture, with optional modifiers (e.g., “polarity”, “cer-
tainty level”) reshaping the described interaction.
Like many other relational data, events can be con-
veniently and naturally modeled as rooted directed
acyclic graphs (Frisoni et al., 2021). With this for-
malization, triggers and entities are nodes, while ar-
gument roles define edges. Each trigger, entity, and
trigger-trigger/trigger-entity association is assigned
to its type according to a predefined ontology3.

We revisit the formulation by (Paolini et al.,
2021) and put forward a formal event language de-
signed to be easy and deterministically reversible
to event graphs. While being more complex to
learn, our linearization comes with the advantage
of enclosing entire events in single expressions, re-
ducing the overhead of generating different output
sequences for trigger and argument annotations.
Each node is surrounded by the special tokens
[ and ], which represent semantic structure indi-
cators. Inside, a sequence of |-separated tags re-
ports the text span, the type (described in natural
words), and a list of X=Y relations, where X is the
argument role and Y is the target trigger. Note
that the same entity can be coupled to different
events (triggers) with distinct roles (i.e., double
tagging). The root trigger is a source vertex and
has not incoming edges. Trigger nodes also spec-
ify event-level modifiers as additional X=Y assign-
ments, in the form Property=Value (e.g., “Po-

3In this paper, we refer to closed-domain EE settings.
Please note that closed-domain EE exclusively searches for tar-
get events (e.g., positive/negative regulation, binding, carcino-
genesis) with a defined schema. On the contrary, open-domain
EE does not assume specific target types and aims to detect
general events unsupervised, thereby being more limited.

larity=Negative”). So, the information on event
components (i.e., nodes and their embedded in-
terconnections) are all within [. . . | . . .] patterns,
which can be nested in case of sub-events. The final
string minimizes the number of tokens to be submit-
ted or generated so as to make encoding/decoding
more efficient. Event constituents are sorted by
their order of appearance in the .a2 for consistency.

We define a context-free grammar (§A.1) and
test it with JFLAP (Rodger and Finley, 2006). Fig-
ure 2 depicts a practical example of textualized
nested bio-event.

[over-expressed | Gene_expression | Source = Other] 
[Bmi-1 | Gene |  Theme = over-expressed] 

[[promote | Positive_regulation | Cause = over-expressed] 
[tumorigenesis | Carcinogenesis | Theme = promote]]

over-
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Figure 2: Example of textually linearized event graph.

4 Datasets

Based on §3, we build new corpora suitable for text-
or graph-conditioned sequence modeling. Here, we
present the construction process of BIOT2E and
BIOE2T, together with their main properties.

4.1 Construction Process

4.1.1 Data Collection
Obtaining a large gold dataset of jointly annotated
pairs of sentences and event graphs may require
years of labor (Kim et al., 2008). We overcome this
issue by combining the training sets of 10 influen-
tial real-world datasets originally designed for BEE,
primarily derived from the ongoing BioNLP-ST
series (Kim et al., 2019). Table 1 reports the char-
acteristics of the seed datasets used for BIOE2T
and BIOT2E construction4. These sources com-
prise seminal bioinformatics projects like GENIA
(Kim et al., 2013a) and well-known tasks meeting

4We intentionally focused on fusing existing benchmarks
to build a highly-comprehensive biomedical evaluation gold
standard (not possible with silver pairs forged with heuristics).
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biologists’ needs, including topics such as cancer
genetics (Pyysalo et al., 2013) and infectious dis-
eases (Pyysalo et al., 2011). Each focuses on a
particular domain, differs in the annotation schema,
and consists of human-curated event annotations
on top of PubMed abstracts and full papers (En-
glish language). The reader should be aware that
biomedical benchmarks generally support only two
boolean modifiers—negation and speculation. On
the flip side, modifiers are essential for a correct
event interpretation, even with instances having the
same triggers and arguments. Given the potential
and uniqueness of modifiers in event data, we in-
clude GENIA-MK (Miwa et al., 2012) to manage
more sophisticated forms of meta-knowledge dur-
ing translation. Details on embraced modifiers are
available in §A.2.

Corpus Domain(s) #Documents Annotation
Schema

Genia Event
Corpus (GE08)
(Kim et al., 2008)

Humans blood cells
transcription factors

1,000 abstracts
35 entity types,
35 event types

B
io

N
L

P-
ST

’1
1

Genia Event
2011 (GE11)
(Kim et al., 2012)

See GE08
1,210 abstracts,
14 full papers

2 entity types,
9 event types,
2 modifiers

Epigenetics and
Post-translational
Modifications
(EPI11)
(Ohta et al., 2011)

Epigenetic change
and common protein
post-translational
modifications

1,200 abstracts
2 entity types,
14 event types,
2 modifiers

Infectious Diseases
(ID11)
(Pyysalo et al., 2011)

Two-component
regulatory systems

30 full papers
5 entity types,
10 event types,
2 modifiers

Multi-Level
Event Extraction
(MLEE)
(Pyysalo et al., 2012)

Blood vessel
development from
the subcellular to
the whole organism

262 abstracts
16 entity types,
19 event types

GENIA-MK
(Miwa et al., 2012)

See GE08 1,000 abstracts

35 entity types,
35 event types,
5 modifiers
(+2 inferable)

B
io

N
L

P-
ST

’1
3

Genia Event
2013 (GE13)
(Kim et al., 2013a)

See GE08 34 full papers
2 entity types,
13 event types,
2 modifiers

Cancer Genetics
(CG13)
(Pyysalo et al., 2013)

Cancer biology 600 abstracts
18 entity types,
40 event types,
2 modifiers

Pathway Curation
(PC13)
(Ohta et al., 2013)

Reactions,
pathways,
and curation

525 abstracts
4 entity types,
23 event types,
2 modifiers

Gene Regulation
Ontology (GRO13)
(Kim et al., 2013b)

Human gene
regulation and
transcription

300 abstracts
174 entity types,
126 event types

Table 1: Summary of the biomedical event extraction
corpora used for constructing BIOT2E and BIOE2T.
All data is in public domain and licensed for research
purposes.

4.1.2 Data Preprocessing, Filtering and
Sampling

Annotations follow standoff .a*, .ann, or .xml for-
mats, where labels are connected to the text spans
of the document through (start, end) character off-
set pairs. We automatically produce the linearized
version of each event graph by parsing and nor-
malizing these files, otherwise having structure

and labeling variants depending on the original
dataset. For example, .ann files identify modifiers
with “A” instead of “M”; GENIA-MK specifies the
value of each property and not the active type only
(e.g., “Speculation=True” versus “Speculation”);
GRO13 supports the recognition of triggers or en-
tities with scattered text spans (e.g., “RFX . . . 3”
→ “RFX3”). Our encoding formalism constitutes
a straightforward approach to control such nuances
and unify all EE sources. To force a network to
learn the connection between linguistic phenomena
and event modifiers, we consistently report the lat-
ter in an expanded version, standardizing the names
in case of inconsistencies (e.g., “Negation”→ “Po-
larity=Negative”). We eliminate duplicate events,
instances with annotation errors (e.g., references
to undefined entities) or with nesting cycles. If
multiple overlapping linearizations from different
datasets correspond to the same event mention, we
keep the longest and most complete one.

For BIOE2T (verbalization), we map each tex-
tualized graph with its mention. At this juncture,
it is essential to clarify that, with the term “event
mention”, we refer to the complete sentences that
describe all the components of a certain event and
therefore contain all the offsets related to its trig-
gers and arguments. Note that an event mention
(generation target) can be longer than one sentence.
Linearizations of events sharing the same text span
(i.e., double tagging) are decomposed in multiple
records. Poorly represented event types (less than
three occurrences) are discarded. Similarly, single-
node (trigger only) events are ignored since pre-
dicting entire sentences from such a little context
would be unreasonable. Using stratified random
sampling, we split data in training, validation, and
test sets with a 90-5-5 proportion. We stratify on
multiple variables: (i) the source dataset; (ii) the
event type (the main one in case of nesting, i.e., the
graph root); (iii) the event mention length.

BIOT2E (parsing) is specular, except to include
a balanced number of negative examples, manage
double tagging by concatenating linearized events,
and not be filtered, thus enabling 1:N extractions.
We map a PubMed sentence to a target linearization,
if present, or to an empty string otherwise. Hence,
we perform BEE at a sentence level, but we do not
exclude the investigation of document granulari-
ties in future works thanks to efficient transformers
(Tay et al., 2020)—e.g., LongT5 (Guo et al., 2022).
By accommodating these steps, we treat originally
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distinct tasks as different datasets of the more gen-
eral BEE task.

4.2 Data Properties

We devote the last part of this section to quanti-
tatively analyze the composition of BIOE2T and
BIOT2E. Basic statistics are shown in Table 2.
Note that the total number of unique event, entity,
role, and modifier types are ∼170, ∼150, 19, and
6, respectively, considerably larger than those in
previous standalone corpora (Frisoni et al., 2021).
Figure 3 shows the distribution of event graph sizes
and mention lengths, skewed with a long tail.

Train Valid Test All
61,319 3,407 3,407 68,133

# Pairs
36,635 2,035 2,036 40,706

# Event types 166 168 95 90 96 96 166 170
# Entity types 148 141 81 66 85 72 150 142
# Argument role types 19 19 15 16 15 14 19 19
# Modifier types 6 6 6 6 6 6 6 6

min 2 1 2 1 2 1 2 1
mean 4.29 3.65 4.31 3.66 4.30 3.63 4.30 3.65# Nodes per

event
max 35 25 35 20 31 19 35 25
min 0 0 0 0 0 0 0 0
mean 2.43 2.26 2.44 2.35 2.40 2.25 2.42 2.26# Modifiers per

event
max 5 5 5 5 5 5 5 5
min 1 1 1 1
mean 1.19 1.19 1.19 1.19

# Sentences
per event
mention max 3 3 3 3

min 6 2 8 2 11 2 6 2
mean 58.55 38.57 58.61 37.67 58.66 39.18 58.56 38.56# Tokens per

event mention
max 301 301 212 161 301 174 301 301
min 0 0 0 0
mean 1.40 1.39 1.43 1.40# Events per

sentence
max 28 15 24 28

Table 2: Basic statistics about our BIOE2T and BIOT2E
(blue text) datasets.

5 Experimental Setup

In this section, we provide the formal definition of
text-to-event parsing and event-to-text generation.
Then, describe the setup of the experiments we
conducted to evaluate our framework in both tasks.

5.1 Tasks

We see event graph extraction and verbalization
as bidirectional transduction tasks via conditional
generation, similarly to machine translation.

Training an event parser means finding a set of
parameters θP for a model f that predicts an event
graph ê given a text span s:

ê = argmax
e

f(e|s; θP ). (1)

Training an event mention generator require
finding a set of parameters θG for a model f that
predicts a text span ŝ given an event graph e:

ŝ = argmax
s

f(s|e; θG). (2)

In both cases, we use the same family of pre-
dictors f (i.e., architectural symmetry without
dataset- or task-dependent modifications) by means
of seq2seq models. We focus on two data settings:
(i) multiple datasets for the same task (multi-dataset
based on BIOT2E and BIOE2T with independent
parameters θP and θG), and (ii) all datasets across
different tasks (multi-task with shared parameters).

5.2 Models
Given the above-reframed definition of EE and
EGV, we employ encoder-decoder architectures
to autoregressively predict the target sequence y
conditioned on the input sequence x:

p(y|x) =
|y|∏
i=1

p(yi|y<i, x), (3)

where y<i = y1 . . . yi−1 and p(yi|y<i, x) is the
probability over the target vocabulary V normal-
ized by softmax(·). Because most of the tokens
in linearized event representations are also natural
language words, we investigate two PLMs with dif-
ferent capacities, aiming to reuse their general text
and world knowledge: T5-Base (Raffel et al., 2020)
and BART-Base (Lewis et al., 2020). Details about
models, training, and hardware configurations are
listed in §A.3. According to our literature review,
T5 and BART are the two leading generative mod-
els adopted in this field. Basically, they are both
transformer-based models (with a subword vocabu-
lary) pre-trained on massive corpora through a de-
noising self-supervised task, i.e., reconstruction of
artificially corrupted spans. T5 comes pre-trained
also on a multi-task mixture of text-to-text super-
vised tasks, but none of these include language gen-
eration from structured data. As remarked by other
researchers for AMR (Bevilacqua et al., 2021), we
hypothesize that denoising pre-training is benefi-
cial for EE and EGV. Linearized events can be seen
as reordered and partially corrupted sentences that
a model must reconstruct, and vice versa. Given a
training dataset D = {(x1, y1), . . . , (x|D|, y|D|)},
the learning objective is the negative log-likelihood
(teacher forcing):

L = −
∑

(x,y)∈D

log p(y|x, θ). (4)

5.3 Evaluation
Parsing. While training is based on a likelihood
objective, we assess EE models using standard pre-
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Figure 3: Distribution of instance origins, event graph sizes, and event mention lengths across our BIOE2T and
BIOT2E datasets. Tokens refer to the T5 vocabulary.

cision, recall, and F1 scores according to the “ap-
proximate recursive matching” criterion (Kim et al.,
2011) with string correspondence equality. Since
our models stand on free generation, the derived
event annotations are not accompanied by offset
indices communicating their position in the origi-
nal documents, preventing the “approximate span
matching” relaxation. To avoid introducing error
sources affecting results interpretation, we do not
apply fragile heuristics such as likelihood-based
class predictions (Paolini et al., 2021) or offset re-
construction (Lu et al., 2021b). In fact, (i) BIOT2E
has a high type heterogeneity overhead; (ii) many
sequences mention multiple events with the same
trigger and scattering arguments, making difficult
to assume that the matching argument-utterance is
the one closest to the trigger.

Generation. To quantitatively compare predic-
tions against ground truth literature sentences on
the test set, we use a broad spectrum of natural
language generation (NLG) evaluation metrics. We
deepen them in §A.4 and refer the reader to (Celiky-
ilmaz et al., 2020) for further details on their prop-
erties. In line with previous graph-to-text works,
we include BLEURT (Sellam et al., 2020), a recent
regression-based measure showing an higher corre-
lation with human judgments than other simple yet
widespread n-gram-overlap-based metrics.

6 Results

6.1 Event Extraction

Multi-dataset and Text-to-Text EE. Table 3
summarizes the BEE F1-scores of our end-to-end
models trained on BIOT2E when evaluated on the
validation set of the individual tasks5. We report
complete precision and recall results in §A.5. Base-
line systems have been assessed on the official

5Task organizers’ servers for test set evaluation are cur-
rently non-available. Accessed on May 9th, 2022.

BEE datasets—following a standard <.txt, .a1, .a2>
structure—provided by each BioNLP shared task.
They adopt discriminative architectures, meaning
they train a distinct model for each task by rely-
ing on benchmark-specific event/entity/role target
classes covered in .a1 and .a2 files. Despite con-
ducting training on all tasks at once (unified thanks
to a text-to-text format), we separately evaluate our
models on each validation set, allowing for a fair
comparison with the baseline. Thanks to knowl-
edge sharing among several biomedical subareas
and seq2seq, we significantly push the state-of-
the-art on all the benchmarks, with T5 empirically
producing better results than BART. Compared to
the solutions previously known in the literature
(Frisoni et al., 2021), our framework’s main advan-
tage is a higher recall and generalization capacity.
We lay out a detailed error analysis in §A.6.

Low-resource. We experiment on the CG13
dataset, using only 1% to 10% of the training data
(Figure 4, §A.3). F1-scores in such low-resource
regime demonstrate that our framework is data-
efficient compared to DeepEventMine, the SOTA
discriminative model for BEE.
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Figure 4: F1 comparison of our proposed models and
DeepEventMine with train down-sampling on the CG13
validation set. Mean and standard deviation over 3 runs.
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Works
Datasets

GE08 GE11 EPI11 ID11 MLEE GE13 CG13 PC13 GRO13 GENIA-MK
si

ng
le

-t
as

k Shared task winner 43.12† 55.90 56.41 50.10 – 50.74† 55.41† 51.10† 22.00† –
Trieu et al. (2020)
w/o gold entities

– 56.64 55.81 50.10 51.73 45.95 54.27 50.53 – –

Abdulkadhar et al. (2021) 63.09† 61.74† – – – 58.30† – – – 61.58†

m
ul

ti-
ta

sk

Ours
T5-Base[BIOT2E] 70.74 73.62 84.43 84.13 79.91 81.18 80.10 83.19 81.91 83.24
BART-Base[BIOT2E] 68.50 69.55 78.79 78.16 73.82 73.84 72.05 73.20 71.79 75.25

Table 3: F1-score (%) performance comparison on the validation set of the most significant biomedical event
extraction tasks (eight BioNLP-STs, MLEE, and GENIA-MK). Top: original BioNLP-ST winning results and
current SOTA neural systems (with per-task models); Bottom: proposed framework (with multi-task models).
† indicates test set results if validation ones are unavailable. The highest scores are bolded. Both our models
significantly outperform competitors (student t-test, p<0.05).

6.2 Event Graph Verbalization

NLG metrics. In Table 4, we show the event-
to-text results achieved by T5 and BART on the
overall BIOE2T test set. Since there are many
ways to express the same symbolic concept, we use
beam search at inference time to return all the dif-
ferent top beam sequences (i.e., multi-output). To
give additional insights on generative performance,
we apply metrics to all target-output pairs and not
only to the one with the highest log-likelihood.
T5-Base performs the best across all the NLG
metrics, which—despite capturing different dimen-
sions (grammatical correctness, fluency, informa-
tiveness, adequacy, etc.)—prove to be consistent
with each other. Interestingly, we observe a relevant
score gap between max-likelihood and max-score
selection within a beam. This is strong evidence
of the decoding strategy impact (often overlooked),
also reinforcing the hypothesis that high quality
human language does not follow a distribution of
high probability next words (Holtzman et al., 2020).
Moreover, it should be emphasized how this de-
tachment is much more attenuated with evaluations
closer to a semantic level. Sequences generated
via beam search tend to be syntactically different
(albeit moderate) but semantically similar, under-
lining the importance of metrics to grasp meaning
preservation. From qualitative investigations, both
models displays promising abilities in translating
modifiers in elements of language (§A.7).

Graph Structure and Output Length Impact.
Figure 5 shows the effect of the event graph size
on verbalization, measured with BLEURT, abstract-
ness (Gehrmann et al., 2019), and repetitiveness
(Peyrard et al., 2017)6. In this experiment, we aver-

6Abstractness: percentage of new n-grams in the predic-
tions, compared to the references. Repetitiveness: average

T5[BIOE2T] BART[BIOE2T]

MAXL MAXS MAXL MAXS

BLEU 63.8 69.6 (+5.8) 53.1 59.6 (+6.5)
ROUGE-1 68.8 73.9 (+5.1) 60.0 65.6 (+5.6)
ROUGE-2 61.3 66.7 (+5.4) 49.8 55.7 (+5.9)
ROUGE-L 66.1 71.2 (+5.1) 56.2 61.8 (+5.6)
METEOR 66.6 72.1 (+5.5) 56.3 64.4 (+6.1)
BLEURT 68.9 73.5 (+4.6) 59.8 64.4 (+4.6)
NUBIA 65.2 73.1 (+7.9) 56.2 64.3 (+8.1)
BERTSCORE 94.1 95.0 (+0.9) 92.3 93.4 (+1.1)
BARTSCORE -2.5 -1.7 (+0.8) -2.31 -1.31 (+1.0)

Table 4: Event-to-text generation results on the BIOE2T
test set. We show the average metric score consider-
ing the sequence with maximum likelihood (MAXL)
within a beam and the one obtainable by taking the se-
quence with maximum ground-truth-match according
to the metric of interest (MAXS). The gap between the
two is shown in round brackets.

age the metric score for all the generated sequences
and divide the results by the node number. We find
that sequence quality increases as the event graph
size increases, following a logarithmic function.
This behavior is justified by the fact that BIOE2T,
differently from other datasets like WebNLG, con-
tains similar text lengths for various graph sizes.
When the input is a larger event graph, the model
has more contextual information to be leveraged
during the generation, approaching the target syn-
tactically and semantically. This thesis is also sup-
ported by the decline in abstraction, while repeti-
tiveness is generally low and appears proportional
to prediction length.

6.3 Multi-task Setting
Our method naturally allows us to train a single
model on multiple datasets covering different NLP
tasks, besides EE and EGV. In this setting, we use

number of n-grams with at least one repetition in the generated
sequences. We scan word-level unigrams.
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Figure 5: Average BLEURT score, abstractness, repeti-
tiveness, and prediction length compared to the size of
the event graph to condition on.

a task-specific prefix (e.g., “extract events:”) to
let the model know the requested transformation
for each input. In particular, we inspect the perfor-
mance gap on the PUBMED dataset (Cohan et al.,
2018) for single document summarization, reveal-
ing a fairly advantage in terms of ROUGE (Table 5).
Our intuition is that both EE (with its event-to-text
back translation) and summarization tasks aim to
distill salient information from massive text, pro-
viding complementary features for each other that
can be beneficial for general NLP.

T5-Base
(R / P / F1)

T5-Base
Event-driven MTL

(R / P / F1)
ROUGE-1 27.24 / 58.11 / 32.97 33.46 / 47.94 / 39.41
ROUGE-2 10.84 / 23.82 / 13.15 12.12 / 17.92 / 14.46
ROUGE-L 18.08 / 40.29 / 22.03 22.19 / 32.01 / 26.21

Table 5: Single document summarization performance
on PUBMED test set w/o and w/ event-driven MTL.

7 Conclusion

This paper presented the first sequence-to-sequence
framework for both biomedical event extraction
and verbalization. Concretely, we proposed
BIOT2E and BIOE2T, two highly comprehensive
datasets with parallel text-event gold annotations,
constructed through a novel linearization technique.
By training autoregressive language models on
them, we achieved an average F1-score of 0.81
on ten benchmarks, making considerable improve-
ments over previously published work. In stark con-
trast with discriminative solutions, we employed
the same architecture to perform previously dis-
tinct tasks, exploiting pre-trained knowledge and

label semantics. Experimental results also proved
the usefulness of (i) knowledge sharing between
different biomedical spheres in event-based tasks,
(ii) events in improving model understanding for
NLP tasks in general, like document summariza-
tion. We hope that our contributions will lead to
further progress in natural language understand-
ing and generation as transfer learning becomes
even more vital for graph-to-text and text-to-graph
translations.

Future directions At the edge of our knowl-
edge, this is the first work that proposes single
deep neural models capable of effectively extract-
ing (and back-translating to text) such a variety
of biomedical events and their components. This
high ontological coverage opens the door to numer-
ous applications and research blueprints. Future
work should tackle: (i) document-level granulari-
ties; (ii) prompting-based purely generative mod-
els (Ma et al., 2022); (iii) text←→graph boosting
approaches echoing autoencoders and Cycle-GT
(Guo et al., 2020); (iv) few-shot learning; (v) event
aggregation towards automatic corpus-level knowl-
edge graph learning (Frisoni et al., 2020a; Frisoni
and Moro, 2020; Frisoni et al., 2020c,b); (vi) con-
version of events to logic and constrained decod-
ing algorithms (Lu et al., 2021a); (vii) infusion of
events in pre-trained language models for tasks like
biomedical multi-document summarization (Moro
et al., 2022) and information retrieval (Moro and
Valgimigli, 2021).

8 Ethical Considerations

Largely pre-trained language models that we refer-
ence in our study might perpetuate and exacerbate
biases and stereotypes hardwired in the training
data, risking generating false or misleading infor-
mation (Zhang et al., 2020a; Nadeem et al., 2021).
Healthcare, in particular, requires strong guarantees
about the factuality and reliability of predictions,
but current state-of-the-art NLP solutions cannot
establish such assurance. We acknowledge these
issues and caution those who build on our frame-
work to consider the aforementioned implications
before deploying systems in the real world. Al-
though automatic extraction of semantic relations
from scientific documents is fundamental in the
biomedical field, we do not encourage users to em-
ploy our models, like previous ones, for critical
applications at present performance levels. No sen-
sitive information is contained within our datasets,
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which are derived from publicly and openly avail-
able PubMed articles. We honor and support the
ACL Code of Ethics.

Acknowledgements

We would like to thank all the anonymous review-
ers for their constructive feedback and valuable
comments. We thank Paolo Italiani for training
the DeepEventMine models and assisting us during
low-resource experiments.

References
Sabenabanu Abdulkadhar, Balu Bhasuran, and Jeyaku-

mar Natarajan. 2021. Multiscale laplacian graph
kernel combined with lexico-syntactic patterns for
biomedical event extraction from literature. Knowl-
edge and Information Systems, 63(1):143–173.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565, Online. As-
sociation for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby
Vander Linden, Brittany Harding, Brad Huang, Peter
Clark, and Christopher D. Manning. 2014. Modeling
Biological Processes for Reading Comprehension. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1499–1510, Doha, Qatar. Association for Com-
putational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both: Sym-
metric AMR semantic parsing and generation without
a complex pipeline. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages
12564–12573. AAAI Press.

Jari Björne, Filip Ginter, Sampo Pyysalo, Jun’ichi Tsujii,
and Tapio Salakoski. 2010. Complex event extraction
at PubMed scale. Bioinform., 26(12):382–390.

Jari Björne and Tapio Salakoski. 2018. Biomedical
event extraction using convolutional neural networks
and dependency parsing. In Proceedings of the
BioNLP 2018 workshop, pages 98–108, Melbourne,
Australia. Association for Computational Linguistics.

Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and
Roberto Navigli. 2021. Generating senses and roles:
An end-to-end model for dependency- and span-
based semantic role labeling. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 3786–3793. ij-
cai.org.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
CoRR, abs/2006.14799.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

K. Bretonnel Cohen, Karin Verspoor, Helen Johnson,
Chris Roeder, Philip Ogren, William Baumgartner,
Elizabeth White, and Lawrence Hunter. 2009. High-
precision biological event extraction with a concept
recognizer. In Proceedings of the BioNLP 2009
Workshop Companion Volume for Shared Task, pages
50–58, Boulder, Colorado. Association for Computa-
tional Linguistics.

Pierre Colombo, Chloé Clavel, and Pablo Piantanida.
2021. Infolm: A new metric to evaluate summariza-
tion & data2text generation. CoRR, abs/2112.01589.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique Lafor-
est, and Elena Simperl. 2018. T-REx: A large scale
alignment of natural language with knowledge base
triples. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Giacomo Frisoni., Paolo Italiani., Francesco Boschi.,
and Gianluca Moro. 2022. Enhancing biomedical
scientific reviews summarization with graph-based
factual evidence extracted from papers. In DATA,
pages 168–179. INSTICC, SciTePress.

Giacomo Frisoni and Gianluca Moro. 2020. Phenomena
Explanation from Text: Unsupervised Learning of
Interpretable and Statistically Significant Knowledge.
In DATA (Revised Selected Papers), volume 1446,
pages 293–318. Springer.

https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://doi.org/10.1093/bioinformatics/btq180
https://doi.org/10.1093/bioinformatics/btq180
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
http://arxiv.org/abs/2006.14799
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://aclanthology.org/W09-1407
https://aclanthology.org/W09-1407
https://aclanthology.org/W09-1407
http://arxiv.org/abs/2112.01589
http://arxiv.org/abs/2112.01589
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://doi.org/10.1007/978-3-030-83014-4_14
https://doi.org/10.1007/978-3-030-83014-4_14
https://doi.org/10.1007/978-3-030-83014-4_14


2702

Giacomo Frisoni, Gianluca Moro, and Antonella Car-
bonaro. 2020a. Learning Interpretable and Statisti-
cally Significant Knowledge from Unlabeled Corpora
of Social Text Messages: A Novel Methodology of
Descriptive Text Mining. In DATA 2020 - Proc. 9th
Int. Conf. Data Science, Technol. and Appl., pages
121–134. SciTePress.

Giacomo Frisoni, Gianluca Moro, and Antonella Car-
bonaro. 2020b. Towards Rare Disease Knowledge
Graph Learning from Social Posts of Patients. In
RiiForum, pages 577–589. Springer.

Giacomo Frisoni, Gianluca Moro, and Antonella Car-
bonaro. 2020c. Unsupervised Descriptive Text Min-
ing for Knowledge Graph Learning. In IC3K 2020 -
Proc. 12th Int. Joint Conf. Knowl. Discovery, Knowl.
Eng. and Knowl. Manage., volume 1, pages 316–324.
SciTePress.

Giacomo Frisoni, Gianluca Moro, and Antonella Car-
bonaro. 2021. A survey on event extraction for natu-
ral language understanding: Riding the biomedical
literature wave. IEEE Access, 9:160721–160757.

Giacomo Frisoni, Gianluca Moro, Giulio Carlassare,
and Antonella Carbonaro. 2022. Unsupervised
event graph representation and similarity learning
on biomedical literature. Sensors, 22(1):3.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Sebastian Gehrmann, Zachary Ziegler, and Alexander
Rush. 2019. Generating abstractive summaries with
finetuned language models. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 516–522, Tokyo, Japan. Associa-
tion for Computational Linguistics.

David Geleta, Andriy Nikolov, Gavin Edwards, Anna
Gogleva, Richard Jackson, Erik Jansson, An-
drej Lamov, Sebastian Nilsson, Marina Pettersson,
Vladimir Poroshin, Benedek Rozemberczki, Timo-
thy Scrivener, Michael Ughetto, and Eliseo Papa.
2021. Biological insights knowledge graph: an inte-
grated knowledge graph to support drug development.
bioRxiv.

Mandy Guo, Joshua Ainslie, David C. Uthus, Santi-
ago Ontañón, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2022. Longt5: Efficient text-to-text trans-
former for long sequences. In NAACL-HLT (Find-
ings), pages 724–736. Association for Computational
Linguistics.

Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang,
David Wipf, and Zheng Zhang. 2020. CycleGT: Un-
supervised graph-to-text and text-to-graph generation
via cycle training. In Proceedings of the 3rd Inter-
national Workshop on Natural Language Generation

from the Semantic Web (WebNLG+), pages 77–88,
Dublin, Ireland (Virtual). Association for Computa-
tional Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. AMMUS : A survey
of transformer-based pretrained models in natural
language processing. CoRR, abs/2108.05542.

Jin-Dong Kim, Claire Nédellec, Robert Bossy, and
Louise Deléger, editors. 2019. Proceedings of The
5th Workshop on BioNLP Open Shared Tasks. Asso-
ciation for Computational Linguistics, Hong Kong,
China.

Jin-Dong Kim, Ngan L. T. Nguyen, Yue Wang, Jun’ichi
Tsujii, Toshihisa Takagi, and Akinori Yonezawa.
2012. The Genia Event and Protein Coreference
tasks of the BioNLP Shared Task 2011. BMC Bioin-
form., 13(S-11):S1.

Jin-Dong Kim, Tomoko Ohta, Kanae Oda, and Jun’ichi
Tsujii. 2008. From Text to Pathway: Corpus An-
notation for Knowledge Acquisition from Biomed-
ical Literature. In APBC, volume 6 of Advances in
Bioinformatics and Computational Biology, pages
165–176. Imperial College Press.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2011. Extracting
bio-molecular events from literature - the bionlp’09
shared task. Comput. Intell., 27(4):513–540.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
2013a. The Genia event extraction shared task, 2013
edition - overview. In Proceedings of the BioNLP
Shared Task 2013 Workshop, pages 8–15, Sofia, Bul-
garia. Association for Computational Linguistics.

Jung-jae Kim, Xu Han, Vivian Lee, and Dietrich
Rebholz-Schuhmann. 2013b. GRO task: Populat-
ing the gene regulation ontology with events and
relations. In Proceedings of the BioNLP Shared Task
2013 Workshop, pages 50–57, Sofia, Bulgaria. Asso-
ciation for Computational Linguistics.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092009636&partnerID=40&md5=27541a3b46d782bb7984eed8ba7fa8a3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092009636&partnerID=40&md5=27541a3b46d782bb7984eed8ba7fa8a3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092009636&partnerID=40&md5=27541a3b46d782bb7984eed8ba7fa8a3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092009636&partnerID=40&md5=27541a3b46d782bb7984eed8ba7fa8a3
https://doi.org/10.1007/978-3-030-62066-0_44
https://doi.org/10.1007/978-3-030-62066-0_44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107113340&partnerID=40&md5=7a4cc3ae8a6894d1a3fff499bb4bf717
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107113340&partnerID=40&md5=7a4cc3ae8a6894d1a3fff499bb4bf717
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W19-8665
https://doi.org/10.18653/v1/W19-8665
https://doi.org/10.1101/2021.10.28.466262
https://doi.org/10.1101/2021.10.28.466262
https://aclanthology.org/2020.webnlg-1.8
https://aclanthology.org/2020.webnlg-1.8
https://aclanthology.org/2020.webnlg-1.8
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
https://aclanthology.org/D19-5700
https://aclanthology.org/D19-5700
https://doi.org/10.1111/j.1467-8640.2011.00398.x
https://doi.org/10.1111/j.1467-8640.2011.00398.x
https://doi.org/10.1111/j.1467-8640.2011.00398.x
https://aclanthology.org/W13-2002
https://aclanthology.org/W13-2002
https://aclanthology.org/W13-2007
https://aclanthology.org/W13-2007
https://aclanthology.org/W13-2007


2703

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph
Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Diya Li, Lifu Huang, Heng Ji, and Jiawei Han. 2019.
Biomedical event extraction based on knowledge-
driven tree-LSTM. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1421–1430, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021a. Neu-
rologic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In NAACL-HLT,
pages 4288–4299. Association for Computational
Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021b. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Mingyu Derek Ma, Alex Taylor, Wei Wang, and
Nanyun Peng. 2022. DICE: data-efficient clinical
event extraction with generative models. CoRR,
abs/2208.07989.
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A Appendix

A.1 Formal Event Grammar

Linearized events follow the formal context-free
grammar orderly detailed in Table 6.

A.2 Insights on Event Modifiers

Table 7 recaps the event modifiers covered by our
work, their meaning and possible values.

A.3 Training Details and Reproducibility

T5 and BART. We reimplemented T5-Base
(∼220M parameters, 12-layers, 768-hidden, 12-
heads) in Flax (T5X) starting from the Google
Research codebase7 and built our BART-Base
(∼139M, 12-layers, 768-hidden, 16-heads) model
in PyTorch using the HuggingFace’s Transformers
library8. For all variants, weights are initialized
through the official checkpoints (C4 pre-training
for T5). For verbalization, we set the maximum
length for event mentions and linearized event
graphs to 200 and 400, respectively. For parsing,
we extended the linearization maximum length to
650. Instead, we used 1024 and 256 for single-
document summarization input/output (truncated).
We used BF16 mixed precision and a batch size
of 16 (with gradient accumulation every 2 batches)
for all models. We employed the Adam optimizer.
Following (Raffel et al., 2020), T5 models are fine-
tuned with a constant learning rate of 0.001, 1000
warmup steps, and a 0.1 dropout rate. For BART,
we used default hyperparameters, but we did not

7https://github.com/google-research/t5x
8https://huggingface.co/transformers/

model_doc/bart.html

penalize the model for the generation of repeated
ngrams, e.g., multiple opening or closing brack-
ets. We chose the best checkpoints based on the
ROUGE score on the validation set; we found that
it highly correlates with EE metrics (due to the
extractive nature of the task). At prediction time,
we used beam search with beam size 4 for genera-
tion and greedy decoding for parsing. We trained
single-task T5 and BART models for 50 epochs
(≈40 and ≈30 hours per full-training on BIOE2T
and BIOT2E, respectively). The estimated9 CO2
impact incurred by each model training belongs to
the range [6.09, 8.12] kg (carbon footprint). Re-
garding T5 MTL, we prepended task-specific tags
to the input records and performed 10 epochs using
a mixture with 100% data proportion sampling for
each task.

DeepEventMine. We reimplemented the train-
ing script (not released by the authors, accessed on
January 16th, 2022), faithfully following the steps
listed in the paper (Trieu et al., 2020). For compar-
ison, we modified the original evaluation script to
assess predictions without gold entities (not used
by our framework).

Low-resource. As outlined in §6.1, we experi-
mented on the CG13 dataset with only a limited
portion of the training set available. We selected 1,
2, 5, and 10 PubMed abstracts with an average num-
ber of mentioned events. To account for the small
dataset size, we fine-tuned on CG13 for a greater
number of epochs, proportional to the size of each
partition (50x, 25x, 10x, 5x). So, we trained T5
and BART for 2.500, 1.250, 500, and 250 epochs;
DeepEventMine for 4.000, 2.000, 800, and 400
epochs. We performed 3 runs (each model being
fine-tuned on the same 4 subsets of the training set
and then evaluated on the entire validation set).

Hardware Setup. We ran each experiment on
a workstation having two Nvidia GeForce RTX
3090 GPUs with 24GB of dedicated memory each,
64GB of RAM, and a Intel® Core™ i9-10900X
CPU @ 3.70GHz.

A.4 NLG Evaluation Metrics
Metrics (default parameters and official repository
implementation) are summarized in Table 8. As for
BARTSCORE and BLEURT, we used the BLEURT-
20 and BARTSCORE-CNNDM pre-trained models,
respectively.

9http://green-algorithms.org/
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Symbol Description
EV event
T trigger
A argument
TST text span trigger
TRG trigger role group
TSE text span entity
EVT event type
MG modifier group
M modifier name
MV modifier value
E entity
ET entity type
RG role group
R role

(a) Symbols in V

Symbol Type Set
tst ˆ[A-Za-z0-9]+$
tse ˆ[A-Za-z0-9]+$
evt EventTypes
m Modifiers
mv ModifierV alues
et EntityTypes
r RoleTypes

(b) Symbols in Σ

Id Rule Id ↓ Rule ↓
1 EV → T A 12 E → [TSE | ET |RG]
2 T → [TST | EV T MG TRG] 13 RG→ RG |RG
3 MG→MGMG 14 RG→ R = TST
4 MG→ |M = MV 15 TST → tst
5 MG→ ϵ 16 TSE → tse
6 TRG→ TRG TRG 17 EV T → evt
7 TRG→ |R = TST 18 ET → et
8 TRG→ ϵ 19 M → m
9 A→ AA 20 MV → mv
10 A→ E 21 R→ r
11 A→ EV 22 EV → EV EV

(c) Rules in R

Table 6: Formal definition of the event grammar G = ⟨V,Σ, R,EV ⟩. V is the finite set of variables (a); Σ is the
finite set of terminal symbols and therefore the alphabet of our event language (b); R is the finite set of production
rules (c); EV is the start variable. As for (b), each symbol on the left belongs to the type set on the right, which
depends on the dataset event schema. The only exception concerns tst and tse which are alphanumeric strings,
reported as regex for notational simplicity. The pipe marker is intended as a character and not as a logic operator.

Modifier Definition Possible values

Polarity
The truth value of an
event

Positive (default)
Negative

Speculation
Whether an event is
speculated or not

True, False (default)

Source
Origin of the knowledge
expressed by an event

Current paper (default)
Other

Manner
The intensity level of an
event

High, Low, Neutral (default)

Certainty level
The confidence of an
event being expressed

L1 (low confidence),
L2 (not complete confidence)
L3 (high confidence, default)

Knowledge type
The overarching
information expressed
by the event

Investigation, Observation,
Analysis, Fact, Method,
Other (default)

Table 7: Summary of the event modifiers in BIOT2E
and BIOE2T.

Metric U S Strategy Model(s)
BLEU ✓ N-gram recall –
ROUGE ✓ N-gram precision –

METEOR ✓
N-gram overlap
w/ synonym match

–

BERTSCORE ✓ Semantic similarity BERT

BARTSCORE ✓
Conditioned generation
for faithfulness, precision,
and recall

BART

BLEURT ✓ Human score prediction BERT

NUBIA ✓ Human score prediction
RoBERTa
GPT-2

Table 8: Metrics applied for evaluating event graph ver-
balization performance. U: unsupervised, S: supervised,
based on the need for human judgments to train. They
belong to [0, 1], with the exception of BARTSCORE,
whose range is ]−∞, 0]. The higher the score, the more
valid the hypothesis is.

A.5 Detailed Event Extraction Results

We report detailed event extraction performance
for our models in Table 9.

A.6 Error Analysis

A.6.1 Event Extraction
We quantitatively classify errors into three broad
categories: format, trigger, and argument errors.
Further, we organize the latter two in fine-grained
categories: under-prediction (i.e., expected but not
predicted), over-prediction (i.e., predicted but not
expected), and wrong type. Finally, we distinguish
the target type, especially keeping track of multi-
event outputs and nested (i.e., complex) events.
Table 10 reports the proportions of error types we
identified. We notice the most considerable fraction
of errors is due to triggers. From a closer look, we
found that over-predicted triggers are often linked
to generic words used very frequently to indicate
specific event types. For instance, similarly to what
emerged in previous works (Ramponi et al., 2020),
T5[BIOE2T] identifies a positive regulation event an-
chored at “activated” in the sentence: “Tax [...]
maximally activated HTLV-I-LTR-CAT and kappa
B-fos-CA” albeit the gold standard does not con-
tain the event in this instance. However, we believe
these errors are acceptable from a semantic point
of view and sometimes highlight a low-annotation
problem within the datasets. As for wrong trigger
and argument types, the model tends to generate
different but semantically equivalent labels, e.g.,
“sufficient to restore” instead of “restored”, “Pro-
tein_molecule” instead of “Protein”. This issue
underlines the need for alternative automatic evalu-
ation metrics operating at the semantic level. For-
mat errors are less frequent, proving that the model
can successfully manage bracket [. . . | . . .] rules.
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Works
Datasets

GE08 GE11 EPI11 ID11 MLEE GE13 CG13 PC13 GRO13 GENIA-MK

T5-Base[BIOT2E]

R
P
F1

67.71
74.05
70.74

74.57
72.68
73.62

92.28
77.81
84.43

90.28
78.77
84.13

71.56
90.45
79.91

73.18
91.15
81.18

70.83
92.17
80.10

75.68
92.36
83.19

74.84
90.45
81.91

75.79
92.32
83.24

BART-Base[BIOT2E]

R
P
F1

65.23
72.12
68.50

70.82
68.33
69.55

87.66
71.56
78.79

84.22
72.91
78.16

66.84
82.43
73.82

66.91
82.36
73.84

64.79
81.13
72.05

67.15
80.45
73.20

66.82
77.56
71.79

69.62
81.87
75.25

Table 9: Recall (R), Precision (P), and F1-score (%) performance of T5-Base[BIOT2E] and BART-Base[BIOT2E] on the
validation set of the most significant biomedical event extraction tasks.

Error Type Fraction

All Nested Multi-event
Format 5% 2% 3%
Trigger

Under-prediction 17% 8% 6%
Over-prediction 28% 16% 5%
Wrong type 10% 3% 4%

Argument
Under-prediction 13% 7% 4%
Over-prediction 23% 14% 5%
Wrong type 4% 2% 1%

Table 10: Quantitative event extraction error analysis of
T5[BIOE2T]. Average fraction values among the valida-
tion sets of all the ten datasets.

A.6.2 Event Graph Verbalization
To further assess the quality of the event-graph-
controlled text, we conduct an in-depth human eval-
uation study for a manual scrutiny of error sources.
Following previous works (Colombo et al., 2021),
human raters are presented with the source graph,
the predicted text, and the ground-truth. They are
asked to judge the prediction along six quality cri-
teria with binary rating.

• Coverage. Are all the information presented
in the event graph included in the text?

• Compliance. Does the text contains only the
information in the input event graph?

• Correctness. Are interactions modeled in the
event graph correctly mentioned (correct roles
and entity-linkage)?

• Factuality. Does the text contains only factual
information?

• Text Structure. Is the text well-structured,
grammatically correct and written in accept-
able English?

• Fluency. Does the text progress naturally? Is
it easy to understand? Is it a coherent whole?

Since the number of events is not balanced with

respect the biomedicine subarea (see Table 1), we
randomly sample eight graph-text pairs for each
dataset composing the BIOE2T test set (80 in to-
tal). The evaluation is performed for T5[BIOE2T]
and BART[BIOE2T]. For each prediction, we collect
scores from 3 expert evaluators and average them.

The average Kendall’s coefficient (Sen, 1968)
among all evaluators’ inter-rater agreement is 0.86.
Kendall’s coefficient ranges from -1 to 1, indicating
low to high association. Considering the subjectiv-
ity of the rating task, this number indicated high
human agreement for the EGV task.

Table 11 summarizes the results. We first note
a similar trend as in EE, with T5 outperforming
BART on most quality axes. We observe that the
generators mostly suffer from low compliance is-
sues due to the verbalization of additional informa-
tion not originally modeled in the input graph. We
investigated the reason for this error, finding three
main causes: (i) event mentions shared by multiple
events, (ii) a low number of nodes, and (iii) super-
ficial and often incomplete dataset annotations—
especially on GE08 and ID11. Hence, the error
is not attributable to a scarce expressive power of
events as semantic representations. Notably, de-
spite the frequent verbalization of further relation-
ships, models generally do not produce fabricated
facts, and the output quality is high. Compared to
T5, BART is more a victim of hallucinations and
tends to paraphrase the text more, mixing patterns
seen during training.

A.7 Parsing and Generation Examples
Some input-output examples for the EE and EGV
tasks are shown in Table 12 and Table 13, respec-
tively. We emphasize that current end-to-end neural
conversation models inherently lack the flexibility
to impose semantic control in the response gen-
eration process (Wu et al., 2021), justifying the
importance of EGV. This control is essential to en-
sure that users’ semantic intents are satisfied and
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Models

Perspectives T5[BIOE2T] BART[BIOE2T]

Coverage 0.97 0.94
Compliance 0.18 0.22
Correctness 0.96 0.91
Factuality 0.99 0.90
Text Structure 0.97 0.81
Fluency 0.99 0.83

Table 11: Human evaluation scores of the verbalized
event graphs on a random sample of 80 instances from
the test set. The highest are bolded.

to establish a degree of specificity on generated
outputs. Following this line, modifiers offer the
concrete opportunity of asking a model not only to
verbalize an event but also to do it with a particular
writing style. Multiple modifiers can be set at the
same time (e.g., “H2A may not be methylated”),
allowing great flexibility. EGV is also useful to
collect rationales from language models more ef-
fectively, revealing what knowledge is stored in
their parameters. The qualitative results obtained
indicate that the event graphs can indeed steer the
language model towards informative content fol-
lowing provided confidence measures or other lexi-
cal clue types.
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Text Extracted Event

We wanted to establish whether
BMP-6 also could affect the
viability of normal B cells.

Ground_truth
[affect | Regulation | Speculation = True]

[BMP-6 | Protein | Cause = affect]
[normal B cells | Cell | Theme = affect]y

affect

Reg 
Speculation=True 

BMP-6

Protein

normal B
cells

Cell

ThemeCause

T5[BIOE2T] ✓ BART[BIOE2T] ✓

We analyzed the methylation status
of hMLH1 and MGMT using
methylation-specific polymerase
chain reaction and DNA
sequencing analysis.

Ground_truth
[methylation | DNA_methylation | Speculation = True]

[MLH1 | Protein | Theme = methylation]
[methylation | DNA_methylation | Speculation = True]

[MGMT | Protein | Theme = methylation]y
methyl.

DNA_methylation 
Speculation=True 

MLH1

Protein

Theme
methyl.

DNA_methylation 
Speculation=True 

MGMT

Protein

Theme

T5[BIOE2T] ✓ BART[BIOE2T] ✓

We found a lack of PKD1
expression.

Ground_truth
[lack | Negative_regulation]

[[expression | Gene_expression | Theme = lack]
[PKD1 | Protein | Theme = expression]]y

lack

-Reg 

Theme
expres.

Gene_expression 

PKD

Protein

Theme

T5[BIOE2T]

[lacking | Negative_regulation]
[[expression | Gene_expression | Theme = lack]

[PKD1 | Protein | Theme = expression]]

BART[BIOE2T] ✓

Conversely, the murine kappa light
chain enhancer motif
(GGGGACTTTCCG) does not
efficiently bind the nuclear p50p50
from tolerant murine P388
macrophages.

Ground_truth
[bind | Binding | Polarity = Negative]

[kappa light chain | Protein | Theme = bind]
[p50 | Protein | Theme2 = bind]

[GGGGACTTTCCG | Entity | Site = bind]y
bind

Binding 
Polarity=Negative 

kappa
light c.

Protein
Theme

p50

Protein

Theme2

GG...

Entity

Site

T5[BIOE2T]

[bind | Binding | KT = Observation | Polarity = Negative | Source = Current]
[murine kappa light chain enhancer motif | DNA_domain_or_region | Theme = bind]

[p50p50 | Protein_complex | Theme = bind]
[not | Negative-Cue | Cue = bind]

BART[BIOE2T]

[bind | Binding | Polarity = Negative]
[kappa light chain | Protein | Theme = bind]
[p50 | Protein_molecule | Theme2 = bind]

Table 12: Input-output event extraction examples. Modifiers’ influence is highlighted in blue, while deviations
(positive or negative) from the ground truth are in red. The check-mark symbol denotes a full-correspondence
between the predicted text and the ground truth.
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Event Text

[Overexpression | Gene_expression]
[Bax inhibitor-1 | Gene_or_gene_product | Theme = Overexpression]

[[induces | Positive_regulation | Cause = Overexpression |
Theme = transformation]

[transformation | Cell_transformation]
[NIH3T3 cells | Cell | AtLoc = transformation]

[cell | Cell | Theme = transformation]]y
induces

+Reg

Cau
se

Theme

Over-
expression

Gene expression 

Theme 

transformation

Cell transform.

Bax
inhibitor-1 

Gene or gene product

NIH3T3
cells

Cell

cell

Cell

Theme
AtLoc

Ground_truth Overexpression of Bax
inhibitor-1 (BI-1) induces cell transformation
in NIH3T3 cells.

T5[BIOE2T] ✓

BART[BIOE2T] ✓

[regulated | Regulation]
[[Activation | Positive_regulation | KT = Observation | Theme = regulated]

[NF-kappa B | Protein_molecule | Theme = Activation]]
[phosphorylations | Other | Cause = regulated]y

regulated

Reg 

Activation

+Reg 
KT=Observation 

NF- 
kappa B

Protein_molecule

phosphor.

Other

Theme
Theme

Cause

Ground_truth Activation of NF-kappa B
in vivo is regulated by multiple phosphoryla-
tions.

T5[BIOE2T] ✓

BART[BIOE2T] Activation of NF-kappa B is
regulated by phosphorylations and rapid degra-
dation of its inhibitor I kappa B alpha.

[inhibit | Negative_regulation]
[DMI | Simple_chemical | Cause = inhibit]

[[growth | Cell_proliferation | Theme = inhibit]
[Ca3/7 cells | Cell | Theme = growth]]y

inhibit

-Reg 

DMI

Simple_chemichal

growth

Cell_proliferation 

Ca3/7
cells

Cell

ThemeCause Theme

Ground_truth DMI is suggested to inhibit
the growth of Ca3/7 cells.

T5[BIOE2T] Therefore, we examined the ef-
fect of DMI on Ca3/7 cells, resistant to growth
inhibition by the synthetic glucocorticoid flu-
ocinolone acetonide (FA).

BART[BIOE2T] The growth inhibition of
Ca3/7 cells by DMI is neither a consequence
nor the sole cause of growth arrest.

[involvement | Regulation | Speculation = True]
[[progression | Development | Theme = involvement]

[tumor | Cancer | Theme = progression]]
[TGF-beta | Gene_or_gene_product | Cause = involvement]y

involvement

Reg 
Speculation=True 

progression

Development 

tumor

Cancer

TGF-
beta

Gene_or_gene_product

ThemeTheme Cause

Ground_truth TGF-beta effects on angio-
genesis, stroma formation, and immune func-
tion suggest its possible involvement in tumor
progression.

T5[BIOE2T] In the present study, we investi-
gated the possible involvement of transform-
ing growth factor beta (TGF-beta) in tumor
progression.

BART[BIOE2T] An understanding of the
molecular basis of TGF-beta-mediated inhi-
bition of angiogenesis and tumor progression
will aid in the development of novel therapeu-
tics for the treatment of cancer.

Table 13: Input-output event graph verbalization examples. Modifiers’ influence is highlighted in blue. The
check-mark symbol denotes a full-correspondence between the predicted text and the ground truth.


